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Motivation: Molecular vs. Coarse-Grained Simulations
Molecular System Coarse-Grained System

DP =10, ~30ns DP =50, ~ 1000 ns

* many degrees of freedom « fewer degrees of freedom
» computationally expensive  computationally modest
* limited to short chains (1-10) e long chains (25-50 or longer)

d’x, 10U
F=ma F=-VU ~§ ~"uo.




Coarse-Grained model: based on atomistic MD S|mulat|on:
Atomistic MD simulation is limited to DP up to 10, CG MD simulation
will allow us to get to DP from 25 to 50 or even longer chains by
neglecting some local degrees of freedom.

CG model on top of atomistic model CG chain for hexamer, total
for hexamer (DP=6) interaction centers is 13 for each

molecule ( original:90).
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Coarse-Grained Potentials: parameterization

We must figure out all interaction modes according to the CG model and
parameterize the CG potentials for each mode (stretching, bending, torsion,
non-bonded interactions) to match the structures of atomistic simulation.
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’ To get the potential of each mode

@ iy @ we have to obtain the distribution

CG chain model and intramolecular function first, this can be extracted
interaction for hexamer, by analyzing atomistic simulation
1: bond stretching (BA); configurations of short chains.

2. bond bending (BAB and ABA);
3: bond torsion (BABA)
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Coarse-Grained potentials: distributions of CG beads
We obtained P(r), P(0), P(¢), g(r) based on atomistic MD simulation
configurations.
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Coarse-Grained potentials: OZPY-1 method for CG polymers

OZ integral equation: exact relationship between pair correlation function

(PCF) and interaction potential

g(r)-1=c(r)+ njc(s)h(t)dv
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OZPY: given U, find PCF

OZPY-1: given PCF, find U
need to know:

» PCFs

» allowable combinations

(BA),B linear chain

various combinations of
stretching, bending and
torsion interactions

For this model, there are 34 allowable combinations that contribute to

the indirect portion of the correlation.
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~ Coarse-Grained potentials: bonded and non-bonded.
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Coarse-Grained MD simulation: comparison of structures.
We compared the P(r), P(8) and P(¢) from CG and atomistic MD simulation.

o
o
a

o o o
o o o
¥ ® R

stretching distance distribution

o
o
e

0.00 .
0 2 4 6
separation (Angstroms)
0.020 Ty
\ BABA-target
C \ —— BABA-CGMD
200151
2 )
£ \
2
©
© 0.010 - BABA
2
© .
é \'\ 7
g 0.005 N L Z
0.000 T .
0 100 200

torsion angle (degrees)

0.06
BAB-target
< 0.05 _ BAB-CGMD
-% — — — - ABA-target
2 0.04 A — ——- ABA-CGMD
X7,
©
% 0.03
s /
£0.02 y 7
5 7
7
0.01 - %
/y
0.00 7 AN——. .
0 20 40 60 80 100 120 140 160 180
bending angle (degrees)

The distributions of beads with bonded
interactions from MD simulations match

relatively well.
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Coarse-Grained MD simulation: comparison of structures
comparison of non-bonded PCFs (BB, BA and AA) from CGMD and atomistic
MD simulations.

usta ITh\gyLI- g
J d Interdisciplinary Res

K

“g‘"; STAI R

6 8 10 12 14 16

distance (Angstroms)

2.0 2.0
.§ BB-target s AA-target
3 — — — BB-CGMD 5 —— AA-CGMD
i 1.5 A :g 1.5 -
é 1.0 1 § 1.0
g 0.5 A1 EOE
0.0 T T T T T T 0.0 T T T T T : :
0 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
distance (Angstroms) distance (Angstroms)
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g Aol The non-bonded PCFs from CGMD
5] and atomistic MD simulations match
: 1o fairly well.
£ 051 Solving the integral equations
. provides us a way to get a reliable
0.0

non-bonded interaction potential for
CGMD simulation.



i

reUNIVERSIT Yo TENNESSEE BE STAIR

Advanced Interdisciplinary Research

' Coarse-Grained MD simulation: chain end-to-end distance distribution

probability distribution

0.0025

0.0020 A

0.0015 A

0.0010 -

0.0005 A

0.0000

»The distributions are not typical Gaussian distributions, with
chain length increases, they become more Gaussian like.
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Decamer:
Comparison of chain
end-to-end distance
distributions from
CGMD and atomistic
MD match fairly well.
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CGMD simulation: comparison of dynamic property
chain end-to-end distance auto-correlation function (ACF)
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Note: We must

<Rult) R (0P/<R,*>

scale time in
CGMD simulation
(Harmandaris et al.
Macromol. Chem.
Phys. (2007)).
5.38 (based on
ratio of the values
of self-diffusivities)

80 100 120

Lirmies (Tes)

140 160

180

Atomistic MD: ACFs for long chain systmems can not reach 0 in short times. For
decamer, it took roughly 6 months to finish a run of 30ns

CGMD: simulations of the same systems. Apparent speed up is observed. All ACFs
can reach 0 in short times. For decamer, it took just 2 weeks to finish a run of 180 ns.
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Scaling factor and Scaling exponent (b)
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Scaling factors: based on the ratio of the values of
self-diffusivities from atomistic and CG simulations. The value 5.38
Is used to scale the dynamic properties back to atomistic scope.

Scaling exponents: b from polymer physics.

X =a(DP)’
Simulation
DP method D n Tioww <Rete> <Rg>
1~10 Ato,\T[')St'C 201 0.96 278 0594 | 0571
4~10 CGMD 1.01 1.6 281 0.59 0.57
20~50 CGMD 2.0 2.0 37 0.51 0.50
Rouse
Model (& 2) N/A 1 1 2 0.59 0.59
Reptation
Vodtel (L 2) N/A 2 3 3 0.50 0.50

1 Tzoumanekas et al. Macromolecules 2009
2 Lahmar et al. Macromolecules 2009
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Coarse-Grained MD simulation: Scaling exponents of R,

D

and Rg

Z 0510 for Long chains:

obtained b is

m closeto 0.5

4 Z 0.594

for short chains:

In (Rgte) @and In (Rg)
w

Z 0501 obtained b is in
2 the range of
0.57~0.60
1- Z 0571
0 T T T T T T
1.5 2.0 25 3.0 3.5 4.0
In (DP)

»The values for both short chains and long chains agree with
the Rouse and Reptation theory respectively.
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Coarse-Grained MD simulation: Scaling exponent of self-diffusivity

-23

24 4
Rouse model:

/ -1.91 for short chains,
b=-1

-25 S

-26 1

In(D(m?/s))

27 | £ -2.00 Reptation model:
for long chains,
-28 - b=-2

-29 -

'30 T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

In(DP)

»ODbtained b deviates from Rouse theory for short chains,
agrees with reptation theory for long chains.
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Coarse-Grained MD simulation: entanglement analysis
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To further understand the reptation behavior, we can do
entanglement analysis by extracting entanglement information
directly from configurations of the chains.

The Z-code: A common algorithm to study the entanglements in
polymeric systems (Kroger, M. Comput. Phys. Commun. 2005 )

What can we get from Z-code?
mean contour length of primitive path (<Lpp>), tube diameter (d),
number of monomers between entanglement
points (N,), interentanglement

strand length (N.g), defined as:

N (N —1)
= Z(N -1) + N

Kamio et al. Macromolecules 2007, 40, 710.
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Coarse-Grained MD simulation: entanglement analysis

DP <L,,> (A) d (A) N, Z Nes

10 31.99 19.07 8.82 1.87 7.19

20 62.08 33.08 14.60 2.44 11.16

30 92.17 35.38 18.67 3.51 13.48

40 110.22 38.49 22.16 4.34 15.13

50 133.23 34.74 22.60 6.02 14.37
rheology N/A 35% 2252 N/A 14.9¢

models 38-43P 25 ¢

»For DP = 10, unentangled system. for DP = 20 to 50, (d), (Ne) and (N.g) are very
close to the reported values for entangled PET melts.

a Fetters et al. In Physical Properties of Polymers Handbook; James E. Mark, 2007
b Fetters et al. Macromolecules 1994, 27, 4639.

c Lorentz, G.; Tassin, J. F. Polymer 1994, 35, 3200.

d Kamio et al. Macromolecules 2007, 40, 710.
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‘, ~ Conclusions:

» A CG model of PET was developed and implemented in CGMD
simulations of PET chains with DP up to 50. This allows simulation up
to 1 ms.
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» The CG potential is parameterized to structural distribution
functions obtained from atomistic simulations using an inversion
procedure based on (OZPY).

» The CGMD simulation of PET chains satisfactorily reproduces the
structural and dynamic properties from atomistic MD simulation of the
same systems.

» For the longest chains, we find the scaling exponents of 0.51, 0.50
and -2.00 for average chain end-to-end distance, radius of gyration
and self-diffusivity respectively. The exponents are very close to the
theoretical values of entangled polymer melt systems.

» The entanglement analysis shows that tube diameter (d), (Ne) and
(Ngg) of long chain systems are very close to the reported values for
entangled PET melts.
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