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I. Background of the OZPY-1 Method  
The Ornstein-Zernike Integral Equation with Percus-Yevick approximation (referred to as the 
OZPY equation23 here) is  
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With definitions of the cavity functionand total correlation function 
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In these equations, r, s and t are the displacements of in space; The OZPY equation assumes that 

there are three interaction sites  and  in the system. The interaction between  and  is 

represented by 1  and 1  is always the nonbonded potential, while the summations of 2  

(represents interactionand 3  (represents interaction) include both nonbonded and 

bonded potentials (stretching, bending and torsion).  Some combinations of 2  and 3  are 

not permitted. We will address the allowable combinations shortly. Conceptually, then we 

measure all pair correlation functions (PCFs),  tg
i in the simulation and we solve equation (1) 

numerically for  r
1

y  from which the potential can be directly extracted. Previously, we have 

proved the consistency of the OZPY-1 method on monatomic and diatomic fluids. This document 

shows the procedure to apply this method to chain fluid. 

 

II. Application of OZPY-1 Method to Chain Molecules 

 

 Similar to the diatomic case,23 the first thing we need to do is to figure out all allowable 

combinations for  As expected, The extension to polyatomic fluid involves more allowable 

combinations than the diatomic fluid case. A single particle of A in this chain has four types of 

interactions:   
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● bond stretching (S) interactions particles separated by one bond 

● bond bending (B) interactions with particles separated by two bonds 

● bond torsion (T) interactions with particles separated by three bonds 

● non-bonded (N) interactions with all other particles, both on the same chain 

(intramolecular) and on other chains (intermolecular) 

Each of these interactions has a distinct interaction potential, , , , and .  

On a linear chain, this central particle A interacts with 2 particles of type S, two particles of type 

B, two particles of type T and all other particles of type N. These include all possible types of 

interactions.  Explicitly, the necessary combinations (composed of a particle  interacting 

with particle  via one type of interaction and particle  interacting with the same particle  via a 

second type of interaction) , include SS, SB, ST, SN, BB, BT, BN, TT, TN, and NN.   

 Some of the combinations are not allowed. Because we use the OZPY-1 procedure to 

generate the nonbonded potential, we always impose that  and  particles are interacting via a 

nonbonded potential.  Under this constraint, both  and  particles cannot be interacting with 

particle  via a stretching interaction. Therefore, the combinations of SS is not allowed.  

All allowable combinations are listed in Table SI.1 for linear, homonuclear chains.  This is 

provided as a reference and a guide to understanding the more complicated model used for PET.  

The linear homonuclear chain is not used in this work.  All allowable combinations are listed in 

Table SI.2 for a linear, heteronuclear chain, with structure A(BA)n.  This corresponds to our 

model of PET.  There are 34 allowable combinations for this CG PET case. 

  Second, we need to define an unambiguous pair correlation function for particles interacting 

via the stretching, bending and torsion potentials. While the bending and torsion potentials are 

written as functions of the bond angle, if we assume independence between S, B, and T degrees 

of freedom then we can readily convert the B and T potentials to functions of the separation 

between the particles. The local density of particles interacting via interaction potential i , 

 r
i ,g , which is directly calculated in an MD simulation, 
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where V(r) is the volume of the spherical shell,
i

n  ,  is the local density of particles of type  

around particles of type , interacting via i . For the density of atoms interacting via potential 

i , we used the following function23, 
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where min,i
r  is the smallest value for which )(g r

i
 is non-zero,  max,i

r  is the largest value for 

which )(g r
i
 is non-zero, and the volume accessible to the i  atoms is the volume of the 

spherical shell bound between min,i
r  and max,i

r . As mentioned above, i  could be S, B, T. In 

our CG PET case, the corresponding pairs of min,i
r  and max,i

r  are (2.8 and 6.5) for stretching, 

(3.1 and 11.9) for bending ABA, (6.2 and 11.7) for bending BAB and (4.4 and 17.2) for torsion. 

 After clearing above two uncertainties, we performed the OZPY-1 procedure for our CG PET 

case. The computation process took only a few minutes. The calculated potentials are close to the 

power law 7-6 type potentials.  Using the procedure of reference 23, the calculated potential 

was fit to 7-6 form to avoid (i) numerical noise and (ii) deficiencies due to the approximate 

nature of the Percus-Yevick equation.  These deficiencies include a softer repulsive potential 

resulting in greater overlap than observed in the atomistic simulations and an overestimation at in 

the rate at which the potential rises at separations immediately beyond the first minimum.  

 This method is ot restricted to the generation of coarse-grained potentials for PET. The 

following two sections show all of the allowable combinations for a linear homonuclear and 

linear heteronuclear chain of the form A(BA)n.  The procedure is generalizable and can in 

theory accommodate other structures, including nonlinear chains.  All applications of this 
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OZPY-1 procedure as described require unambiguous pair correlation functions of S, B, and T 

interactions.  While not studied here, it is also within the capabilities of the procedure to 

simultaneously solve for S, B and T, removing the assumptions associated with their 

independence.  We have shown in the PET case that the assumption of independence is 

reasonable and thus we used the OZPY-1 procedure to solve only for the nonbonded interaction. 

 

III.  Homonuclear Chain Molecules  

 The OZPY equation doesn’t change from that of the diatomic molecule.  The combinations 

required in the  summation do change.  In Table 1, we list all of the combinations and show 

that three of them are not allowed.  For example, if particles  and  are interacting via a 

stretching interaction, and particles  and  are interacting via a stretching interaction, then 

particles  and  must be interacting via a bending interaction and not a nonbonded interaction. 

 

Table SI.1. Necessary Combinations for homonuclear chain Case 

particle type interaction type potentials in 
summation 

allowed 

       allowed 

A A A N N N NN YES 

A A A N N S NS YES 

A A A N N B NB YES 

A A A N N T NT YES 

A A A N S N SN YES 

A A A N S S SS NO, BEND between  and  
A A A N S B SB NO, TORSION between  and  
A A A N S T ST YES 

A A A N B N BN YES 

A A A N B S BS NO, TORSION between  and  
A A A N B B BB YES 

A A A N B T BT YES 

A A A N T N TN YES 

A A A N T S TS YES 

A A A N T B TB YES 
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A A A N T T TT YES 

 
 

IV. Heteronuclear Chain Molecules of type A-B-A-B-A- 

 The OZPY equation doesn’t change from that of the heteronuclear chain molecule.  There 

are more combinations required in the  summation compared to homonuclear chain molecule 

case.  In contrast to the information provided in Table 1 for the homonuclear chain, in which 

both allowable and disallowed combinations are provided, in Table 2, we provide only the 

allowable combinations of interaction potentials for the alternating heteronuclear chain. 
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Table SI.2. Necessary Combinations for heteronuclear chain Case 

 particle type potential type potentials in 
summation 

       
1 A A A NAA NAA NAA NAANAA 

2 A A B NAA NAB NAB NABNAB 

3 A B A NAB NAA NAB NAANAB 

4 A B B NAB NAB NBB NABNBB 

5 B B A NBB NAB NAB NABNAB 

6 B B B NBB NBB NBB NBBNBB 

7 A A B NAA SAB NAB SABNAB 

8 A B B NAB SAB NBB SABNBB 

9 B B A NBB SAB NAB SABNAB 

10 A A B NAA NAB SAB NABSAB 

11 A B A NAB NAA SAB NAASAB 

12 B B A NBB NAB SAB NABSAB 

13 A A A NAA BAA NAA BAANAA 

14 A B A NAB BAA NAB BAANAB 

15 B B B NBB BBB NBB BBBNBB 

16 A A A NAA NAA BAA NAABAA 

17 A B B NAB NAB BBB NABBBB 

18 B B B NBB NBB BBB NBBBBB 

19 A A B NAA SAB TAB SABTAB 

20 B B A NBB SAB TAB SABTAB 

21 A A B NAA TAB SAB TABSAB 

22 B B A NBB TAB SAB TABSAB 

23 A A A NAA BAA BAA BAABAA 

24 B B B NBB BBB BBB BBBBBB 

25 A A B NAA TAB NAB TABNAB 

26 A B B NAB TAB NBB TABNBB 

27 B B A NBB TAB NAB TABNAB 

28 A A B NAA NAB TAB NABTAB 

29 A B A NAB NAA TAB NAATAB 

30 B B A NBB NAB TAB NABTAB 

31 A B A NAB BAA TAB BAATAB 

32 A B B NAB TAB BBB TABBBB 

33 A A B NAA TAB TAB TABTAB 

34 B B A NBB TAB TAB TABTAB 


