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9 ABSTRACT: A coarse-grained (CG) model of poly(ethylene terephthalate) (PET) was developed and
10 implemented inCGmolecular dynamics (MD) simulations of PET chainswith degree of polymerization up to
11 50. TheCGpotential is parametrized to structural distribution functions obtained fromatomistic simulations
12 [ J. Phys. Chem. B 2010, 114, 786] using an inversion procedure based on theOrnstein-Zernike equationwith
13 the Percus-Yevick approximation (OZPY) [ Phys. Rev. E 2010, 81, 061204]. The CGMD simulation of PET
14 chains satisfactorily reproduces the structural and dynamic properties from atomistic MD simulation of the
15 same systems. We report the average chain end-to-end distance and radius of gyration, relaxation time, self-
16 diffusivity, and zero-shear-rate-viscosity’s dependence on degree of polymerization. For the longest chains,
17 we find the scaling exponents of 0.51, 0.50, and -2.00 for average chain end-to-end distance, radius of
18 gyration and self-diffusivity, respectively. The exponents are very close to the theoretical values of entangled
19 polymer melt systems (0.50, 0.50, and -2.0). The study of entanglement in the longer chains shows that the
20 tube diameter, number ofmonomers between entanglement points and interentanglement strand length are in
21 close agreement with the reported values for an entangled PET melt.

22 1. Introduction

23 Poly(ethylene terephthalate) (PET) is one of the most impor-
24 tant engineering plastics and is widely used in packaging industry
25 as bottles, fibers, and packaging films. Themacroscopic structur-
26 al and dynamic properties of PET have been widely studied
27 through experiments. The computational studies of structural
28 and dynamic properties of PETare limited due to the fact that the
29 polymer’s physical properties depend on several time and length
30 scales,1 which require multiscale modeling techniques.
31 Molecular-level simulation has proved to be a useful computa-
32 tional technique to study structural, physical and transport
33 properties of polymers of short length. The structural and trans-
34 port properties have been studied via molecular simulation with
35 different force fields. Hedenqvist et al.2 developed an atomistic
36 model for PET (hereafter referred to as the HBB model). The
37 specific volume, solubility parameters and dipolar correlation
38 factors obtained from (MD) simulation using this model are in
39 good agreement with the experimental results. Implementing the
40 HBBmodel for PET inMD simulations of a single chain with 60
41 monomers, Bharadwaj3 further studied the diffusion of methane
42 in amorphous PET. Boyd et al. modified the torsion component
43 of the HBB potential to satisfy chain dynamics and relaxation.4

44 Using amodifiedHBBmodel,Wang et al.5 studied the structural,
45 thermodynamic and transport properties of PET oligomers of
46 125 chains with degree of polymerization (DP) varying from 1 to
47 10 each. Kamio et al.6 generated structural properties needed to
48 obtain the CG potentials. Other models used in the molecular
49 simulation of PET include the polymer-consistent force field
50 (PCFF) model,7 the open force-field (OFF) model,8 the rota-
51 tional isomeric state (RIS) conformational model,9-11 and a

52more recently developed model.12 All of these studies involve
53either a single chain or chains with a degree of polymerization
54(DP) less than or equal to 20.However, the time and length scales
55used inmolecular simulation are far below that of real long chain
56polymer systems. With finite computational resources, it is
57beyond current computational capabilities to use an atomistically
58detailed simulation technique to obtain long time trajectories of
59long chains. For example, to determine the self-diffusivity of long
60polymer chains, the simulation must reach the long-time limit
61required by the Einstein relation. The simulation time can easily
62be on the order of microseconds or milliseconds and the corre-
63sponding real time for the computation is on the order of years or
64decades.
65The motivation behind a coarse-grained (CG) procedure is to
66lift these computational limitations by eliminating some degrees
67of freedom in the simulation in exchange for computational
68efficiency. The reduction in the degrees of freedom is accom-
69plished by grouping atoms in certain fragments of the chain into
70“superatoms”, which interact with their own CG potential.6,13

71Since the degrees of freedom are greatly reduced in the CGmodel
72and softer CG potentials are often obtained,13 larger length and
73time scales can be reached in the CG level simulation. Structural
74and transport properties can be calculated directly by CG
75simulation.14 Furthermore, the CG level properties can be
76mapped back to the molecular level through the use of scaling
77factors.13-15 Thismultiscalemodeling technique has been used in
78the study of structure and dynamics of biomacromolecules16,17

79and polymer chain molecules (polysterene (PS),13,18,19 poly(methyl
80methacrylate) (PMMA),14 polyethylene (PE),20 poly(ethylene
81oxide) (PEO),14,21,22 polyisoprene/polystyrene blend,23,24 bisphenol
82A polycarbonate (BPA-PC)25 and azobenzene liquid crystal26).
83Although the molecular simulation of PET has a long history,
84the CG simulation of PET is less prevalent in the literature.
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85 Kamio et al.6 performed CG end-bridging Monte Carlo simula-
86 tions of PET melts, generating equilibrium structural and en-
87 tanglement properties. This current work is aimed at conducting
88 CGMD simulations to investigate the structural and dynamic
89 properties of PET chains with a DP up to 50. This range of DP is
90 relevant because PET leaving an industrial finishing reactor
91 possesses a DP in the 30-50 range.
92 There is an up front price that must be paid for the computa-
93 tional efficiency of the CG procedure; the price is the develop-
94 ment of an accurate interaction potential for the CG superatoms.
95 Obtaining reliable nonbonded interaction potentials is particu-
96 larly challenging. Two common methods have been adopted to
97 obtain nonbonded CG potentials, namely adjusting power law
98 type potential parameters (Lennard-Jones 12-6, 7-6, 7-4,
99 7-5),13,18,19,26 and iterative Boltzmann inversion method.6,27

100 CG level simulations have been conducted using CG potentials
101 from both of the above methods. Using CGMD simulation with
102 power law type of nonbonded potential, Harmandaris et al.13,18,19

103 studied structural and dynamic properties of long chain poly-
104 styrene (PS) systems. A scaling factor is reported for the speed
105 up of chain dynamics based on the difference on mean square
106 displacements. Using potentials from the iterative Boltzmann
107 inversion27 method, Kamio et al.6 performed CG end-bridging
108 Monte Carlo simulations of PET melt. Both methods used to
109 obtain CG potentials need improvements with respect to compu-
110 tational accuracy and efficiency.16,26,28,29

111 Alternative methods have been developed recently to improve
112 computational accuracy and efficiency of the CG procedure.
113 Fritz et al.30recently present a newapproach that obtains both the
114 bonded and nonbonded interactions of the CGmodel of PS from
115 the sampling of isolated atomistic chains andpairs of oligomers in
116 vacuum. The method is computationally inexpensive. The CG
117 model of PS using the calculated CG potentials reproduces the
118 melt packing, the density and local chain conformations of atactic
119 as well as stereoregular PS.
120 TheOrnstein-Zernike integral equation (IE) theory31,32 is also
121 widely used to study the structural properties of polymer
122 systems.28,33-36 In most cases, the IE theory is used to generate
123 structural properties like pair correlation functions (PCFs) given
124 the interaction potential. Although, it has been used to obtain the
125 nonbonded potential parameters,37 the iterative nature of the
126 procedure limits the computational gain from coarse-graining.
127 Noniterative procedures also exist in which structural properties
128 and interaction potentials can also be obtained from the theory
129 and a description of the atomistic system.34-36

130 An alternative procedure based on the Ornstein-Zernike equa-
131 tionwith the Percus-Yevick approximation (OZPY equation)38,39

132 is to extract theCGnonbonded potential from the PCFs,which is
133 referredas inverseOZPYorOZPY-1.TheuseofOZPY-1method40

134 to obtain the interaction potential has been reported in the study
135 of monatomic systems.41-44 The OZPY-1 method is approxi-
136 mate only because of the approximate nature of the PY assump-
137 tion for the direct correlation function. On the other hand, it is
138 simple and fast compared to the current methods of comparable
139 accuracy. Wang et al.29 demonstrated that this method can be
140 applied to systems that have intramolecular degrees of freedom,
141 such as the diatomic Lennard-Jones fluid. Here, we apply the
142 OZPY-1 method to extract nonbonded CG potential for PET
143 chains with PCFs from atomistic MD simulations.
144 In previous work,5 atomistic simulations of PET oligomers of
145 degree of polymerization 1, 2, 3, 4, 6, 8, and 10, using the HBB
146 model were performed. For the tetramer, hexamer, octamer, and
147 decamer, PCFs (based on center of mass position of the CG
148 beads), relaxation times, and diffusion coefficients from these
149 simulations were obtained. In this work, we use the structural
150 results from the atomistic simulations of PET as input into the
151 OZPY-1method to generate aCGpotential of PET.We perform

152CGMDsimulations of longer chain PETwithDP equal to 4, 6, 8,
15310, 20, 30, 40, and 50. Structural and transport properties are
154studied at the CG level and mapped back to molecular level.
155Finally, the entanglement of long chain systems are studied by the
156Z algorithm.45 This paper is organized as follows. The details of
157the potential and simulation techniques are given in section 2. The
158Results and Discussion are presented in section 3. Conclusions
159are listed in section 4.

1602. Simulation Method

1612.1. Atomistic Simulation of PET Tetramer, Hexamer,
162Octamer, and Decamer. Although no additional atomistic
163simulations were performed for this work beyond those
164previously reported,5 this work does present new properties
165from the atomistic simulations. Therefore, we briefly review
166the simulation procedure that was used in the previous
167work,5 where a more detailed description is provided. We
168use the modified anisotropic united atom HBB potential
169model developed byHedenqvist, Bharadwaj, andBoyd2,4 for
170PETtodescribe the intramolecular and intermolecularpotential
171of oligomers molecules. We simulated in the isobaric-
172isothermal (NpT) ensemble and implemented theHamiltonian-
173based thermostat and barostat of Keffer et al.46 with controller
174frequencies set to 10-4 fs. The XI-RESPA NPT algorithm
175developed by Tuckerman et al.47 was used to integrate the
176equations of motion. The large time step was 2 fs and the
177small time stepwas 0.2 fs. The parallel codewe usedwas built
178in-house and is written in FORTRAN-90, using MPI for
179interprocessor communication. It has been tested rigorously
180across a variety of applications. For the simulations in this
181work, we verified conservation of the Hamiltonian in order
182to validate our choices of time step, cutoff distance and to
183minimize the possibility of bugs in the potential. For DP
184from4 to 10,we simulated 125molecules. The state pointwas
185set at 0.13 kPa and 563 K, as this corresponds to conditions
186within a finishing reactor.48 As for the initial conditions, we
187estimated the initial density and placed the particles in the
188simulation volume, avoiding significant overlap. To accel-
189erate equilibration, we started with a higher temperature.
190Then we gradually decreased the temperature of the system
191and equilibrated to the correct density. Typically, each
192equilibration stage lasted for 1 ns. The details of the equili-
193bration procedure can be found in elsewhere.2,5,6 Data
194production followed and lasted over 30 ns for the octamer
195and decamer. These lengths of data production were chosen
196to be greater than the longest rotational relaxation time as
197determined in the simulation.
1982.2. CGMDSimulations of Longer PETChains with DP=
1994, 6, 8, 10, 20, 30, 40, and 50. We propose that PET can be
200modeled at a coarse-grained level with two spherical beads of
201type A and B. The A bead corresponds to the benzene frag-
202ment, C6H4, and the B bead corresponds to all of the atoms
203between benzene fragments, C4H4O4. In the construction of
204the PCFs involving A and B from the atomistic simulations,
205the A and B beads are placed at the center-of-mass of the
206atoms F1in the corresponding fragment, as shown in Figure 1.
207This definition introduces a small error due to end effects in
208the B beads terminating each chain, which in the atom-
209istic simulation are actually C3H5O3. This mapping scheme
210contains a reduction in the number of degrees of freedom
211that enhances computational efficiency making the study of
212the dynamics of longer-chains tractable, while at the same
213time keeping sufficient structural details to reproduce the
214atomistic chain conformations. The validation of this
215choice of mapping scheme is given in the Results and
216Discussion.
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217 The CG potential includes bond stretching (BA), bond
218 bending (BAB and ABA), bond torsion (BABA), intramo-
219 lecular nonbonded interactions (for beads over four bonds),
220 and intermolecular nonbonded interactions (BB, BA, and
221 AA). Probability distribution functions (PDFs) for stretch-
222 ing, bending, torsion, and nonbonded interactions between
223 CG particles were generated from the atomistic simulations.
224 In the development of coarse-grained (CG) potentials, for
225 the stretching, bending and torsionmodes, there are straight-
226 forward approximations that relate the interaction potential
227 directly to the PDFs.13 The effective interaction potential
228 between a particle of type R and a particle of type β,jRβ, as a
229 function of the separation between particles, r, can be related
230 to the probability distribution function, gRβ(r), via

jRβðrÞ ¼ - kBT lnðgRβðrÞÞþ cRβ ð1Þ
231 where kB is Boltzmann’s constant, T is temperature, and cRβ
232 is a constant. Note here coordinates need to be changed for
233 the bending (from r to θ (bending angle)) and torsion (from r
234 to φ (torsion angle)) modes.13,18,26

235 To extract the nonbonded CG potentials, there are two
236 major methods currently used. First, the parameters of an
237 analytic potential such as Lennard-Jones are adjusted to
238 closely reproduce the target PCF in the atomistic liquid/melt.
239 A problem with this method is that the difference of con-
240 formations and orientations between fragment molecules
241 and target molecules may not be reflected correctly on the
242 corresponding coarse-grained potentials.16,26 For example,
243 the conformations of phenol rings in liquid benzene and that
244 in PS melt where the rings are embedded into a long chain
245 may be different. Consequently, these conformations would
246 be misrepresented in the CG potential. The calculated po-
247 tentials cannot be used under ambient pressure condition or
248 be applied to study the formation of ordered structures
249 driven by enthalpic interactions.30 Fritz et al.30 recently
250 developed a new method that addresses these drawbacks.
251 The method derives nonbonded potentials from constraint
252 dynamics with the all-atom model of two trimers (or tetra-
253 mers) of PS in vacuum. In this way, the atomistic melt
254 properties are not used in the parametrization while the
255 potential can still be used in the condensed melt phase. To
256 some extent, the multibody contributions to the effective
257 potential are taken into account.
258 In the secondmethod, a tabulated potential is numerically
259 determined by simulation iteration. The interaction poten-
260 tial is refined iteratively via

jRβ, iþ 1ðrÞ ¼ jRβ, iðrÞþ kBT ln
gRβ, iðrÞ
gRβðrÞ

 !
ð2Þ

261where gRβ(r) is the target PCF. Potentials obtained from this
262procedure will closely reproduce the CG atomistic liquid
263PCFs. The challenging part of thismethod is obtaining PCFs
264from simulations in each iteration. Asmentioned byGuenza,28

265those simulations have to be performed on length scales and
266time scales large enough to ensure a reliable numerical pre-
267dictions of the potential at the length scale characteristic of
268the coarse-graining procedure. This could strongly limit the
269computational gain of CG procedure.
270In this work, we use the form of the bonded potentials
271from eq 1 and nonbonded potentials from the OZPY-1

272method to describe both the intramolecular and intermole-
273cular potential of CG PET chains. The Ornstein-Zernike
274integral equation for a mixture of simple fluids38 is

gRβðr, r0Þ- 1 ¼ cRβðr, r0Þ

þ
X
γ

Z
cRγðr, r00Þnγðr00Þ½gγβðr00, r0Þ- 1� d3r00 ð3Þ

275where the pair correlation function between particles of type
276R and β located respectively at r and r0, gRβ(r,r0), is related to
277the direct correlation, cRβ(r,r

0), and an integral including the
278interactions of the R and β particles with a third particle, γ,
279located at r00 with a singlet density, nγ(r

00). There is a summa-
280tion over γ spanning all types of particles. This equation in its
281present form implicitly allows for a different interaction
282potential between each pair of types of particles. In essence,
283the summation over γ is a summation over interaction poten-
284tials. To emphasize this, the Percus-Yevick approximation
285of the direct correlation function can be written as

cji
ðr, r0Þ ¼ gji

ðr, r0Þ 1- exp
jiðr, r0Þ
kBT

� �" #
ð4Þ

286Substitute this to OZ equation yields the OZPY equation29

yj1
ðrÞ ¼ 1þ

X
j2

X
j3

2πn

r

Z ¥

0

ds s½hφ2
ðsÞ

- yφ2
ðsÞþ 1�

Z rþ s

jr- sj
dt thj3

ðtÞ ð5Þ

287With the definition of cavity function49 and total correlation
288function respectively as

yji
ðr, r0Þ ¼ gji

ðr, r0Þ exp jiðr, r0Þ
kBT

� �
ð6Þ

hji
ðr, r0Þ ¼ gji

ðr, r0Þ- 1 ð7Þ

Figure 1. Molecular andCGmodels of thePEThexamermolecule.Molecularmodel and center ofmass (com) positionofCGbeads are shown the left.
CG model is shown on the right.
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289 where j1 is always the unknown nonbonded potential, while
290 the summations of j2 and j3 include both nonbonded and
291 bonded potentials. Conceptually, then we measure all hji

(t)
292 in the simulation and we solve eq 5 numerically for yj1

(r)
293 from which the potential can be directly extracted. The
294 details of the application of the OZPY-1 method to poly-
295 atomic fluid is given as Supporting Information of this paper.
296 The method requires a meticulous accounting of the allow-
297 able combinations of interaction potentials in the summa-
298 tions of j2 and j3, which are dependent on the connectivity
299 of the polymer chain. For example, for the diatomicmolecule,
300 there were three combinations of j2 and j3 (stretching-
301 nonbonded, nonbonded-stretching, and nonbonded-
302 nonbonded). One cannot have stretching-stretching in
303 a diatomic system. For PET, there are 34 such combinations.
304 All the calculated potentials are presented in the Discussion.
305 In addition to CG model and potentials, we also require
306 reliable initial configurations to start the CGMDsimulation.
307 For DP = 4, 6, 8, and 10, the initial configurations of CG
308 chains are based on center ofmass positions of the fragments
309 from the atomistic simulations. ForDP=20, 30, 40, and 50,
310 we estimated the initial density and placed the particles in the
311 simulation volume carefully with proper bond length and
312 angles, then gradually introduced the nonbonded interac-
313 tions to avoid overlap.
314 We again simulated in the isobaric-isothermal (NpT)
315 ensemble under the same pressure and temperature as the
316 atomistic simulation. The time steps of CGMD simulation
317 are 10 times larger than those used in the atomistic MD
318 simulation. The simulation method is similar to that used in
319 the atomistic MD. After an equilibrium stage, the systems
320 reach the equilibrium densities. The equilibrium densities of
321 different systems are in the range of 1.18 to 1.29 g/cm3, which
322 is close to the finding of Kamio et al.6 by a different method.
323 End effects exist but become smaller with increasing chain
324 length.
325 Apparent speed up is observed in CG level simulation. On
326 the basis of wall-clock time, the CGMD simulations are
327 about 50 times faster than the atomistic simulations. Note
328 here that in our atomistic simulations, a united-atom model
329 was used for hydrogen bound to carbon, already eliminating
330 some degrees of freedom. The speed up factor would be
331 larger if the hydrogens were explicitly accounted for in the
332 atomistic simulation. The procedure is still computationally
333 intensive, to finish a run of 4300 ns for a systemof chainswith
334 DP of 50, it took roughly 3months on 16 processors.However,
335 such a run would have been infeasible with atomistic simula-
336 tion. The duration of data productionwas chosen to be 4 or 5
337 times the longest rotational relaxation time as determined in
338 the simulation for DP from 4 to 30. These simulations ran as

339long as 1600 ns. For DP equal to 40 and 50, the simulation
340times were 2800 and 4300 ns respectively, which are roughly
341equal to the longest relaxation times of these systems, which
342represents a compromise based on finite computational
343resources.

3443. Results and Discussion

345In this section, we present the results of the CGMD simula-
346tions for PET with DP = 4, 6, 8, 10, 20, 30, 40, and 50. For the
347four shortest chains, we compare the results with those of the
348corresponding atomistic simulations. The results are broken into
349three parts: structural properties, transport properties and en-
350tanglement analysis. A summary of raw properties generated
351from the CGMD simulations is presented in Table 1 T1. Note that
352these properties have not been adjusted by any time or length
353scaling factors. When mapping the CGMD simulation results
354back to themolecular level, scaling factors based on the time scale
355difference of the two level simulations are used.13,25 A compar-
356ison of structural and dynamic properties from atomistic MD
357simulation and corresponding scaled values from CGMD simu-
358lation for DP equals 4, 6, 8, and 10 are listed in Table 2 T2. All the
359time related properties in the figures (end-to-end autocorrelation
360functions, self-diffusivity, mean square displacement and zero-
361shear-rate viscosity) are scaled with the appropriate time-scaling
362factor. A detailed explanation of each scaling factor is contained
363in the discussion of its related property. In the sections below, our
364discussion is largely confined to comparison between the atomis-
365tic MD and CGMD simulations, as well as comparison of the
366observed results with the Rouse and reptation theories. Compar-
367ison of the results of the atomistic simulations with experimental
368measurements, which was in general quantitative, is available
369elsewhere.5

3703.1. Structural Properties. In Figure 2 F2, we show the
371distributions of bonded and nonbonded CG beads obtained
372from atomistic simulations. These distribution functions are
373based on the analysis of configurations from atomistic MD
374of the tetramer, hexamer, octamer and decamer. As shown in
375Figure 1, these distribution functions are calculated accord-
376ing to the center of mass position of CG beads. In our CG
377model, there is only one type of stretching mode (BA), two
378types of bending modes (BAB and ABA) and three types of
379nonbonded modes (BB, BA, and AA). The stretching mode
380shows a Gaussian type distribution with the equilibrium
381bond distance around 5.0 Å. The bending BAB shows single
382peak centered at 150�, while the bending ABA displays bi-
383modal distribution with one peak centered at 110�, the other
384centered at 170�. The torsional mode distribution is similar
385to that ofKamio et al.’s work,6 although they used a different
386CG model. Similar features for stretching and bending

Table 1.Unscaled Structural, Thermodynamic andTransport Properties of PETwithDifferentDP fromCGMDSimulations (forDP=4, 6, 8, 10,
20, 30, 40 and 50) at p = 0.13 kPa, T = 563 K

DP 4 6 8 10 20 30 40 50
N 125 125 125 125 125 125 125 125
F* (g/cm3) 1.22 ( 0.03 1.29 ( 0.01 1.29 ( 0.01 1.29 ( 0.01 1.18 ( 0.02 1.20 ( 0.01 1.25 ( 0.02 1.24 ( 0.01
D* (10-10 m2/s) 2.71 ( 0.2 0.76 ( 0.15 0.47 ( 0.13 0.32 ( 0.06 0.16 ( 0.03 0.08 ( 0.02 0.045 ( 0.022 0.025 ( 0.01
η* (10-2Pa 3 s) 0.1 ( 0.01 0.26 ( 0.09 0.41 ( 0.09 0.43 ( 0.04 0.44 ( 0.03 0.65 ( 0.13 1.50 ( 0.17 2.31 ( 0.40
ÆReteæ* (Å) 17.5 ( 6.2 22.1 ( 7.8 24.7 ( 9.1 28.3 ( 10.2 44.2 ( 15.9 56.6 ( 21.0 63.0 ( 23.0 69.8 ( 22.7
ÆRgæ* (Å) 8.1 ( 1.7 9.5 ( 5.4 10.5 ( 6.3 12.2 ( 6.4 19.6 ( 7.0 24.7 ( 9.1 28.0 ( 7.7 30.9 ( 10.6
τR* (ns) 0.96 3.04 4.69 10.33 51.28 128.20 476.25 909.10
τKWW* (ns) 0.56 2.34 3.99 7.88 34.39 95.05 491.21 1006.81
βKWW* 0.92 0.84 0.86 0.81 0.75 0.70 0.61 0.58
kinetic energy*

(aJ/bead) � 10-2
1.16 ( 0.04 1.16 ( 0.02 1.17 ( 0.02 1.17 ( 0.02 1.17 ( 0.02 1.17 ( 0.02 1.17 ( 0.03 1.16 ( 0.06

bonded energy*
(aJ/bead) � 10-2

0.92 ( 0.03 1.06 ( 0.02 1.11 ( 0.02 1.14 ( 0.02 1.19 ( 0.01 1.21 ( 0.02 1.22 ( 0.01 1.22 ( 0.04

nonbonded energy*
(aJ/bead) � 10-3

-1.24 ( 0.03 -1.23 ( 0.06 -1.18 ( 0.09 -1.18 ( 0.04 -1.25 ( 0.04 -1.21 ( 0.03 -1.20 ( 0.03 -1.21 ( 0.03
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Table 2. Comparison of Structural, Thermodynamic, and Transport Properties of PET from Atomistic MD Simulation DP= 4, 6, 8, and 10 and
CGMD Simulations for all DP at p = 0.13 kPa, T = 563 Ka

DP
simulation
method

F
(g/cm3)

D
(10-10m2/s)

η
(10-2Pa 3 s)

ÆReteæ
(Å)

ÆRgæ
(Å)

τKWW

(ns)

kinetic energy
(aJ/bead) �

10-2

bonded energy
(aJ/bead) �

10-2

nonbonded energy
(aJ/bead) �

10-2

1.0 0.186 5.38 1.0 1.0 7.5 1.0 1.09 16.35
4 atomistic MD 1.29( 0.01 0.40( 0.09 0.65( 0.07 21.1( 7.5 8.9( 5.2 5.6 1.17( 0.01 1.14( 0.01 -2.12( 0.01

CGMD-scaled 1.22( 0.03 0.50( 0.02 0.54( 0.06 17.5( 6.2 8.1( 1.7 5.5 1.17( 0.04 1.00( 0.04 -2.05( 0.04
6 atomistic MD 1.29( 0.01 0.17( 0.02 1.95( 0.65 26.8( 10.2 11.2( 4.4 15.8 1.16( 0.01 1.15( 0.01 -2.00( 0.01

CGMD-scaled 1.29( 0.01 0.14( 0.01 1.40( 0.48 22.1( 7.8 9.48( 5.4 17.4 1.16( 0.03 1.15( 0.03 -2.05( 0.11
8 atomistic MD 1.29( 0.01 0.10( 0.03 2.23( 0.60 28.6( 11.2 12.5( 5.3 25.3 1.17( 0.07 1.15( 0.07 -1.94( 0.02

CGMD-scaled 1.29( 0.01 0.09( 0.01 2.21( 0.48 24.7( 9.1 10.49( 6.3 26.8 1.17( 0.02 1.21( 0.02 -1.91( 0.12
10 atomistic MD 1.29( 0.01 0.07( 0.01 3.03( 0.80 34.2( 9.4 13.2( 3.8 38.6 1.17( 0.06 1.15( 0.06 -1.90( 0.01

CGMD-scaled 1.29( 0.01 0.06( 0.01 2.31( 0.16 28.3( 10.2 12.18( 6.4 59.1 1.16( 0.02 1.24( 0.02 -1.93( 0.08
20 CGMD-scaled 1.18( 0.02 0.030( 0.006 2.37( 0.16 44.2( 15.9 19.6( 7.0 257.9 1.17( 0.02 1.30( 0.01 -2.04( 0.07
30 CGMD-scaled 1.20( 0.01 0.015( 0.004 3.50( 0.70 56.6( 21.0 24.7( 9.1 712.9 1.17( 0.02 1.32( 0.02 -1.98( 0.05
40 CGMD-scaled 1.25( 0.02 0.008( 0.004 8.07( 0.91 63.0( 23.0 28.0( 7.7 3684.0 1.17( 0.03 1.33( 0.01 -1.96( 0.05
50 CGMD-scaled 1.24( 0.01 0.005( 0.002 13.37( 2.2 69.8( 22.7 30.9( 10.6 7551.0 1.16( 0.06 1.33( 0.04 -1.98( 0.05

a Properties from CGMD simulation have been scaled with scaling factors listed for each property in the second row.

Figure 2. Bonded (stretching, bending, and torsion) CG probability distribution functions (PDFs) and nonbonded CG pair correlation functions
(PCFs) of tetramer, hexamer, octamer and decamer. PCFs are based on the center of mass position of the CG beads, obtained by analyzing the
atomistic MD simulations of these oligomers.
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387 distributions are also reported in the work of Hamandaris et
388 al.18 on polystyrene. We believe this similarity is due to a
389 common treatment of phenol rings in the three CG models.
390 The nonbonded BB, BA, and AA distributions show multi-
391 ple peaks with the first peak centered at 5.0 Å. Figure 2 also
392 shows that both bonded and nonbonded distributions are
393 not significantly changing with DP, which indicates that our
394 proposed CGmodel is able to capture the structural features
395 of PET chains with different chain lengths. Any discrepancy
396 based on chain length is probably due to end effects, which
397 will diminish as we explore longer chains. We obtained the
398 bonded stretching, bending and torsion CG potentials
399 through eq 1, based on the bonded distribution functions
400 of the decamer. The distribution functions of the decamer
401 from atomistic simulation also serve as the target distribu-
402 tions, which we will compare later with the distribution
403 functions from CGMD simulations of the decamer.
404 In Figure 3F3 , we plot the bonded and nonbonded CG
405 potentials of different interaction modes extracted from the
406 PCFs of the atomistic simulation of the decamer. The
407 bonded potentials are generated via eq 1 and the nonbonded
408 potentials are generated using the OZPY-1 procedure. The
409 bonded potentials are shifted to have zero energy at the
410 minima. The three nonbonded interaction potentials ob-
411 tained from OZPY-1 method are shown in Figure 3. These
412 nonbonded potentials are close to Lennard-Jones 7-6 po-
413 tential. Therefore, the calculated potentials were fit to a LJ
414 7-6 form to avoid (i) numerical noise and (ii) deficiencies

415due to the approximate nature of the Percus-Yevick equa-
416tion. These deficiencies include a softer repulsive potential
417resulting in greater overlap than observed in the atomistic
418simulations and an overestimation of the rate at which the
419potential rises at separations immediately beyond the first
420minimum.The specific procedure to obtain these nonbonded
421interaction potentials are presented in the Supporting In-
422formation.Note here that the nonbonded potentials are used
423in both intramolecular and intermolecular parts. Clearly, the
424nonbonded potential indicates the strongest interaction be-
425tween two B beads, and the weakest interaction between two
426A beads. We can attribute this to the polar nature of the
427fragments in the B beads and the nonpolar nature of the
428benzene ring in the A bead.
429Because we have simulated the chains with DP = 4, 6, 8,
430and 10 using both atomistic and CG simulations, there are a
431variety of properties that can be evaluated to determine the
432validity of the coarse-graining procedure. First, the equipar-
433tition of energy was checked. In both the atomistic and CG
434simulations, the average system temperature of a MD simu-
435lation is calculated based on the equipartition theorem, but it
436can also be computed by measuring the velocity distribution
437and fitting it to aMaxwell-Boltzmann distribution. For the
438CG simulation of the decamer, we computed the tempera-
439ture of the A and B beads in the simulation in the x, y, and z
440dimensions using both procedures. The results are shown in
441Table 3 T3and Figure 4. The CG simulation results show that
442the average F4temperature equals to the set temperature with

Figure 3. Bonded (stretching, bending, and torsion) and nonbonded CG potentials.

Table 3. Comparison of temperatures of CG beads of decamer from the equipartition theorem (ET) and from theMaxwell-Boltzmann distribution
(MB) at p = 0.13 kPa, T = 563 K

species (Tx)
ET (Tx)

MB (Tx)
Diff(%) (Ty)

ET (Ty)
MB (Ty)

Diff (%) (Tz)
ET (Tz)

MB (Tz)
Diff (%) (Tavg)

ET (Tavg)
MB (Tavg)

Diff (%) (Tavg)
total

A 563 563 0.00 566 564 0.35 566 571 0.88 565 566 0.18 563.603
B 562 564 0.36 562 563 0.18 563 563 0.00 562 563 0.18
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443 0.2% standard deviation. The Figure 3 shows the velocity
444 distribution of CG beads B and A in the x direction,
445 compared to the expectedMaxwell-Boltzmann distribution
446 based on the target temperature and fragmentsmasses. Thus,
447 in our CG simulations, we confirm both the equipartition of
448 energy and the Maxwell-Boltzmann distribution of veloc-
449 ities. Consequently, the temperature of these CG simula-
450 tions is well established. In fact, the equipartition theorem
451 could be violated in CGMD simulations when the mass ratio
452 of CG beads is very large. The mass ratio of the two CG
453 beads (B/A) in our PETmodel is 1.45, closer to 1 than that in
454 the polystyrene models (6.5 and 2.8) of Harmandaris
455 et al.,13,18 in which the mass was assumed to be evenly
456 distributed between two CG beads to use a larger step size.
457 Their later work shows that this assumption affects the
458 scaling factor of dynamic properties.13 On the basis of the
459 above analysis, we avoided this assumption.
460 The second check between the atomistic and CG simu-
461 lations that can be done is based on a comparison of the
462 bonded PDFs. Equation 1, which is used to generate the
463 bonded potentials, is subject to the assumption that all
464 the interactions are independent of each other. The above
465 potentials can only correctly reproduce the conformational
466 sampling of atomistic description if all degrees of freedom
467 are uncorrelated.16 Villa et al.16 and Harmandaris et al.13,18

468 discuss the validation of this assumption. In Figure 5F5 , we
469 present the comparisons of all the bonded PDFs from
470 atomistic MD and CGMD simulations of the decamer.
471 The stretching, bending, and torsion PDFs agree reasonably
472 well between the two techniques. All of the peaks are present.
473 The largest discrepancy occurs in the ABA bending distribu-
474 tion, in which the CGMD results under-predict the popula-
475 tion of the smaller peak at about 170�. We have validated the
476 assumption of independence of the bonded modes through
477 direct comparison of the distribution from the atomistic and
478 CGsimulations.Further understandingof the statistical inter-
479 dependencies of different interactionmodes could be achieved
480 through additional analysis described in the literature.13,16,30

481 The third check between the atomistic andCG simulations
482 that can be done is based on a comparison of the nonbonded
483 PCFs and is a validation of the OZPY-1 coarse-graining
484 procedure. The nonbonded distributions BB, BA and AA
485 from CGMD also match the targets well. This indicates that
486 the calculated CG potentials are able to reproduce the

487structural features of PET chain at CG level. To further test
488this, we also compared the distributions of hexamer and
489octamer from CGMD with the atomistic PCFs, and found
490equivalent agreement (not shown). As presented elsewhere in
491most CG level simulation work,6,13,18,27 one of the most
492important points of validation of the CG process is the
493reproduction of conformations from atomistic sampling.
494Having done this, we can further investigate the other
495physical properties from the CG simulations.
496In Figure 6 F6, we show snapshots from the CGMD simula-
497tions. All of these snapshots are taken from the equilibrium
498ensemble. In Figure 6a all molecules are shown to make it
499clear that we are simulating a dense melt. In parts b-f of
500Figures 6, all but five chains are rendered invisible to better
501indicate the shape of the chains. These structures are avail-
502able to view and download at an archived site.50

503In Figure 7 F7, we show the distribution of chain end-to-end
504distance for DP = 10, 20, 30, 40, and 50. The end-to-end
505distance is defined as the distance between the two end BB
506groups. The end-to-end curve of the decamer displays two
507peaks. The peak centered at 4.5 Å corresponds to a folded
508configuration, as shown in Figure 6(b). The folded structure
509in PET oligomers has been reported by the other simulation
510work of PET.5,51 The broader peak extending from7 to 50 Å,
511with a maximum at 28.3 Å corresponds to the unfolded
512conformation. The end-to-end distribution of the decamer
513from atomistic MD simulation is also presented in Figure 7
514(solid black line). The comparison is excellent. As DP
515increases, the qualitative two-peak behavior of the decamer
516disappears and the distribution becomes more Gaussian-
517like,6 as shown for DP= 50. As expected, the position of the
518maximum in the peak increases with DP and the breadth of
519the curve increases with DP. The average end-to-end dis-
520tance increases with DP, as can be seen in Table 1.
521Figure 8 F8shows that the average chain end-to-end distance
522and radius of gyration as a function of DP in a log-log plot.
523Note here the results for tetramer, hexamer, octamer and
524decamer from atomistic MD simulations are also shown
525(open circle with back error bar). The lengths associatedwith
526theGCMD simulations are consistently slightly smaller than
527those of the atomisticMD simulations, because the beads are
528located at fragment center-of-masses. The polymer’s struc-
529ture and dynamic properties have the following chain length
530or molecular weight dependence.

X ¼ aðDPÞb ð8Þ

531HereX is a property related toDPvia the scaling exponent, b.
532The values of b for various properties as a function of chain
533length and degree of model resolution are listed in Table 4 T4.
534Both structural measures can be well fit by eq 8. The scaling
535exponents for the radius of gyration and the chain end-to-
536end distance are 0.594 and 0.571, respectively, for DP up to
53710 and 0.510 and 0.501 for DP from 20 to 40. Laso and
538Karayiannis52,53 studied the scaling behaviors of oligomer
539systems, and found very similar values (0.58-0.60) for the
540scaling exponents are obtained in the whole range of volume
541fractions from dilute up to very dense samples suggesting
542universal character in the scaling behavior of oligomers.
543Indeed the value of 0.59 corresponds to specific folded
544(ring-like) and extended chain configurations that, because
545of their small size,markedly deviate fromGaussian coils. In a
546melt of sufficiently long PET chains, chains should behave as
547random walks and the exponent should be close to 0.5 as
548shown byKamio et al.6 Our scaling exponents ofRete andRg

549for longer chain systems (for DP greater than 20) are close to
5500.5, which indicates that for DP greater than 20, the systems

Figure 4. Comparison of x-direction velocity distribution of CG beads
from CGMD simulation (data points) and the fitting of velocity
distribution data to the Maxwell-Boltzmann distribution (line). The
temperature can be extracted and compared with that of CGMD.
Temperatures for all directions are shown in Table 1.
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551 become entangled. Indeed, the critical entangled molecular
552 weight (Me) of PET (3500 g/mol)54 is between the molecular
553 weight of decamer (1901 g/mol) and DP= 20 (3802 g/mol).
554 The molecular weight of the highest DP (DP= 50) system is
555 (9505 g/mol) 2.7 times of Me. Therefore, a transition from
556 Rouse like behavior to reptation behavior is possible.Wewill
557 refer this issue back during the discussion of entanglement
558 analysis.
559 Parts a and b of Figure 9F9 show the normalized chain end-
560 to-end vector autocorrelation functions changing with ob-
561 servation time for the tetramer, hexamer, octamer and
562 decamer systems. In Figure 9a, the black lines represent data
563 from atomistic MD simulation using the molecular model,
564 while the red lines represent values scaled from CGMD
565 simulations using our CG model. The autocorrelation func-
566 tions all decay to zero, which means the chains are fully
567 relaxed. The atomistic simulations do not extend out as far as
568 the CGMD simulations simply due to restrictions in compu-
569 tational resources. Thus, the benefits of applying the CG

570procedure are evident. Note here the observation time was
571scaled.
572We can extract useful information from the end-to-end
573vector autocorrelation function. By fitting this data to the
574exponential model or the KWW model55 (a stretched ex-
575ponential), one can extract chain relaxation times, τR* and
576τkww* respectively. These times correspond to the longest
577rotational relaxation time. The relaxation times and the
578stretching exponent, βKWW*, are reported in Table 1. As
579shown in Figure 9b, the fits to KWW model are reasonably
580good for DP equals 20, 30, 40, and 50. The relaxation times
581from the Rouse and the KWWmodel deviate at short chain
582length but agree relatively well for long chain length. The
583relaxation times increase strongly with DP. On the basis of
584chains with DP of 20, 30, 40, and 50, the scaling exponent b
585for τkww* is 3.7. The scaling exponent obtained for the DP=
5861 to 10 from the atomistic simulations was 2.78. Since there is
587a statistically significant change in the exponent from short
588to long chains, it is possible that this is a consequence of

Figure 5. Comparisons of bonded (stretching, bending, and torsion) CG probability distribution functions (PDFs) and nonbonded CG pair
correlation functions (PCFs) of decamer from atomistic MD simulation (target) and CGMD simulation.
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589 moving from an unentangled to an entangled regime. As a
590 point of reference, the Rouse model predicts a scaling expo-
591 nent of 2 and reptation theory predicts a scaling exponent
592 of 3.56

593 Another important issue investigated on the analysis of
594 end-to-end vector autocorrelation functions is the scaling
595 factor of relaxation times from atomistic MD and CGMD
596 simulation of the tetramer, hexamer, octamer and decamer.
597 We obtained two sets of relaxation times, τkww (from atom-
598 istic MD), which are listed in Table 2, and τkww* (from
599 CGMD), which are listed in Table 1. The average of the ratio
600 of τkww/τkww* of tetramer, hexamer, octamer, and decamer is
601 7.5. In other words, the polymers relax on average 7.5 times
602 faster in the CGMD simulation than they do in the atomistic
603 simulation. This is because fewer degrees of freedom are used

604in the CG model, which accordingly causes faster dynamics
605in the CGMD simulation than the full atomistic MD simu-
606lation.13 This scaling factor is reported in the top row of
607Table 2. As a point of clarification, note that we now have
608scaling exponents relating the behavior of a property to
609degree of polymerization and scaling factors, providing
610proportionalities between properties of the CGMD simula-
611tions to those of the atomistic MD simulations.
612We also report the kinetic, bonded potential (stretching,
613bending and torsion) and nonbonded potential (intramole-
614cular and intermolecular) energies in Table 1 (raw data) and
615Table 2 (scaled data). These energies are reported in units of
616aJ/bead. The scaling factors reported in Table 2 were gener-
617ated by calculating the average ratio of the property from
618CGMDand atomistic simulations. The use of a single constant

Figure 6. Snapshots of equilibrium configurations from CGMD simulations at T= 563 K, p= 0.13 kPa. (a) DP= 10, all molecules shown; (b-f)
PET with different chain length (DP), selected molecules; (b) DP = 10; (c) DP = 20; (d) DP = 30; (e) DP = 40; (f) DP = 50.
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619 for scaling the kinetic energy across all DP is excellent, as
620 can be judged by comparison of the scaled energies from

621atomistic and CGMD simulation in Table 2. The scaling for
622the potential energies is reasonably good with an average
623error of 6.2% and 2.2% for the bonded and nonbonded
624terms, respectively. These scaling factors for the energies
625allow one to compute thermodynamic properties, such as the
626internal energy, of the atomistic chain from the CGMD
627simulation.
6283.2. Transport Properties. In this section, we report the
629self-diffusivity (D) and zero-shear rate viscosity (η) as a
630function of DP. The self-diffusivity is obtained from the
631mean-square displacements (MSD) through Einstein’s equa-
632tion given as

D ¼ 1

6
lim
t f ¥

1

t
Æ½rcmðtÞ- rcmð0Þ�2æ ð9Þ

633where rcm is the center of mass position of the chain.
634In Figure 10 F10, we plot the mean square displacement versus
635observation time on a log-log plot. In order to satisfy the
636infinite time limit, the slopes of the curves must be unity.
637These slopes are reported in the legend of Figure 10 and are
638all very close to unity. This is evidence that the simulations
639have been run sufficiently long to achieve valid self-diffusivities.
640The numerical values of the self-diffusivities from CGMD
641simulation are reported in Table 1.We acknowledge that it is
642likely that the statistical accuracy of the estimate diminishes
643as the chain length increases due to the fact that we have not
644been able to simulate for as many relaxation times with the
645long chains aswe didwith the short chains. This is reflected in
646the uncertainties reported in Table 1 where the standard
647deviation is 19% for DP= 10 and 40% for DP= 50. Scaled
648values are plotted in Figure 11 F11as a function of DP. The self-
649diffusivity decreases with DP as expected. The scaling ex-
650ponent for the self-diffusivity forDP=20 to 50 is-2.00. The
651scaling exponent obtained for DP= 4 to 10 is -1.91, which
652can be compared to the DP = 1 to 10 from the atomistic
653simulations, which was -2.01.5 Since this exponent changes
654very little from short to long chains, it is not a useful measure
655of degree of entanglement. As a point of reference, the

Figure 7. Comparisons of the chain end-to-end distance probability
distributions for DP= 10, 20, 30, 40, and 50 from CGMD. For DP=
10, the solid line represents the distribution from atomistic MD
simulation. For DP = 50, the dash line represents the distribution
predicted by Gaussian function.

Figure 8. Average chain end-to-end distance (Rete, circles) and radius
of gyration (Rg, diamonds) as a function of DP from atomistic MD
(open symbols) and CGMD (solid symbols). The error bars are one
standard deviation. Linear regressions of the MD data (short chains)
and CGMD data (long chains) are shown with the slope reported.

Figure 9. (a) Comparison of the end-to-end distance autocorrelation functions for the tetramer, hexamer, octamer and decamer from atomistic MD
and CGMD simulations (with time scaled). (b) End-to-end distance autocorrelation function and its fitting to the KWWmodel for DP= 20, 30, 40,
and 50 from the CGMD simulations.

Table 4. Scaling Exponents for Various Properties As a Function of
Chain Length and Degree of Model Resolution

DP simulation method D η τKWW ÆReteæ ÆRgæ

1-10 atomistic MD -2.01 0.96 2.78 0.594 0.571
4-10 atomistic MD -1.91 1.6 2.81 0.59 0.57
20-50 CGMD -2.0 2.0 3.7 0.51 0.50
Rouse model N/A -1 1 2 0.59 0.59
reptation model N/A -2 3 3 0.50 0.50
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656 theoretical prediction of the scaling exponent from reptation
657 theory for entangled polymermelts is-2.We do not observe
658 any behavior predicted by the Rouse model (for which
659 b=-1.0) for any chain lengths. Indeed, it has been reported
660 in the literature that the dynamic properties deviate from the
661 Rouse model for short-chain unentangled polymer systems.57

662 This is attributed to the presence of chain stiffness, nonbonded
663 interactions, and chain uncrossability, which are not accounted
664 for by the Rouse model.57

665 If we compare the numerical values of the diffusivities
666 from atomistic simulations (Table 2) and CGMD simula-
667 tions (Table 1) for chains with DP of 4, 6, 8, and 10, we find
668 that the average ratio of diffusivities (CG over atomistic) is
669 0.186. (The diffusivities in Figure 11 are scaled by this
670 number.) The inverse of this is 5.38. In other words, diffusion
671 is occurring 5.38 times faster in the CGMD simulation than
672 in the atomistic MD simulation. Recall that the polymer
673 relaxed 7.5 times faster in theCGMDsimulation based on an
674 analogous comparison of τkww. One might have expected
675 these numbers to be the same. At this point, we do not have a
676 complete explanation for the discrepancy. The use of a time

677scaling constant has only an empirical basis. The different
678dynamic properties (relaxation time, diffusivity, viscosity)
679represent mechanisms of entropy generation. Because the
680entropy of the atomistic and coarse-grained models are
681different, it may well turn out that the use of a single time-
682scaling constant gives only a first order approximation of the
683diverse effects of a more complicated issue. However, in
684Table 2, when we provide the scaled properties from the
685CGMD simulations to compare with the atomistic MD
686simulations, we provide all of the scaling factors in the top
687row of the table.
688The zero-shear-rate viscosity is based on time integration
689of the momentum autocorrelation function

ηxy ¼ 1

VkBT

Z ¥

0

ÆσxyðtÞσxyð0Þæ dt ð10Þ

690where σxy is the xy component of the stress tensor defined to
691have a potential and kinetic contribution

σxy ¼ 1

2

XN
i¼ 1

XN
j 6¼i

Fijxrijy þmi

XN
i¼ 1

uixuiy ð11Þ

692where rijx and Fijx are respectively the separation and force
693between particles i and j in the x dimension,mi is the mass of
694particle i.
695Following a previously tested procedure,5,58 we obtained
696numerical values of the zero-shear-rate viscosities from the
697CGMD simulations, which are given in Table 1. Scaled
698values are plotted in Figure 12 F12as a function of DP. The
699scaling exponent for the zero shear rate viscosity forDP=20
700to 50 is 2.0. The scaling exponent obtained for DP= 4 to 10
701is 1.6, which can be compared to the DP = 1 to 10 from the
702atomistic simulations, which was 0.96.5 The values deviate
703from the theoretical prediction (b = 1 for the Rouse model
704and b = 3.0 for the reptation model). The deviation from
705Rouse model is expected57,59 due to the reasons mentioned
706above. The exponent for short chains b= 1.6 is close to the
707finding of other simulation work (b = 1.860 and b = 1.557).
708For entangled long chain systems, the exponents b = 3.660

709and b = 3.257 have been observed.
710Tomap zero-shear-rate viscosity fromCGMD simulation
711back to the molecular level, we again calculate an average
712scaling factor between the viscosities of the CGMD and

Figure 10. Mean square displacement of chain center of mass as a
function of observation time for all DPs. The slope reported in the
legend should be unity to satisfy the long-time limit of the Einstein
relation.

Figure 11. Average self-diffusivity (D) as a function of DP from
atomistic MD (open symbols) and CGMD (solid symbols). The error
bars are one standard deviation. Linear regressions of the MD data
(short chains) and CGMD data (long chains) are shown with the slope
reported.

Figure 12. Average zero-shear-rate-viscosity (η) as a function of DP
from atomistic MD (open symbols) and CGMD (solid symbols). The
error bars are one standard deviation. Linear regressions of the MD
data (short chains) and CGMD data (long chains) are shown with the
slope reported.
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713 atomistic MD simulations for DP = 4, 6, 8, and 10. The
714 average ratio is 6.62. If we invoke the Stokes-Einstein (SE)
715 relation,61,62 which according to hydrodynamic theory ap-
716 plies well to the diffusion of large spherical molecules in
717 solvent of low molecular weight (admittedly not the system
718 here), then

Dη

kBT
¼ 1

4πRSE
ð12Þ

719 whereRSE is the particle size.RSE can also be represented by
720 the chain radius of gyration (Rg). Thus, according to the
721 Stokes-Einstein relation, the scaling factor for viscosity is
722 simply the inverse of the scaling factor the diffusivity (since
723 we have assumed a scaling of 1 for the radius of gyration),
724 which is 5.38. The values of the viscosity in Table 2 and
725 Figure 12 have been scaled by 5.38. There is relatively good
726 agreement between the viscosities from the CGMD and
727 atomistic MD simulations. There is scatter in the data, (as
728 is typical for zero shear rate viscosities obtained in this way),
729 but no systematic discrepancy.
730 Wewould like to better understand the degree of entangle-
731 ment in these systems. As we mentioned above, the actual
732 molecular weight of DP= 20 systems has exceeded the
733 entanglement molecular weight of PET. The scaling expo-
734 nents for the end-to-end distance, radius of gyration and the
735 slowest relaxation time showed a statistically significant
736 decrease whenmoving from short chains (DPe 10) to longer
737 chains (DPg 20). However, the scaling exponent for the self-
738 diffusivity did not show any statistically significant change
739 between short and long chains.
740 3.3. Entanglement Analysis. A clearer understanding of
741 entanglement can emerge from a more geometric approach
742 in which one extracts entanglement information directly
743 from configurations of the chains. To this end, we analyzed
744 snapshots of DP = 10, 20, 30, 40, and 50 systems using the
745 Z-code.45 The Z-code and CReTA package63 are two com-
746 mon algorithms to study the entanglements in polymeric
747 systems. Kamio et al.6 studied the entanglements of long
748 chain PET using the above two algorithms. The calculated
749 quantities like primitive path length and entanglement spa-
750 cing are in good agreement. In this work, we implement only
751 the Z-code to study the entanglements in longer chain
752 systems. The details of the Z-code and its application can
753 be found elsewhere.45,64,65 The calculated mean contour
754 length of primitive path (ÆLppæ), tube diameter (d), number
755 of monomers between entanglement points (Ne) and number
756 of entanglements (Z) for PET with DP from 10 to 50 are
757 listed in Table 5T5 . These values were generated by averaging
758 over 1000 snapshots distributed through-out the simulation,
759 each containing 125 chains. The value of tube diameter is in
760 good agreements with rheological data reported in the
761 literature66-68 for DP from 20 to 50. The average value is
762 35.42 (Å), which can be compared with the reported value of
763 35 (Å).68 The difference is within 1.2%. The tube diameter
764 for the DP = 10 system deviates from that of the other
765 simulations and from reports in the literature, which may
766 results from it being unentangled. The values of ÆLppæ for
767 entangled systems are lower than that reported by Kamio

768et al.6 This is probably because a longer chain length used in
769their work. It has been shown that the value of ÆLppæ increases
770with chain length.64 To further compare our results with the
771literature, we also reported the values of interentanglement
772strand length (NES) in Table 4. NES is defined as6

NES ¼ NðN- 1Þ
ZðN- 1ÞþN

ð13Þ

773whereN is the number of beads in a chain. The average value
774for DP from 20 to 50 is 13.59( 1.63, which is in agreements
775with that reported in the literature,6 in which the value from
776CReTA is 13.87 and fromZ is 14.9. The slight dependence of
777NES on DP may be due to differences in the densities. The
778agreement of the tube diameter and NES comparisons also
779indicates that good equilibration of the melt topological
780structure has been achieved, which is further verified by the
781fact that no significant difference is observed on these the
782statistical properties from the analysis of multiple configura-
783tions taken at different times.

7844. Conclusions

785A coarse-grained (CG) model of poly(ethylene terephthalate)
786(PET) was developed and implemented in CG molecular dy-
787namics (MD) simulations of PET chains with degree of poly-
788merizationup to 50.TheCGpotential is parametrized to structural
789distribution functions obtained fromatomistic simulations5 using
790an inversion procedure based on the Ornstein-Zernike equation
791with the Percus-Yevick approximation (OZPY).29 The CGMD
792simulation of PET chains satisfactorily reproduces the structural
793and dynamic properties from atomistic MD simulation of the
794same systems. From the CGMD simulations, we obtained
795structural and transport properties for PET with degrees of
796polymerization from 4 to 50 at the industrially relevant state
797point (T = 563 K, p = 0.13 kPa).
798Scaling exponents are reported for five properties as a function
799of DP: the end-to-end distance, the radius of gyration, longest
800rotational relaxation time, the self-diffusivity and the zero shear
801rate viscosity. We calculated scaling exponents for both short
802chains (DPe 10) and longer chains (DPg 20). We observed that
803the scaling exponents for the end-to-end distance, the radius of
804gyration, longest rotational relaxation time and the zero shear
805rate viscosity show a statistically significant different between
806short and long chains. However, the scaling exponent for the
807self-diffusivity did not show any statistically significant change
808between short and long chains. The exponents for long chains for
809the end-to-end distance, the radius of gyration and the self-
810diffusivity are in good agreement with predictions from reptation
811theory. The exponents for the viscosity fall between the Rouse
812model and reptation theory for both short and long chains. The
813exponents for the longest rotational relaxation time exceed the
814Rousemodel and reptation theory for both short and long chains,
815respectively.
816In an effort to understand how dynamic properties from
817CGMD simulations can be scaled, we compared CGMD and
818atomistic MD simulations of PET for DP up to 10. Comparison
819of structural properties, such as end-to-end distance or radius of
820gyration, show that no length scaling is necessary. Using the

Table 5. Calculated Properties from Z Algorithm for DP = 10, 20, 30, 40, and 50 Systems at p = 0.13 kPa, T = 563 K

DP ÆLppæ (Å) d (Å) Ne Z NES

10 31.99 19.07 8.82 1.87 7.19
20 62.08 33.08 14.60 2.44 11.16
30 92.17 35.38 18.67 3.51 13.48
40 110.22 38.49 22.16 4.34 15.13
50 133.23 34.74 22.60 6.02 14.37
rheology models N/A 35,68 38-4366 30.2,68 24.2,66 25.067 N/A N/A
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821 longest rotational relaxation time as a standard, we find that the
822 time scaling factor in the CGMD simulations is 7.5. However,
823 using the self-diffusivity as the standard, the time scaling factor is
824 5.38. The viscosity yields a scaling factor of 6.22.
825 The entanglement analysis, using the Z-code,45 shows that for
826 DP= 20 to 50, tube diameter (d), number of monomers between
827 entanglement points (Ne) and interentanglement strand length
828 (NES) are very close to the reported values for entangled PET
829 melts. For DP=50, there are on average six entanglements per
830 chain. Thus, we have at least a partially entangled system for the
831 longer chains, explaining some of the intermediate scaling ex-
832 ponents observed in the simulations.
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