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I.  Purpose of Document 

The purpose of this document is to provide a practical introduction to the evaluation of 
structural properties from molecular dynamics simulation.  This document currently over three 
distribution functions:  the radial distribution function, the end-to-end distribution function of 
chains, and density distributions. 

II.  Radial Distribution Functions 

The radial distribution function is a structural property of interest to experimentalists, 
theoreticians and simulators alike.  It is probably the more important metric of local atomic 
structure.   

II.A.  What is a radial distribution function? 
The radial distribution function (RDF) is an unnormalized probability distribution that a 

particle can be found at a separation, r, from another particle.  RDFs exist for both equilibrium 
and non-equilibrium systems.   

Several example RDFs are shown in Figure 1.  They are taken from the following reference: 

 

Gao, C.Y., Nicholson, D.M., Keffer, D.J., Edwards, B.J., “A multiscale modeling 
demonstration based on the pair correlation function”, J. Non-Newtonian Fluid Mech. 152(1-3) 
2008 pp. 140-147, doi: 10.1016/j.jnnfm.2007.05.003. 

 

 
Figure 1.  RDFs for a Lennard-Jones fluid in liquid and gas states. 

 

The RDF is unnormalized because it is defined such that it goes to unity as the separation 
goes to infinity.  (A properly normalized probability distribution is defined to integrate to unity.) 
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The RDF is a simplification of other properties in at least three respects.  First, the RDF 
describes only the probability distribution between two pairs of atoms.  (To be sure, the RDF 
exists regardless of whether an interaction potential is pairwise.)  Thus we can consider the RDF 
a two-body correlation.  Others have formulated expressions for arbitrary n-body correlations.  
The two-body correlation is often called the pair correlation function (PCF).   

Second, the RDF has been reduced from six degrees of freedom to 1.  In three-dimensional 
space, there is an x, y and z coordinate for both particles 1 and 2.  Thus we should have six 
degrees of freedom.  However, if we make the assumption that the fluid is homogeneous, then 
the position of particle 1 doesn’t matter, only the position of particle 2 relative to particle 1.  This 
allows us to place particle 1 at the origin, reducing our six degrees of freedom to three.  In the 
presence of an inhomogeneous field or structure (like an interface), this assumption would be 
invalidated.  If we further consider that the position of particle 2 relative to particle 1 can be 
expressed in polar coordinates, the RDF averages over the two angular coordinates, leaving only 
1 degree of freedom, the radial separation between particles, r, as shown in Figure 1.  When the 
PCF is reduced to a single degree of freedom, we rename it the RDF.  Thus the RDF is a subset 
of PCFs.  Certainly, where angular dependence is important, we can use a PCF with more 
degrees of freedom to describe the structure.   

Third, the RDF as we have written it above is not a function of time.  However, we are 
familiar with autocorrelation functions and we can regard the RDF as the value of a correlation 
function when the elapsed time is zero.  This correlation function is called the van Hove 
correlation function.  [PH YSI CAL REVIEW VOLUME 95, NUMBER 1 JULY 1, 1954 
Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting 
Particles LEON VAN HOVE]  This correlation function, G(r,t) gives the probability of finding a 
particle at a separation, r, at time, t, given an initial RDF of G(r,t=0) = g(r).  The RDF shown in 
Figure 1 is not a correlation function.  An example of the correlation function, also known as the 
dynamic pair density function is shown below.  This figure is taken from the following reference. 

 

Walter Kob and Hans C. Andersen, “Testing mode-coupling theory for a supercooled binary 
Lennard-Jones mixture I: The van Hove correlation function”,  Phys. Rev. E 51, 4626 – 
Published 1 May 1995 
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Figure 2.  The van Hove correlation function split into self (s) and distinct (d) components 

for a Lennard-Jones fluid.   Only the lowest temperature is shown. 

 

II.A.1.  Connection with Theory 

The RDF distribution function can be defined a variety of ways.  In Chapter 13 of 
McQuarrie [Statistical Mechanics, Donald A. McQuarrie, University Science books, Sausalito, 
CA, 1976, second Edition, 2000],  the n-body correlation function in a system of N particles is 
defined as the ratio of two integrals.  The numerator, an integral over all but n particles, 
represents the probability of finding a state with n particles at positions nrr ,,1  .  The 
denominator is the same integral over all N particles (the configuration integral) and serves as a 
normalization constant.  
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The pair correlation function (PCF) results when  n=2, and is denoted ( ) ( ) ( )2121
2 ,, rrrr gg = .  

When the pair correlation function is evaluated in a homogeneous system and averaged over the 
angular degrees of freedom, it is called the radial distribution function (RDF) and is denoted
( ) ( )12 rr −= grg .  The correlation functions are dimensionless.   

One useful relation of the RDF is given below. 
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The radial integral provides the number of neighbors around the central particle.  If the limits of 
integration are fixed to other values, then this integral provides the number of particles, nbrN , in 
the spherical shell from rmin to rmax. 
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One can also consider the radial distribution function as a normalized density distribution 
function,  

 

( ) ( )
ρ
ρ ρρg =    (4) 

 

where ( )rr  is the radial density profile (with units of density) and ρ  is the average density.   

II.A.2.  Connection with Experiment 

The radial distribution function is also very important from an experimental point of view.  x-
ray and neutron scattering experiments measure the atomic-level of structure in materials.  These 
signatures are obtained in reciprocal space and are often denoted S(Q).  A Fourier transform can 
be used to convert S(Q) to the radial distribution function. 
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Alternatively, some scientists prefer to work in reciprocal space.  The ( )rg  can be 
transformed into S(Q) via the inverse transform 
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These equations were taken from Appendix D of “Computer Simulation of Liquids” by Allen & 
Tildesley.  (See references section of course website.) 

II.A.3.  Connection with Simulation 

Molecular-level simulation can routinely generate radial distribution functions.  In a single 
component system,  
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Practically speaking, equation (7) is evaluated by discretizing the radial dimension into bins.  
The number of bins chosen depends upon the number of particles and the duration of the 
simulation.  To illustrate the issue, consider two asymptotes.  At the very coarse scale, we have 
one large bin.  All particle positions fall into that single bin and we have no useful information.  
At the opposite extreme, the very fine scale, each particle falls into a separate bin, making all 
bins have either a value of zero or one.  This contains all the information, but the resulting plot is 
not what we are expecting.  Therefore, an intermediate bin size is selected, typically no finer than 
0.01 Å and often as coarse as 0.1 Å.   

The maximum length of a pair correlation function is typically half the size of the smallest 
dimension of the simulation volume.  If the cut-off is larger, you will start including periodic 
images in the RDF, giving rise to an artificial periodic structure.   

II.B.  Decompositions of the RDF 
 

The RDF can be decomposed in several different ways.  In simulation, a component of the 
RDF can be constructed just as easily as the total RDF.  In experiment, only the total RDF is 
available.   

II.B.1.  Decomposition by Species 

The RDF between two particle atom types, say between types A and B, (the distribution of atoms 
of type B around atoms of type A) is 

 

( ) ( )
( )

( )
( ) ( )








−=== ∑∑

= =

A BN

i

N

j
ij

ABshell

sim

sim

B

shell

AB

B

AB
AB rr

NNrV
V

V
N

rV
rn

rrg
1 1

11 δ
r

r    (8) 

 

The distribution of atoms of type A around atoms of type B is 
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A consequence of this is the following 
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II.B.2.  Decomposition by Intermolecular & Intramolecular Components 

The pair correlation function is often decomposed into intermolecular and intramolecular 
components.  Part of the motivation for doing so lies in the fact that the intramolecular 
contribution is generally much narrower and sharper than the non-bonded contribution.  See for 
example the following example, taken from  

 

Wang, Q., Keffer, D.J., Nicholson, D.M., Thomas, J.B., “Use of the Ornstein-Zernike 
Percus-Yevick Equation to Extract Interaction Potentials from Pair Correlation Functions”, Phys. 
Rev. E 81(6) 2010 article # 061204, doi: 10.1103/PhysRevE.81.061204 

 

In Figure 3, the main plot shows the intermolecular contribution to the radial density 
function, ( ) ( )rgr rr = , for N2.  The inset shows the intramolecular contribution.  The reason that 
( )rr  rather than ( )rg  is plotted in this paper is because ( )rg  is normalized to go to unity as r 

goes to infinity, but such normalization is impossible for an intramolecular mode than goes to 
zero as r goes to infinity.  No such scaling problem exists for ( )rr .  Note that the scale of the y-
axis of the intramolecular plot is a factor of about 200 larger than the intermolecular plot.  Also 
the intramolecular contribution is only non-zero for a very short radial distance, corresponding to 
the nitrogen-nitrogen bond distance. 
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Figure 3.  Intermolecular (nonbonded) and intramolecular (bonded) contributions to the 

radial density function of molecular nitrogen.   

 

II.B.3.  Others Decompositions 

Various other decompositions may be useful to understanding the structure of complex 
materials with hierarchical structure.  For example, we examine a composite from the following 
reference. 

 

McNutt, N.W., Rios, O., Feygenson, M., Proffen, T.E., Keffer, D.J., “Structural Analysis of 
Lignin-derived Carbon Composite Anodes”, J. Appl. Crystallogr. 47(5) 2014 pp. 1577-1584, doi: 
10.1107/s1600576714014666. 

 

In this example, the material is composed of carbon in amorphous (A) and crystalline (C) 
domains.  Six RDFs are shown, including the total, the amorphous-amorphous (AA), the 
amorphous-crystalline (AC) contribution.  The crystalline-crystalline contribution is further split 
into two components—intercrystallite (shown) and intracrystallite (not shown).  The 
intracrystallite is further decomposed into two components—interplanar and intraplanar.  This 
decomposition is useful in showing the origin of all of the features in the total RDF, a capability 
not available from experiment alone. 
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Figure 4.  Decomposition of the RDF of a carbon composite containing crystalline 

nanoparticles distributed in an amorphous domain.   

 

II.C.  What do RDFs look like. 
We have already shown numerous RDFs.  However, here we recap and add some additional 
information.   

II.C.1.  Gas Phase 

A typical gas phase RDF is shown in the low density curves of Figure 1.  In fact, at very low 
densities,  
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For a Lennard-Jones fluid 
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Figure 5.  RDF of a Lennard-Jones fluid at a reduced temperature of unity and a density 

approaching infinite dilution.   

 

II.C.2.  Liquid Phase 

Typical liquid phase RDFs are shown in the high density curves of Figure 1.  The longer 
range structure is due to partial ordering of the fluid.  The first trough is due to the excluded 
volume of particles occupying the first peak.  The second peak is attraction to particles in the 
first peak.  The second trough is due to the excluded volume of particles occupying the second 
peak.  The third peak is attraction to particles in the second peak.  And so on.  The magnitude of 
the peaks diminish, reflecting no long range order in liquids.   

 

II.C.3.  Crystalline Solid Phase 

The RDF of a crystalline materials shows distinct peaks corresponding to the separation 
between points of the crystal lattice.  The magnitude of such peaks corresponds to the number of 
such neighbors at that distance.  the width of the peak corresponds to the magnitude of the 
vibration around the lattice point.  Often this vibration is due to thermal noise.  An example is 
shown below, taken from the following reference. 

 

Title:  Role of cation choice in the radiation tolerance of pyrochlores† 

Author:  Ram Devanathan *, Fei Gao and Christina J. Sundgren  

DOI: 10.1039/C2RA22745B (Paper) RSC Adv., 2013, 3, 2901-2909 
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Figure 5.  The Ce-O component of the RDF shows the distinct crystal structure of the 

material..  

The integral over any individual peak in Figure 5 corresponds to the number of particles at 
that distance.   

II.D.  Relation to thermodynamic Properties 
The Henderson theorem states that the radial distribution corresponds to a unique interaction 

potential.   

 

Title:  UNIQUENESS THEOREM FOR FLUID PAIR CORRELATION-FUNCTIONS 
Author: Henderson, R.L.  
PHYSICS LETTERS A 
Volume: A 49  Issue: 3  Pages: 197-198 
DOI: 10.1016/0375-9601(74)90847-0 
Published: 1974 
potential energy example 

 

Obtaining the interaction potential from the RDF is generally known as the “inverse problem”.  It 
remains an open field of research. 

Regardless, whether the potential is used to generate the RDF or vice versa, once both are 
known, one can compute thermodynamic properties.  Knowing the RDF and another variable, 
such as temperature, is sufficient to define the thermodynamic state for a single-component, 
single-phase system.  Thermodynamic properties can be obtained from the RDF as follows.  
Some properties, such as the potential energy and the pressure can be obtained directly from the  
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Other properties, such as the heat capacity, can be determined from the temperature dependence 

of the pair correlation function. 
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Of course, in an MD simulation, the potential energy and pressure can be explicitly evaluated.  
These formula are presented in order to show a theoretical link between the thermodynamic and 
structural properties of the system. 

 

II.E.  Some Examples 
 

II.E.1.  Adsorption in an Amorphous Nanoporous Material 

In amorphous or disordered systems the meaning of the RDF many not be immediately 
apparent.  Therefore, snapshots from MD simulations can be included to illustrate the local 
environment captured in a particular peak.  As an example we consider some RDFs from the 
following example. 

 

Suraweera, N.S., Albert, A.A., Humble, J.R., Barnes, C.E., Keffer, D.J., “Hydrogen adsorption 
and diffusion in amorphous, metal-decorated nanoporous silica”, Int. J. Hydrogen Energy 39 
2014 pp. 9241-9253, doi: 10.1016/j.ijhydene.2014.03.247. 

 

In Figure 6, H2 is adsorbed in an amorphous silica material, based on an inorganic polymer of 
silsesquioxane units.  The H2-H2 and H2-Si are shown in Figure 6.  Since the structure is 
amorphous, snapshots taken from configurations of the simulation are used to give a visual 
example of what the peaks correspond to. 
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Figure 6.  H2-H2 and H2-Si RDFs for adsorption of H2 in amorphous silica frameworks.   

 

II.E.2.  Flow-Induced Crystallization of Polymers 

A flow field can induce polymers to crystallize or partially crystallize above the melting 
temperature.  Measuring the RDF in a flowing system experimentally requires that the rheometer 
be placed inside a beam line.  If this is not possible experimentally, simulation is well suited to 
characterize the structural transition.  This examples is taken from the following reference. 

 

Ionescu, T.C., Baig, C., Edwards, B.J., Keffer, D.J, Habenschuss, A., “Structure Formation under 
Steady-State Isothermal Planar Elongational Flow of n-Eicosane: A Comparison between 
Simulation and Experiment”, Phys. Rev. Lett. 96(3) 2006 article #037802, doi: 
10.1103/PhysRevLett.96.037802. 

 

 
Figure 7.  Left:  Structure factor s(k) (equivalently S(Q)) for eicosane from simulation and 

experiment at equilibrium.  Right:  s(k) for flowing system (simulation) or thermally induced 
crystal (experiment).   
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In Figure 7, the structure factor for the flowing system is compared to a thermally induced 
crystal from the experimental system.  Thus the comparison should not be exact.  However, the 
agreement at long k (short r) is excellent, showing that the flowing system has begun to adopt the 
short-range crystalline order due to flow-induced crystallization.   

 

II.E.3.  Carbon Composites 

This example refers to Figure 4 above. 

 

McNutt, N.W., Rios, O., Feygenson, M., Proffen, T.E., Keffer, D.J., “Structural Analysis of 
Lignin-derived Carbon Composite Anodes”, J. Appl. Crystallogr. 47(5) 2014 pp. 1577-1584, doi: 
10.1107/s1600576714014666. 

II.F.  In LAMMPS 
 

LAMMPS has efficient functionality to compute the RDF up to the cut-off distance for the 
potential.  The RDF command is invoked with a compute command.  The following example 
computes four RDFs,  for 1-1, 1-2, 2-1 and 2-2 pairs.  The 1-2 and 2-1 RDF should be identical.  
However the integral should not since the scaling factors are different.   

 
compute rdf all rdf 100 1 1 1 2 2 1 2 2 

 

The rdf can be output using a fix statement. 

 
fix rdf all ave/time ${Nsamplefreq} ${Nsamplesizerdf} 
${Nblocksizerdf} c_rdf file output_rdf.txt mode vector 

 

As written, this output file contains columns for both the RDF and the cumulative integral of the 
RDF, also known as the coordination number.   

If you want the RDF out to a longer distance, then this must be accomplished based on post-
processing of saved configurations. 

 

III.  End-to-End Distribution Functions 

Structure can be captured in distribution functions other than the RDF.  The end-to-end 
distribution function is a measure often used to examine polymer chains.  One example is taken 
from the following reference. 
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Title:  Molecular Dynamics Simulation of Polyethylene Terephthalate Oligomers 
Authors:  Wang, Q., Keffer, D.J., Petrovan, S., Thomas, J.B. 
Journal:  J. Phys. Chem. B  Vol. 114 Issue 2. pp. 786–795.  
Published 2010 
doi:  http://doi.org/10.1021/jp909762j  

 

 
Figure 8.  Left:  end-to-end distribution as a function of chain length in PET.  The 

corresponding correlation function used to measure the longest relaxation time (Rouse time) of 
the chain. 

 

In Figure 8 (left), the monomer has a single peak.  The dimer has two peaks, representing a 
folded and unfolded configuration.  As the chain length increases, the probability of the folded 
configuration diminishes.   

In Figure 8 (right), the relaxation time (the characteristic time associated with the exponential 
decay of these curves) increases with chain length.  Ideally, to sample independent 
configurations, the simulation duration should be many multiples of this relaxation time. 

The distribution of end-to-end distribution changes in the presence of a flow field.  To 
illustrate this point, we take an example from the following reference. 

 
Title:  Single-chain dynamics of linear polyethylene liquids under shear flow 
Authors:  Kim, J.M., Edwards, B.J., Keffer, D.J., Khomami, B. 
Journal:   Phys. Lett. A Vol. 373 Issue 7 pp. 769-772 
Published 2009 
doi:  http://doi.org/10.1016/j.physleta.2008.12.062  
 

http://doi.org/10.1021/jp909762j
http://doi.org/10.1016/j.physleta.2008.12.062
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Figure 9.  End-to-end distributions as a function of Weissenberg number, a dimensionless 

representation of flow field strength. 

 

In Figure 9, the single peak at low Weissenberg numbers (weak flow) eventually changes to a 
bimodal distribution, corresponding to folded and extended polymers.  Some polymers flow in 
this shear flow due to the vorticity in the flow field. 

 

These end-to-end distribution functions are computed during post-processing of saved 
configurations. 

 

IV.  Density Distributions 

Molecular dynamics simulations are also able to generate three-dimensional distributions.  
An example is shown below.  The “clouds” in these plots correspond to iso-density surfaces.  
Volume inside the clouds corresponds to higher densities.  Volume outside the clouds 
corresponds to lower densities.  This example is taken from the following reference.   

 

Suraweera, N.S., Xiong, R., Luna, J.P., Nicholson, D.M., Keffer, D.J., “On the Relationship 
between the Structure of Metal-Organic Frameworks and the Adsorption and Diffusion of 
Hydrogen”, Molec. Simul. 37(7) 2011 pp. 621-639, doi: 10.1080/08927022.2011.561432 
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Figure 10.  Density distribution of RDX center of mass in a couple crystalline metal-organic 

frameworks.   

 

In Figure 10, a couple examples of three-dimensional density distributions are shown for the 
center of mass of the explosive RDX in several iso-reticular metal-organic frameworks 
(IRMOFs).  Depending on where the contour is drawn you convey different information.  The 
low contour contains more volume and shows paths for movement from one cage to the next.  
The high value contour contains just the volume associated with the deepest adsorption site.  
Two views are shown, one of the entire cage and one of the cage vertex where the adsorption site 
is located. 

These three-dimensional density distribution functions are computed during post-processing 
of saved configurations.  In this example, the simulation volume contained many cages.  The 
density distribution is a result of mapping the RDX in all cages onto a single cage.  The volume 
of that cage is divided into bins in three-dimensions.  Some external visualization software takes 
the three-dimensional histogram and generates the three-dimensional contour plots. 

 


