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I. Formulation of the partition function

We will perform our derivation in the canonical ensemble, where we specify the number
of molecules, N, the volume, V, and the temperature T. We will briefly revisit the derivation of
the single-component van der Waals partition function because following the analogous
procedure will guide us to the appropriate partition function in the multicomponent case.

For a monatomic single-component van der Waals fluid, we have previously derived the
partition function. It has three components. A configurational contribution, a translational
contribution, and a mean-field potential energy contribution.

Quau(NV.T)= N Quers (N.V, T)Q (N.V,T) . (1)

The configurational contribution to the partition function is simply

Q:m , (2)

The translational contribution to the partition function is

Qtrans = (V — ij ' (3)
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where b is the van der Waals volume of the molecule and the thermal deBroglie wavelength is
defined as

h2
A= |— (4)
2nmk T

where h is Planck’s constant, kg is Boltzmann’s constant, and m is the mass of the molecule. The
mean-field potential energy contribution to the partition function is

ont = exp[_ NEdej : (5)
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where the potential energy per particle due to particle interactions, Eyqw, is
=—a— , (6)

where a is the van der Waals energetic parameter. These contribution result in the van der Waals
partition function,

dew(N’V’T):%(V /_\3ij exp(vl\ll( -la-j ' (7)

Before we jump straight into formulating the binary van der Waals partition function, it is
also useful to examine the relationship between the single-component and binary ideal gas
partition functions. The single component ideal gas partition function has only configurational
and translational components.

QlG(N’VvT):%(%J . (8)

The binary ideal gas partition function is a straight forward extension,

Q|G(N11N2'V1T)= . (V ] (V ] | . 9)
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For a multicomponent ideal gas with N components, we have
NC
Qe(Ne N, NV, T)=T[ Qe (N, T) (10)
i=1

where the partition function of component i is

Q|G,i(Ni’V’T):$(%j 1 (11)

and where the thermal de Broglie wavelength for component i is defined as

h2
A= — . (12)
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For a multicomponent van der Waals fluid we will have a molecular volume, b;, for each
component. We will also have a mean-field interaction potential for each pair of components,
ajj. Clearly, it makes sense that when the two components are the same, they have the pure
component interaction potential, namely

a =a . (13)

When the two components are not the same, a;; is an independent parameter. Frequently, people
use the mixing rule that

q; = a; =\/?aj(l_kij) , (14)

where kij is an empirical “binary interaction parameter”, which is zero unless there is
experimental data that indicates that it should be otherwise. However, a mixing rule such as
equation (13) is not essential for the statistical mechanical development in this work. As such,
we will leave a;; as an independent parameter, which can be reduce to equation (13) or some
other form at a later date. However, there is no reason not to assume the symmetry of the
interaction parameter, so we will assume a; = a;;.

The partition function for the van der Waals equation of state for a multicomponent
mixture can be written as

N,
Quan (N Ny o Ny VT ) =TT Qs (N3 N, o Ny VT (15)
i=1

where Quqw,i I the contribution from component i. It is worthwhile noting that each component’s
partition function is a function of all of the number of molecules, in constrast to the partition
function for the multicomponent ideal gas. The partition function for component i can be written
as

Quana (Nes Ny o N VLT ) = 0 (N Qs (Ney N oo N VT IR (N NG N VLT

(16)
The configurational contribution to the partition function is simply
o,(N)=-1 (17)
1 I NI! )
The translational contribution to the partition function is
N, Ni
V- zl N;b;
Qtrans,i(Nl’NZ"'NNC’V’T): J[;—3 ' (18)



The total molecular volume to the presence of all the molecules of every component must be
substracted from the total volume to obtain the accessible volume. The mean-field potential
energy contribution to the partition function is

Qi = exp(— &] . (19)

where the potential energy for component i has contributions from all molecules of every
component,

1
EdW:—VZNjaij : (20)
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Assembling all of the pieces produces the multicomponent van der Waals partition function,

N;
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which for a binary mixture reduces to

_ _ N;+N, 2 2
dew(vaszVvT): 1 (V NlbéN NgEz) exp Nya, +2N, N,a, + Ny a,, (22)
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I1. Derivation of Thermodynamic Properties
As always, we require the natural log of the partition function
NC
N, V- Z; N JbJ NLE
n(N,;)+ N, In = + N.a. 23
vdW ; Ai3 VkBT ; 17 ( )

We use Stirling’s approximation for the natural log of the factorial of a large number



N,
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The first thermodynamic property that we will calculate is the pressure because that is what
everyone associates with the van der Waals equation of state.

N, N,
p:kBT(M] =k T h',\'i - ZNi D> Ny (25)
N yr i1y _ZC:ijj VKT =
j=1

where we have introduced the notation N, which is a vector of all N;. If we introduce four
additional variables, a mole fraction defined as

X =q——=—1 (26)
YN, N

=1

a molecular volume, V,,, defined as

_v
v=L (27)

bmix :ijbj ) (28)

Aix = XX - (29)
i=1 j=1
then we can rewrite the van der Waals equation of state in a very familiar form,
KgT a,;
— _ “mix 30
P Vm - bmix an ( )



This expression for the pressure provides the confirmation that our partition function in equation
(21) is correct.

Now let’s derive other thermodynamic functions. We will start with the Helmholtz free
energy, A,

NC
A=—k,T In(Q)=—k TZ N, In(N;)+ N; + N; In| — + kNiTZN,-ai,- (31)
B' j=1

On a per molecule basis, we can write

A 3 & V_ —b_ 1
A, =-—=KsT Y xIn(x) KT KT xIn Smix | =g (32)
N i=1 i=1 Ai Vm
The internal energy is
NC
U :kBTZ(MJ =§I<BTZNj ZZN N,a; (33)
aT N,V 2 j=1 i=1 j=1
On a per molecule basis, we can write
u 3 a.
U,=—=—kT —— 34
"N 2° vV, (34
The chemical potential of component i is
i = —kBT[MJ =kgT In(N;)
aNi T.V.Nj,
S 35
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In terms of the macroscopic variables, the chemical potential can be written as

V., —b kgTh, 2 &
uiz—kBTln( e ]+v Y —V—Z;xjaij (36)
(| m mix m J=



It is also useful to write this as

= —kBT In Vm — bg]ix + kBT 8bmix _i aa'mix (37)
XA, Vi =B U0 oy xia Vo L 0% )y i

Xiczi Xiczi

where we see have used the fact that if we want to express derivatives in terms of mole fractions
(rather than number of molecules) then we have to hold constant the ratios of all other mole
fractions (rather than the number of all the other molecules), namely

(abmix (Xi )j — (abmix(Ni )] (38)
0% Jryxm ONi  Jrun

Xiczi s
Equation (38) is useful when a macroscopic mixing rule is given in terms of the mole fractions.
Equation (37) is useful from a macroscopic point of view because it shows explicitly that, aside
from an ideal gas-like contribution to the chemical potential, all of the remaining terms are
dictated by the choice of mixing rules for the parameters.
The entropy is

U-A 5 iz -
S:T:kB EN +;Ni|n # _;Niln(Ni) (39)

The molecular entropy is

S, =%=ks{%+§xi In(vm/;?m“}—gxi In(xi)} (40)

The enthalpy is

N, N,
H :U+PV:ngTN —EZZNiNja“-%-kBI# (41)
i=1 j=1 vV _zijj
j=1

The molecular enthalpy is

2a,.,  kgTV.
V V,-b

m m mix

H =%=§kBT— (42)
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The Gibbs free energy is



Vi V-Zijj
N, (43)
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The molecular Gibbs free energy is

RSN

In addition to the basic thermodynamic properties, we can also calculate a variety of
thermodynamic properties from the partial derivatives. We shall start with derivatives of the
pressure.

O
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Equation (48) can also be written as

op 1 KeTh, keT 2 &
=—| - T+ —— ) Xx.a, 49
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as well as

[ap(xi )J — i _ kBT [abmix (Xi )J + kBT _ i(aamix (Xi )] (50)

X, N| (V, -b,, V| ox V.o -b., V2l o

m
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Next we can take derivatives of the internal energy. The molecular constant volume-heat
capacity is

cv:(éumJ _3y, (52)
Vm,Ni

oT

The molecular constant-pressure heat capacity is

sz(aHm] :(aumj . p{avmj (53)
T Jyn, T Jon, T Jon,
Now we need, the first term on the RHS. Going to the Tables of P.W. Bridgman, we have
(5 ) e, 5L, o) 9
ot p.N; ot Vin:Nj ot p.N; or p.N;

Substituting equation (20) into equation (19) yields

op oV 3 1
C =C,+T| £ —m =—kg +k 99
P CV (aT jvm,N( or jp,Ni 2 ° ° _ Ay (V — by )2 ( )

The derivative of the internal energy with respect to the volume is

(au"‘] -2 (56)
Ny )V

The partial molar internal energy is

NC
LTi :(ﬂ) :EkBT _EZNjaij (57)
Ny, 2° V&
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The derivative of the enthalpy with respect to the volume is

[aHm] _day kT kTV,
aVm TN, Vrr? Vm - bmix (Vm - bmi>< )2

The partial molar enthalpy is
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(59)
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Now, we move on to derivatives of the chemical potential, which we shall also shortly require.

Vin: X XiAi 2 Vm_bmix aXi T,V,m

Xiezi
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For the van der Waals fluid, this becomes
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I11. Vapor-Liquid Equilibrium

In a mixture of N components, the phase rule tells us that at vapor-liquid equilibrium we
have N. degrees of freedom.

DOF =C—¢+2=N,-2+2=N, (67)

So in a binary mixture, we have two degrees of freedom, meaning that we can arbitrary specify
two variables, fixing all other variables.

At equilibrium, we have the following constraints. We have thermal equilibrium, in
which the temperature of the two phases are equal,

AT =T, -T, =0 (68)
We have mechanical equilibrium, in which the pressure of the two phases are equal,
Ap=p, —p =0 (69)

We have chemical equilibrium, in which the chemical potential of each component in the two
phases are equal,

Ap=p;, —p; =0 for all i (70)

Consider a binary mixture. Let’s suppose that, in choosing our two degrees of freedom, we fix
the temperature and the density of the liquid phase. In this case, we have three remaining
unknowns, py, Wa, and way. Conveniently, we have three equations to solve for these three
unknowns, equation (69) and equation (70) for i = 1 and i=2.

This set of three equations and three unknowns must be solved using an iterative,
numerical procedure. Once the densities and compositions are known, the vapor pressure can be
calculated using equation (30) for either the liquid phase or the vapor phase.

IV. Constrained Vapor-Liquid Equilibrium

Consider a fluid containing Na moles of component A with molecular weight ma and Ng
moles of component B with molecular weight mg, initially above the critical temperature of the
mixture, Tcmix, in a closed volume, V. We remove heat at a constant rate, Q, causing the
temperature to drop. Eventually the system will fall into the two phase region and phase
separate. We want to describe the time dependence of the system. Specifically, we want the
following variables as a function of time: the temperature, T, the pressure, p, the vapor fraction,
dv, the density of the vapor phase, py, the density of the liquid phase, p.., the mass fraction of A
in the vapor phase, way, and the the mass fraction of A in the liquid phase, wa.
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In this case, there is only degree of freedom, namely the temperature. The other degree
of freedom has been lost to the fact that the volume and the mass are constants in time. This
constraint can be written as

Py —P +pVWA,V P—PL (71)

Pa=P Wa,
v ~PL Pv —PL

where p is a constant equal to the total mass of the system over the total volume of the system,

N,m, +N;mg

v (72)

P=pPatpPg=

So, now if we have four unknowns p, pv, War, and way. Conveniently, we now have four
equations to solve for these four unknowns, equation (69), equation (70) for i = 1 and i=2, and
equation (71). Life is good. If we want the steady-state solution to this equilibrium, we have
only to solve these four equations.

However, if we want to know the transient behavior of the system, then we have to write
the mass, momentum, and energy balances that describe this system. We won’t write these
equations in this hand-out. However, in their formulation, we discover that we require some
partial derivatives that we have not yet obtained.

We require
S (v, (o )
sat ’ aT sat , aT

N\ (%,
aT sat, aT sat

where the asterisk indicates that these partial derivatives are evaluated along the saturation (two-
phase) line where all four of the constraints (including equation (71)) are satisified. We now
demonstrate how to obtain these partial derivatives.

We begin by differentiating all of the constraints with respect to temerature.

(73)

dp, —dp, =0 (74)

The pressure, as we have written it, is a function of T, p, and xa. Therefore,

op op p
p (GT jp,XA +(ap]T,xA p+[6XAjp,T XA ( )

In the constrained system, p and xa. are functions of T, so we can write
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dpz(@) a7 +| P (@j a7 +| 2. (%j aT
ot ). ap), et ox, ) \at

. . (76)
:[6_10) o (@%8_10 (%j a7
T Jose \OP)r, \OT X )\ OT
Substituting equation (76) into equation (74) yields
(8&) +(apVJ (apv j*_}_( py J (8XA,V j*
T )., x. \Opy - oT OXpy . oT
(77)

_ (%j L[ (aﬁj} op | (%)
T Jysy \Op ), 0T Xy ) LT

By differentiating equation (70) in a similar manner, equivalent equations can be written, where
we replace the pressure with the chemical potential of each species. Finally, we differentiate
equation (71)

oo, ) (op ) op, w, ) 0
[(ﬁ) —(ﬁj ij =(%J w, . (py —p)+ pL( a?L] (oy —p)+ pLWA,L[%j

) X ) (78.a)
0 ow 0
+( ;IY) WA,V(p—pL)+pV( a-?’V] (p_pL)_pVWA,V[%)
ap, ) op, )
0= [_ PatPWaL tWpy (p - pL)(%j + [pA + WA,L(pV - p)_ PyWay (%)
(78)

ow oW
+ pL(pV —p{a—TA’L] + Py (p —pL{a—TA’V]

Equation (78) is in terms of densities and mass fractions, rather than molar volumes and mole
fractions. We can convert from mass fraction to mole fraction.

XaMa _ XaMa

_ — 79
Wa XaMy +XgMyg XM, + (1= x, )My (79)
dWA — My _ XAmA(mA — mB)
dXA XArnA + (l_ XA)mB (XAmA + (1_ XA )mB )2 (80)

m,Mg _ WaWs

(XAmA + (1_ XA)mB )2 XaXg
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We can also convert from densities to molar volumes

_ XaMy + XM

81
v (81)
Op. __XaMy +2XBmB (82)
Ny ). v,
With these equations, we can rewrite equation (78) as
0=[-pp+ P, + Wy (p—py )] 22 )
A LY AL AV L 6Vr:1/ 6T
op, YoVt
+ [pA T WaL (pv - p) ~PyWay (GTP,E](@_TJ (83)

dw, | 0%, ’ dw,, | Xay ’
+ — : — | 4+ — . —
Plpy p)[ dx,, ]( o1 ) tevle-e dx,, |\ T
Our four equations ((77), (77) for ua and pg, and (83)) are all linear in the four unknown

derivatives of equation (73), therefore they can be solved using linear algebra for the four
derivatives.

Ax=Db (84)
where
r - * - *T
X = (apv ) aXA,V (apLj aXA,L (85)
- or orT oT oT
| (% _ aﬁj
aT PL XA aT Pv s XA
OaL B O py
b - ot PL: XA ot Pv 2 XA (86)
Opg, B gy
aT PL XA 6T Pv s Xa
- O -
and
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opy T Xay

=
opy T Xay

(aHB,VJ
apV T Xay

“PatT P WaL
+ Wy (p —PL

1>
I

)} Py (p—pL)((::(v—:J} [

&)
apL TvXA,L

[aHALJ
apL T, Xa,

[aH&LJ
apL T XaL

Pa—PyWay
+ Wy (pv -

L

p)} p.(py —p)(

g

(84)

All of the terms that appear in A and B, we can first solve for. Once we know those terms, we
can solve equation (84) for the remaining unknown derivatives.
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