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I.  Formulation of the partition function 
 

We will perform our derivation in the canonical ensemble, where we specify the number 
of molecules, N, the volume, V, and the temperature T.  We will briefly revisit the derivation of 
the single-component van der Waals partition function because following the analogous 
procedure will guide us to the appropriate partition function in the multicomponent case.   

For a monatomic single-component van der Waals fluid, we have previously derived the 
partition function.  It has three components.  A configurational contribution, a translational 
contribution, and a mean-field potential energy contribution.  
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The configurational contribution to the partition function is simply  
 

!
1
N

=Ω   .          (2) 

 
The translational contribution to the partition function is  
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where b is the van der Waals volume of the molecule and the thermal deBroglie wavelength is 
defined as 
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where h is Planck’s constant, kB is Boltzmann’s constant, and m is the mass of the molecule.  The 
mean-field potential energy contribution to the partition function is  
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where the potential energy per particle due to  particle interactions, Evdw, is  
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where a is the van der Waals energetic parameter.  These contribution result in the van der Waals 
partition function, 
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Before we jump straight into formulating the binary van der Waals partition function, it is 

also useful to examine the relationship between the single-component and binary ideal gas 
partition functions.  The single component ideal gas partition function has only configurational 
and translational components. 
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The binary ideal gas partition function is a straight forward extension, 
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For a multicomponent ideal gas with Nc components, we have  
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where the partition function of component i is 
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and where the thermal de Broglie wavelength for component i is defined as 
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 For a multicomponent van der Waals fluid we will have a molecular volume, bi, for each 
component.  We will also have a mean-field interaction potential for each pair of components, 
aij.  Clearly, it makes sense that when the two components are the same, they have the pure 
component interaction potential, namely 
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When the two components are not the same, aij is an independent parameter.  Frequently, people 
use the mixing rule that  
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where kij is an empirical “binary interaction parameter”, which is zero unless there is 
experimental data that indicates that it should be otherwise.  However, a mixing rule such as 
equation (13) is not essential for the statistical mechanical development in this work.  As such, 
we will leave aij as an independent parameter, which can be reduce to equation (13) or some 
other form at a later date.  However, there is no reason not to assume the symmetry of the 
interaction parameter, so we will assume aji = aij. 
 The partition function for the van der Waals equation of state for a multicomponent 
mixture can be written as  
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where Qvdw,i is the contribution from component i.  It is worthwhile noting that each component’s 
partition function is a function of all of the number of molecules, in constrast to the partition 
function for the multicomponent ideal gas.  The partition function for component i can be written 
as 
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The configurational contribution to the partition function is simply  
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The translational contribution to the partition function is  
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The total molecular volume to the presence of all the molecules of every component must be 
substracted from the total volume to obtain the accessible volume.  The mean-field potential 
energy contribution to the partition function is  
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where the potential energy for component i has contributions from all molecules of every 
component, 
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Assembling all of the pieces produces the multicomponent van der Waals partition function, 
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which for a binary mixture reduces to 
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II.  Derivation of Thermodynamic Properties 
 

As always, we require the natural log of the partition function 
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We use Stirling’s approximation for the natural log of the factorial of a large number 
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The first thermodynamic property that we will calculate is the pressure because that is what 
everyone associates with the van der Waals equation of state. 
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where we have introduced the notation N, which is a vector of all Ni.  If we introduce four 
additional variables, a mole fraction defined as 
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a molecular volume, Vm, defined as  
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a mixture van der Waals size paramater, bmix,  
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and a mixture van der Waals interaction parameter, amix,  
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then we can rewrite the van der Waals equation of state in a very familiar form, 
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This expression for the pressure provides the confirmation that our partition function in equation 
(21) is correct.  
 
 Now let’s derive other thermodynamic functions.  We will start with the Helmholtz free 
energy, A,  
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On a per molecule basis, we can write 
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The internal energy is  
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On a per molecule basis, we can write 
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The chemical potential of component i is 
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In terms of the macroscopic variables, the chemical potential can be written as 
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It is also useful to write this as  
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where we see have used the fact that if we want to express derivatives in terms of mole fractions 
(rather than number of molecules) then we have to hold constant the ratios of all other mole 
fractions (rather than the number of all the other molecules), namely 
 

( ) ( )
ij

ik

ij NVTi

imix

x
x

VTi

imix

N
Nb

x
xb

≠
≠

≠
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

,,,,

      (38) 

 
Equation (38) is useful when a macroscopic mixing rule is given in terms of the mole fractions.  
Equation (37) is useful from a macroscopic point of view because it shows explicitly that, aside 
from an ideal gas-like contribution to the chemical potential, all of the remaining terms are 
dictated by the choice of mixing rules for the parameters.   

The entropy is 
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The molecular entropy is 
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The enthalpy is 
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The molecular enthalpy is 
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The molecular Gibbs free energy is 
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 In addition to the basic thermodynamic properties, we can also calculate a variety of 
thermodynamic properties from the partial derivatives.  We shall start with derivatives of the 
pressure. 
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Equation (48) can also be written as 
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as well as 
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Next we can take derivatives of the internal energy.  The molecular constant volume-heat 
capacity is  
 

B
NV

m
v k

T
UC

im
2
3

,

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=         (52) 

 
The molecular constant-pressure heat capacity is 
 

iii Np

m

Np

m

Np

m
p T

Vp
T

U
T

HC
,,,

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=       (53) 

 
Now we need, the first term on the RHS.  Going to the Tables of P.W. Bridgman, we have 
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Substituting equation (20) into equation (19) yields 
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The derivative of the internal energy with respect to the volume is 
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The partial molar internal energy is 
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The derivative of the enthalpy with respect to the volume is 
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The partial molar enthalpy is 
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Now, we move on to derivatives of the chemical potential, which we shall also shortly require. 
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For the van der Waals fluid, this becomes 
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III.  Vapor-Liquid Equilibrium 
 
 In a mixture of Nc components, the phase rule tells us that at vapor-liquid equilibrium we 
have Nc degrees of freedom. 
 

cc NNCDOF =+−=+φ−= 222        (67) 
 
So in a binary mixture, we have two degrees of freedom, meaning that we can arbitrary specify 
two variables, fixing all other variables.   
 At equilibrium, we have the following constraints.  We have thermal equilibrium, in 
which the temperature of the two phases are equal, 
 

0=−=∆ LV TTT          (68) 
 
We have mechanical equilibrium, in which the pressure of the two phases are equal, 
 

0=−=∆ LV ppp          (69) 
 
We have chemical equilibrium, in which the chemical potential of each component in the two 
phases are equal, 
 

0,, =µ−µ=µ∆ LiVi   for all i       (70) 
 
Consider a binary mixture.  Let’s suppose that, in choosing our two degrees of freedom, we fix 
the temperature and the density of the liquid phase.  In this case, we have three remaining 
unknowns, ρV, wA,L, and wA,V.  Conveniently, we have three equations to solve for these three 
unknowns, equation (69) and equation (70) for i = 1 and i=2. 
 This set of three equations and three unknowns must be solved using an iterative, 
numerical procedure.  Once the densities and compositions are known, the vapor pressure can be 
calculated using equation (30) for either the liquid phase or the vapor phase.  
 
IV.  Constrained Vapor-Liquid Equilibrium 
 
 Consider a fluid containing NA moles of component A with molecular weight mA and NB 
moles of component B with molecular weight mB, initially above the critical temperature of the 
mixture, Tc,mix, in a closed volume, V.  We remove heat at a constant rate, Q, causing the 
temperature to drop.  Eventually the system will fall into the two phase region and phase 
separate.  We want to describe the time dependence of the system.  Specifically, we want the 
following variables as a function of time:  the temperature, T, the pressure, p, the vapor fraction, 
φV, the density of the vapor phase, ρV, the density of the liquid phase, ρL., the mass fraction of A 
in the vapor phase, wA,V, and the the mass fraction of A in the liquid phase, wA,L. 
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 In this case, there is only degree of freedom, namely the temperature.  The other degree 
of freedom has been lost to the fact that the volume and the mass are constants in time.  This 
constraint can be written as 
 

 
LV

L
VAV

LV

V
LALA ww

ρ−ρ
ρ−ρ

ρ+
ρ−ρ
ρ−ρ

ρ=ρ ,,       (71) 

 
where ρ is a constant equal to the total mass of the system over the total volume of the system,  
 

 
V

mNmN BBAA
BA

+
=ρ+ρ=ρ         (72) 

 
So, now if we have four unknowns ρL, ρV, wA,L, and wA,V.  Conveniently, we now have four 
equations to solve for these four unknowns, equation (69), equation (70) for i = 1 and i=2, and 
equation (71).  Life is good.  If we want the steady-state solution to this equilibrium, we have 
only to solve these four equations. 
 However, if we want to know the transient behavior of the system, then we have to write 
the mass, momentum, and energy balances that describe this system.  We won’t write these 
equations in this hand-out.  However, in their formulation, we discover that we require some 
partial derivatives that we have not yet obtained.   
 We require  
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where the asterisk indicates that these partial derivatives are evaluated along the saturation (two-
phase) line where all four of the constraints (including equation (71)) are satisified.  We now 
demonstrate how to obtain these partial derivatives. 
 We begin by differentiating all of the constraints with respect to temerature. 
 

0=− LV dpdp           (74) 
 
The pressure, as we have written it, is a function of T, ρ, and xA.  Therefore, 
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In the constrained system, ρ and xA. are functions of T, so we can write 
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Substituting equation (76) into equation (74) yields 
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By differentiating equation (70) in a similar manner, equivalent equations can be written, where 
we replace the pressure with the chemical potential of each species.  Finally, we differentiate 
equation (71) 
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Equation (78) is in terms of densities and mass fractions, rather than molar volumes and mole 
fractions.  We can convert from mass fraction to mole fraction. 
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We can also convert from densities to molar volumes 
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With these equations, we can rewrite equation (78) as  
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Our four equations ((77), (77) for µA and µB, and (83)) are all linear in the four unknown 
derivatives of equation (73), therefore they can be solved using linear algebra for the four 
derivatives. 
 
 bxA =           (84) 
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and 
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 (84) 

 
All of the terms that appear in A and B, we can first solve for.  Once we know those terms, we 
can solve equation (84) for the remaining unknown derivatives. 
 


