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I.  Problem Formulation 
 
 Consider N moles of a fluid with molecular weight m, initially above the critical 
temperature, Tc, in a closed volume, V.  We remove heat at a constant rate, Q, causing the 
temperature to drop.  Eventually the system will fall into the two phase region and phase 
separate.  We want to describe the time dependence of the system.  Specifically, we want the 
following variables as a function of time:  the temperature, T, the pressure, p, the vapor fraction, 
φV, the density of the vapor phase, ρV, and the density of the liquid phase, ρL.  
 We begin our analysis with the overall mass balance.  We define the system density to be  
 

V
Nm

=ρ           (1) 

 
Since the system is closed and the volume is fixed, the density is constant 
 

0=
∂
ρ∂
t

          (2) 

 
We are going to define volume fractions as 
 

V
VL

L =φ   and  
V
VV

V =φ      (3) 

 
where 
 

VL φ+φ=1           (4) 
 
The volume of this system is constant,  
 

VL VVV +=           (5) 
 
and the mass of this system is constant 
 

VL MMM +=          (6) 
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The density of the individual phases are 
 

L

L
L V

M
=ρ   and  

V

V
V V

M
=ρ      (7) 

 
Substituting equation (7) into equation (6) yields 
 

VVLL VVVM ρ+ρ=ρ=         (8) 
 
Substituting equations (3) and (4) into equation (8) yields 
 

( ) VVLVVVLL ρφ+ρφ−=ρφ+ρφ=ρ 1       (9) 
 
Solving for the vapor fraction yields 
 

LV

L
V ρ−ρ

ρ−ρ
=φ           (10) 

 
 We will require a balance on the mass of the vapor phase 
 

( ) ( )
vap

VVVV r
t

V
t
V

=
∂
φρ∂

=
∂
ρ∂

        (11) 

 
We will also require an energy balance, 

 

Q
t
UV

−=
∂
ρ∂           (12) 

 
where U is the specific internal energy of the entire system.  Based upon an analogy with a 
reactive system, one might think that we are missing a generation term on the right hand side of 
the form, -∆Uvaprvap, where ∆Uvap is the specific internal energy of vaporization, and rvap is the 
rate of vaporization with units of mass/time.  If the process we were modeling were a chemical 
reaction rather than the physical reaction of vaporization we would indeed require such a term.  
However, in a reactive system, this reaction term incorporates changes in the internal energy due 
to reaction aside from the kinetic and potential energy terms, such as changes in the internal 
energy of the molecule due to the formation or destruction of chemical bonds.  In the case of a 
purely physical reaction, we do not require such a term.   

The internal energy U can be expressed as 
 

Nm
UVUV

VV
UVUV

U
Nm

mN
U

Nm
mNU VVVLLL

VVLL

VVVLLL
V

V
L

L ρ+ρ
=

ρ+ρ
ρ+ρ

=+=   (13) 

 
where UL and UV are the specific internal energies of the liquid and vapor phases.  Substituting 
equation (13) into equation (12) we have 
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( ) Q

t
UVUV VVVLLL −=

∂
ρ+ρ∂         (14) 

 
Substitute in equation (9) 
 

( )( ) Q
t

UUV VVVLVV −=
∂

φρ+φρ−ρ∂        (15) 

 
Use the product rule to differentiate, 
 

( ) ( ) Q
t

UUV
t

UUV
t

UV VV
LV

LV
VV

L −=
∂
φρ∂

−+
∂
−∂

φρ+
∂
∂

ρ     (16) 

 
Substitute in equation (11) into equation (16) 
 

QrU
t

UV
t

UV vapvap
V

VV
L

LL −∆−=
∂
∂

φρ+
∂
∂

φρ       (17) 

 
It becomes very clear that we did not need to add the vaporization term in as a generation term.  
It appears naturally from the accumulation term.  The problem is that we do not know the value 
of rvap.  We will eventually have to solve this problem.  For the time being, we hold off. 
 
II.  Functional Form of the Internal Energy 
 Now, in a one-phase region, we have two degrees of freedom and the internal energy is a 
function of both the density and temperature. 
 

( )TUU LLL ,ρ=   and  ( )TUU VVV ,ρ=    (18) 
 
Therefore, the time derivative is going to be written as 
 

t
U

t
T

T
U

t
U L

TL

LLL

L
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

ρ

       (19) 

 
The presence of the time derivative of the temperature is acceptable.  We will use the energy 
balance to solve for the temperature as a function of time.  The presence of the time derivative of 
the density is a problem, since we have not yet presented a way to calculate it.  However, in a 
one-phase system, this is the total density and it is constant in this closed system of fixed 
volume.  Therefore 
 

t
T

T
U

t
U

L

LL

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

ρ

 for closed, one-phase system with fixed volume  (20) 

 
So, in a one phase system, our energy balance is simply 
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VCV
Q

T
UV

Q
t
T

ρ
−

=
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

ρ

−
=

∂
∂

ρ

        (21) 

 
where we have recognized the presence of the specific constant volume heat capacity. 

Now when we have two phases, we have one degree of freedom and the internal energy 
is a function of  temperature only 
 

( )( )TTUU LLL ,ρ=   and  ( )( )TTUU VVV ,ρ=    (22) 
 
Therefore, the time derivative is going to be written as 
 

t
T

T
U

T
U

t
T

T
U

t
T

T
U

t
U

t
T

T
U

t
U

sat

L

TL

LL

sat

L

TL

LL

L

TL

LLL

LL

L

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

ρρ

ρ
  

for a close two-phase system with fixed volume    (23) 
 
So, in order to solve this problem, we will need the thermodynamic partial derivatives that 
appear in equations (21) and (23).  We require a specific equation of state to evaluate these 
partial derivatives.  Without an equation of state the best we can do is substitute equation (23) 
into equation (17) to obtain 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

φρ+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

φρ

−∆−
=

∂
∂

ρρ sat

V

TV

VV
VV

sat

L

TL

LL
LL

vapvap

T
U

T
UV

T
U

T
UV

QrU
t
T

VL

(24) 

 
The details of the partial derivatives in the denominator of the right hand side and the presence of 
rvap in the numerator of the RHS, have yet to be determined. 
 The problem of rvap can be solved without resorting to a specific thermodynamic 
equation of state.  If we assume that we know the thermodynamic derivatives in the denominator 
of equation (24), then we can write, via equation (11) 
 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
φ∂

ρ+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

φ=⎟
⎠
⎞

⎜
⎝
⎛

∂
φ∂

ρ+
∂
ρ∂

φ=
∂
φρ∂

=
tt

T
T

V
tt

V
t

Vr V
V

sat

V
V

V
V

V
V

VV
vap   (25) 

 
The vapor fraction is related to the densities via equation (10), so that 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
ρ∂

−
∂
ρ∂

ρ−ρ
ρ−ρ

−⎟
⎠
⎞

⎜
⎝
⎛

∂
ρ∂

−
∂
ρ∂

ρ−ρ
=

∂
φ∂

ttttt
LV

LV

LL

LV

V
2

1     (26) 
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which can be written as  
 

( ) t
T

TTTtt sat

L

sat

V

LV

L

sat

L

LVLV

V

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

ρ−ρ
ρ−ρ

+⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

ρ−ρ
−

∂
ρ∂

ρ−ρ
=

∂
φ∂

2
11  (27) 

 
We recognize that the first term on the right hand side of this equation is zero, for this system, 
because the total density doesn’t change in time.  The important point is that by subsituting 
equation (27) into equation (25), we have an expression for the rate of vaporization in terms of 
nothing but thermodynamic derivatives and the time derivative of the temperature.  Substituting 
equations (25) and (27) into equation (24) yields 
 

( )
( ) ⎪

⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

ρ−ρ
ρ−ρρ

−⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

ρ−ρ
ρ

−⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

φ∆

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

φρ+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

φρ

−
∂
ρ∂

ρ−ρ
ρ

∆−
=

∂
∂

ρρ

sat

L

sat

V

LV

LV

sat

L

LV

V

sat

V
Vvap

sat

V

TV

VV
VV

sat

L

TL

LL
LL

LV

V
vap

TTTT
VU

T
U

T
UV

T
U

T
UV

Q
t

VU

t
T

VL

2

 (28) 

 
This expression gives an ODE for temperature as a function of time purely in terms of known 
thermodynamic properties and thermodynamic partial derivatives.  The time derivative of density 
in the first term of the numerator on the RHS will drop out in this specific problem since the total 
density is fixed. 
 The only remaining task is to evaluate the missing partial derivatives. 
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III.  Derivation for van der Waals Equation of State 
 
 At this point we need an equation of state.  We will proceed with the van der Waals 
(vdW) equation of state (EOS), since it is the simplest EOS that allows for vapor liquid 
equilibrium (VLE). 
 The pressure for the vdW EOS is given by  
 

2
mm V
a

bV
RTp −
−

=          (29) 

 
where Vm is a molar volume, related to our density via 
 

ρ
=

mVm           (30) 

 
The specific internal energy of the vdW fluid is  
 

⎥⎦
⎤

⎢⎣
⎡ ρ

−=
m
aRT

m
U

2
31          (31) 

 
In the one phase region,  
 

t
TC

t
TR

mt
U

V
L

∂
∂

=
∂
∂

=
∂
∂

2
31         (32) 

 
where CV is the specific constant volume heat capacity. 
 In a two phase system, we have  
 

⎥⎦
⎤

⎢⎣
⎡ ρ

−=
m

a
RT

m
U V

V 2
31  and ⎥⎦

⎤
⎢⎣
⎡ ρ

−=
m

aRT
m

U L
L 2

31    (33) 

 
We require the derivatives of the internal energies. 
 

⎥⎦
⎤

⎢⎣
⎡

∂
ρ∂

−
∂
∂

=
∂
∂

tm
a

t
TR

mt
U LL

2
31   and ⎥⎦

⎤
⎢⎣
⎡

∂
ρ∂

−
∂
∂

=
∂
∂

tm
a

t
TR

mt
U VV

2
31   (34) 

 

t
T

Tm
aR

mt
T

Tm
a

t
TR

mt
U

sat

L

sat

LL

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

−
∂
∂

=
∂
∂

2
31

2
31   

 
t
T

Tm
aR

mt
T

Tm
a

t
TR

mt
U

sat

V

sat

VV

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

−
∂
∂

=
∂
∂

2
31

2
31   (35) 
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We have to obtain the partial of the phase densities with respect to pressure along the saturation 
line.  The values of the densities themselves are obtained from a numerical solution of a set of 
two algebraic equations, namely the conditions of mechanical and chemical equilibrium. 
 

( ) ( )TTpTTp VVLL ),(),( ρ=ρ         (36) 
 
and   
 

( ) ( )TTTT VVLL ),(),( ρµ=ρµ         (37) 
 
For the van der Waals gas these equations are 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=µ−µ=µ∆ L
m

V
m

L
m

V
m

V
m

L
m

BLV VV
a

bV
b

bV
b

bV
bV

Tk 112ln   (38) 

 

022 =+
−

−−
−

=−=∆
L

m
L

m

B

V
m

V
m

B
LV

V
a

bV
Tk

V
a

bV
Tkppp      (39) 

 
We want to know the change in the molar volume as a function of temperature along the two-
phase boundary of the phase diagram, also known as the saturation line.  In order to obtain an 
analytical expression for this derivative, we must differentiate both equation (38) and (39) with 
respect to temperature.  We will then obtain two derivatives, one for the liquid and one for the 
vapor.  We will combine the two equations to solve for the two derivatives individually.  We 
begin by differentiating equation (38) with respect to temperature along the saturation line. 
 

( ) ( )

0112ln

11

22

22

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

−
∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
+

∂
∂

−
−

∂
∂

−
−

∂
∂

−

sat

L
m

L
msat

V
m

V
m

L
m

V
m

V
m

L
m

B

sat

L
m

L
msat

V
m

V
msat

V
m

V
msat

L
m

L
m

B

T
V

VT
V

V
a

bV
b

bV
b

bV
bV

k

T
V

bV
b

T
V

bV
b

T
V

bVT
V

bV
Tk

 (40) 

 
Next we differentiate equation (39) 
 

( ) ( )
022 3232 =

∂
∂

−
−

−
∂
∂

−
+

∂
∂

+
−

+
∂
∂

−
−

sat

L
m

L
m

L
m

B

sat

L
m

L
m

B

sat

V
m

V
m

V
m

B

sat

V
m

V
m

B

T
V

V
a

bV
k

T
V

bV

Tk
T

V

V
a

bV
k

T
V

bV

Tk  

            (41) 
 
Now we solve these two equations for the two partial derivatives.  Take equation (41) and 
combine like terms. 
 



Continuum Description of a Condensation Process – D. Keffer, Dept. of Chemical Engineering, The University of Tennessee, Knoxville 

 8

( ) ( ) bV
k

bV
k

T
V

V
a

bV

Tk
T

V

V
a

bV

Tk
V
m

B
L

m

B

sat

L
m

L
m

L
m

B

sat

V
m

V
m

V
m

B

−
−

−
=

∂
∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

∂
∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−
− 3232 22   (42) 

 

( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

∂
∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−
−

−
=

∂
∂

32

32

2

2

L
m

L
m

B

sat

V
m

V
m

V
m

B
V
m

B
L

m

B

sat

L
m

V
a

bV

Tk

T
V

V
a

bV

Tk
bV

k
bV

k

T
V

     (43) 

 
Next we combine terms in equation (40) 
 

( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−=

∂
∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−
−

∂
∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−

bV
b

bV
b

bV
bV

k

T
V

V
a

bV

Tbk
bV

Tk
T

V

V
a

bV

Tbk
bV

Tk

L
m

V
m

V
m

L
m

B

sat

V
m

V
m

V
m

B
V
m

B

sat

L
m

L
m

L
m

B
L

m

B

ln

22
2222

 (44) 

 

( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−

∂
∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−

=
∂
∂

22

22

2

2ln

L
m

L
m

B
L

m

B

sat

V
m

V
m

V
m

B
V
m

B
L

m
V
m

V
m

L
m

B

sat

L
m

V
a
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Now we equate (43) and (45) to obtain 
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We can obtain the corresponding partial derivative for the liquid phase by substituting equation 
(46) into equation (43). 
 Differentiating equation (30) , we have 
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so we have the derivatives of the density that we require in the energy balance.   
 
IV.  The Solution Algorithm 
 

The big picture is that we have o 
ne nonlinear ordinary differential equation that we wish to solve, namely the energy balance.  
We have one unknown, T(t).  In a one phase region, the energy balance reduces to  
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In the two phase region, our energy balance can be written as  
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 (28) 

 
The ordinary differential equation is properly posed.  All we need to solve it is an initial 
condition T(t=to)=To. 
 Let’s assume that we start above the critical temperature.  We then proceed to remove 
heat.  It is true that at each step of the numerical solution of this ODE, we must check to see if 
we have one phase or two phases.  In these two alternatives, one phase or two, only the 
temperature is the same.  The molar volume in the one phase system will remain constant, since 
the total moles and the volume are constant.  The pressure of the one phase system and the 
chemical potential of the one phase system can be evaluated.  Then one can compute the vapor 
pressure, vapor and liquid phase densities, chemical potential, and vapor fraction of the two 
phase system.  Note that the pressure of the one phase and two phase systems are not the same.  
Therefore, we cannot make the determination of whether we have a one phase or two phase 
system on the basis of the chemical potentials of the one and two phase systems.  What we have 
done is simply to examine whether the one phase molar volume is between the vapor and liquid 
molar volumes from the two phase calculation.  If it is, then the one phase system is in the two-
phase envelope and we will have two phases.  Otherwise, we have one phase.  There are more 
rigorous ways to make this determination and perhaps we would be better suited to implement 
them.  At this stage, however, we have implemented the decision making based on the molar 
volumes.   
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 Once we have two phases, we must determine the equilibrium phase densities and the 
vapor pressure from the thermodynamic equilibrium constraints.  Then we can use equation (3) 
to obtain the vapor fraction.  We can also determine the necessary partial derivatives in equations 
(21) and (28).  Then we are ready to take our next step through time. 
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V.  An Example 
 
I defined my van der Waals fluid with the following critical properties and molecular weights. 
 

• Tc = 150 K 
• pc = 4.5e+6 Pa 
• Vc =  7.49e-5 m3/mol 
• m = 0.0400  kg/mole 

 
I place on kg of material in a box such that the molar volume was 1.03e-004 m3/mol.  The initial 
temperature was 1.01Tc.  I removed heat at the rate of 100 J/sec. 
 
Plots of the transient solution for the first 100 seconds follow. 
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Figure 1.  Temperature as a function of time. 
 

 
Figure 2.  Number of phases as a function of time. 
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Figure 3.  Vapor fraction as a function of time. 
\ 

 
Figure 4.  Density as a function of time. 
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Figure 5.  Pressure as a function of time. 
 

 
Figure 6.  Chemical potential as a function of time. 
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VI.  Codes 
 
Attached are 4 Matlab codes used in the previous example. 
 

• driver.m 
• sysode.m 
• sysodeinput.m 
• newraph_md.m 

 
driver.m starts the program.  It calls sysode.m to solve the system of ordinary differential 
equations.  (In this case there is only one ODE, the energy balance.)  Sysode contains the Euler 
and classical fourth-order Runge-Kutta methods.  The ODE is entered in sysodeinput.m.  During 
the evaluation of the ODE, we must find out the vapor pressure and phase densities, which 
require an iterative solution.  We use the newraph_nd.m, which uses the Newton-Raphon method 
with numerical derivatives.  The function that we are solving, namely the constraint of chemical 
equilibria is located in the function at the end of newraph_md. 
 
driver.m 
clear all; 
close all; 
format long; 
% 
%  van der Waals two-phase closed system 
% 
% declare global variables 
global a b Vol rho Cv m Tc tol h kB mm pi Vm R method_AE 
global isave datamat i 
% critical properties 
Tc = 150; % K 
pc = 4.5e+6;  % Pa 
Vc =  7.49e-5; %m^3/mol 
h = 6.62618e-34; % J*s 
kB = 1.38066e-23; % J/K 
Nav = 6.02205e+23; % molecules/mole 
R = kB*Nav; % J/mole/K 
pi = 2.0*asin(1); % pi=3.14... 
a = 27*R^2*Tc^2/(64*pc);  % J*m^3/mol^2 
b = R*Tc/(8*pc); % m^3/mol 
m = 0.0400; % kg per mole 
amu = 1.66056e-27; % kg/amu 
mm = amu*m; 
Cv = 3/2*R/m; % J/kg/K 
%Vm = Vc; % m^3/mol 
Vm = 1.03e-004; % m^3/mol 
%  convert to per mass properties 
rho = m/Vm;  % kg/m^3 
%b = b/m; % m^3/kg 
%a = a/m^2; % J*m^2/kg^2 
% mass in the system 
mass = 1; % kg 
% specify system volume 
Vol = mass/rho; 
% specify initial conditions 
To = 1.01*Tc; 
% specify ODE solving parameters 
method_ODE = 1; % Euler 
method_AE = 3; % Newton-Raphson with Numerical Derivatives 
isave = 0; 
to=0; 
tf= 20; 
n= 100; 
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tol = 1.0e-8; 
%  call sysode 
[t,T]=sysode(method_ODE,n,to,tf,To); 
% save results 
isave = 1; 
nT = max(size(T)); 
% datamat column 1:  number of phases 
% datamat column 2:  1-phase density 
% datamat column 3:  1-phase pressure 
% datamat column 4:  1-phase chemical potential 
% datamat column 5:  2-phase liquid density 
% datamat column 6:  2-phase vapor density 
% datamat column 7:  2-phase pressure 
% datamat column 8:  2-phase chemical potential 
% datamat column 9:  2-phase vapor fraction 
datamat = zeros(nT,9); 
p = R*T(1)/(Vm-b)-a/Vm^2; 
for i = 1:1:nT 
    f=sysodeinput(t(i),T(i)); 
end 
% find where 2-phase region started 
i2start = 0; 
i = 0; 
while (i2start == 0) 
    i = i + 1; 
    if (datamat(i,1) == 2) 
        i2start = i; 
    end 
end 
% plot results 
figure(1) 
plot(t,T,'k-'); 
xlabel('time (s)'); 
ylabel('temperature (K)'); 
% plot densities 
figure(2) 
plot(t,datamat(:,2),'k-'); 
hold on; 
plot(t(i2start:nT),datamat(i2start:nT,5),'r-'); 
hold on; 
plot(t(i2start:nT),datamat(i2start:nT,6),'b-'); 
hold off; 
xlabel('time (s)'); 
ylabel('density (kg/m^3)'); 
legend('one phase', 'two phase liquid', 'two phase vapor'); 
% plot pressure 
figure(3) 
plot(t,datamat(:,3),'k-'); 
hold on; 
plot(t(i2start:nT),datamat(i2start:nT,7),'r-'); 
hold off; 
xlabel('time (s)'); 
ylabel('pressure (Pa)'); 
legend('one phase', 'two phase'); 
% plot chemical potentials 
figure(4) 
plot(t,datamat(:,4),'k-'); 
hold on; 
plot(t(i2start:nT),datamat(i2start:nT,8),'r-'); 
hold off; 
xlabel('time (s)'); 
ylabel('chemical potential (J/mol)'); 
legend('one phase', 'two phase'); 
% plot vapor fraction 
figure(5) 
plot(t,datamat(:,9),'k-'); 
xlabel('time (s)'); 
ylabel('vapor fraction'); 
axis([t(1) t(nT) 0 1.1]); 
% plot number of phases 



Continuum Description of a Condensation Process – D. Keffer, Dept. of Chemical Engineering, The University of Tennessee, Knoxville 

 17

figure(6) 
plot(t,datamat(:,1),'k-'); 
xlabel('time (s)'); 
ylabel('number of phases'); 
axis([t(1) t(nT) 0 3]); 
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sysode.m 
function [x,y]=sysode(m,n,xo,xf,yo); 
%  sysode(m,n,xo,xf,yo) 
%  This routine solves one non-linear first-order ordinary differential 
%  equation initial value problem. 
% 
%  m = 1 for Euler's method 
%  m = 2 for Classical Runge-Kutta 4rth order method 
%  n = number of steps 
%  xo = starting value of x 
%  xf = ending value of x 
%  o = number of first order ordinary differential equations 
%  yo = initial condition at xo 
% 
%  The differential equation must appear in the file 'sysodeinput.m' 
%  This program creates an output data file 'sysode.out' 
% 
%  Author:  David Keffer   Date:  October 23, 1998 
% 
 
% 
%  STEP ONE.  input parameters 
% 
if (nargin ~= 5) 
   error('sysode requires 5 input arguments'); 
end 
nsize=size(yo); 
o=max(nsize(1),nsize(2)); 
% 
%  STEP TWO DEFINE ODE and I 
% 
%  yo is the initial condition 
%  the ode is defined in a file called odeivpn.m 
%yo = zeros(1,o); 
% 
%  the vector nvec contains some info that can be passed  
%  to sysodeinput (in case you need it) 
%  nvec(1) = i, the iteration number 
%  nvec(2) = n, the total number of iterations 
%  nvec(3) = kk, the intra-iteration access number 
%  nvec(4) = o, the number of first order ODEs 
%  nvec(5) = m, the method used to solve 
% 
%  STEP THREE.  SOLVE THE ODE 
% 
h = (xf-xo)/n; 
x = xo : h : xf; 
if (m == 1)  
   y = eulerevaln(x,h,n,o,yo); 
else 
   y = rk4evaln(x,h,n,o,yo); 
end 
% 
%  STEP FOUR.  PLOT THE RESULT 
% 
iplot = 1; 
if (iplot == 1) 
for i = 1:o  
  if (i==1) 
     plot (x,y(:,i),'k-'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==2) 
     plot (x,y(:,i),'r-'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==3) 
     plot (x,y(:,i),'b-'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==4) 
     plot (x,y(:,i),'g-'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==5) 
     plot (x,y(:,i),'m-'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==6) 
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     plot (x,y(:,i),'k:'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==7) 
     plot (x,y(:,i),'r:'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==8) 
     plot (x,y(:,i),'b:'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==9) 
     plot (x,y(:,i),'g:'), xlabel( 'x' ), ylabel ( 'y' ) 
  elseif (i==10) 
     plot (x,y(:,i),'m:'), xlabel( 'x' ), ylabel ( 'y' ) 
 else 
     plot (x,y(:,i),'k-'), xlabel( 'x' ), ylabel ( 'y' ) 
  end 
  hold on 
end 
hold off 
end 
% 
%  STEP FIVE.  WRITE THE RESULT TO sysode.out 
% 
op1=o+1; 
fid = fopen('sysode.out','w'); 
if (op1 == 2)  
  fprintf(fid,'x              y(1) \n'); 
  fprintf(fid,'%21.15e %21.15e   \n', [x;y']); 
elseif (op1 == 3) 
  fprintf(fid,'x              y(1)           y(2) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e  \n', [x;y']); 
elseif (op1 == 4) 
  fprintf(fid,'x              y(1)           y(2)           y(3) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e \n', [x;y']); 
elseif (op1 == 5) 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e %13.7e \n', [x;y']); 
elseif (op1 == 6) 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4)           y(5) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e  %13.7e %13.7e %13.7e \n', [x;y']); 
elseif (op1 == 7) 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4)           y(5)           y(6) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e  \n', [x;y']); 
elseif (op1 == 8) 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4)           y(5)           y(6)           y(7) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e  \n', [x;y']); 
elseif (op1 == 9) 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4)           y(5)           y(6)           y(7)           y(8) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e \n', [x;y']); 
elseif (op1 == 10) 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4)           y(5)           y(6)           y(7)           y(8)           y(9) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e  \n', [x;y']); 
elseif (op1 == 11) 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4)           y(5)           y(6)           y(7)           y(8)           y(9)           y(10) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e  %13.7e %13.7e \n', [x;y']); 
else 
  fprintf(fid,'x              y(1)           y(2)           y(3)           y(4)           y(5)           y(6)           y(7)           y(8)           y(9)           y(10)           y(11) \n'); 
  fprintf(fid,'%13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e %13.7e  \n', [x;y']); 
end 
fclose(fid); 
% 
%  If you want, interpolate to find a time at a particular value of y 
% 
interp = 0; 
if (interp == 1) 
   final_height = y(n+1) 
   yf=2.54; 
   time_at_h_1inch = INTERP1(y,x,yf,'linear') 
end 
 
% 
%  multivariate classical fourth order Runge-Kutta 
% 
function y = rk4evaln(x,h,n,o,yo) 
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% 
%  specify initial values of y 
% 
y = zeros(n+1,o); 
dydt = zeros(1,o); 
k1 = zeros(1,o); 
k2 = zeros(1,o); 
k3 = zeros(1,o); 
k4 = zeros(1,o); 
yt = zeros(o,1); 
ytt = zeros(1,o); 
% 
for j = 1:o 
   y(1,j) = yo(j); 
end 
%  solve new values of dydt and y 
nvec =[0;n;1;o;2]; 
for i =  1:n 
   nvec(1)=i; 
   xt = x(i); 
   ytt = y(i,:); 
   yt = ytt; 
   nvec(3)=1; 
   k1 = sysodeinput(xt,yt,nvec); 
   xt = x(i)+h/2; 
   for j = 1:o 
      yt(j) = ytt(j)+h/2*k1(j); 
   end 
   nvec(3)=2; 
   k2 = sysodeinput(xt,yt,nvec); 
   for j = 1:o 
      yt(j) = ytt(j)+h/2*k2(j); 
   end 
   nvec(3)=3; 
   k3 = sysodeinput(xt,yt,nvec); 
   xt = x(i)+h; 
   for j = 1:o 
      yt(j) = ytt(j)+h*k3(j); 
   end 
   nvec(3)=4; 
   k4 = sysodeinput(xt,yt,nvec); 
   for j = 1:o 
      y(i+1,j) = y(i,j)+h/6*(k1(j)+2*k2(j)+2*k3(j)+k4(j)); 
   end 
end 
 
% 
%  multivariate Euler method 
% 
function y = eulerevaln(x,h,n,o,yo) 
%  specify initial values of y 
y = zeros(n+1,o); 
dydt = zeros(1,o); 
for j = 1:o 
   y(1,j) = yo(j); 
end 
nvec =[0;n;1;o;1]; 
%  solve new values of dydt and y 
for i =  1:n 
   nvec(1) = i; 
   dydt = sysodeinput(x(i),y(i,:),nvec); 
   for j = 1:o 
      y(i+1,j) = y(i,j)+h*dydt(j); 
   end 
end 
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sysodeinput.m 
function dTdt = sysodeinput(t,T,nvec); 
% 
global a b Vol rho Cv m Tc tol h kB mm pi Vm R method_AE 
global Tcurrent 
global pold 
global isave datamat i 
% need Tcurrent to pass to AE solver 
Tcurrent = T; 
% thermal debroglie wavelength 
    lambda = sqrt(h^2/(2*pi*mm*kB*T)); 
    lambda3 = lambda^3; 
if (T >= Tc) 
%   if you are above the critical point, you have one phase. 
    nphase = 1; 
    Vm1 = Vm; 
    p1 = R*T/(Vm-b)-a/Vm^2; % Pa 
    mu1 = -R*T*(log((Vm1-b)/lambda3) - b/(Vm1-b) + 2*a/(Vm1*R*T)); % J/mol 
    p = p1; 
    phiv = 1.0; 
    fprintf(1,'1-phase:  p %e Vm %e \n',p, Vm); 
else 
% 
% need to calculate the chemical potential for 1-phase and 2-phase 
% systems in order to determine which one exists. 
% 
% one phase system 
    Vm1 = Vm; 
    p1 = R*T/(Vm-b)-a/Vm^2; % Pa 
    mu1 = -R*T*(log((Vm1-b)/lambda3) - b/(Vm1-b) + 2*a/(Vm1*R*T)); % J/mol 
    phiv = 1.0; 
% two phase system 
% iteratively determine vapor pressure 
   %p2 = pold; 
   [p2,err] = newraph_nd(pold);   
   p2 = real(p2); 
% compute molar volumes 
   Vvec = roots([p2,(-b*p2-R*T),a,-a*b]); 
   Vmv = max(real(Vvec)); %m^3/mol; 
   Vml = min(real(Vvec)); %m^3/mol; 
%   chemical potentials 
    muv = -R*T*(log((Vmv-b)/lambda3) - b/(Vmv-b) + 2*a/(Vmv*R*T)); % J/mol 
    mul = -R*T*(log((Vml-b)/lambda3) - b/(Vml-b) + 2*a/(Vml*R*T)); % J/mol 
%   determine number of phases (based on chemical potential 
%  find two densities 
        rhov = m/Vmv; % kg/m^3 
        rhol = m/Vml; % kg/m^3 
% vapor fraction 
        %xv = (Vm - Vml)/(Vmv-Vml); 
        %phiv = xv*Vmv/(xv*Vmv + (1-xv)*Vml); 
        phiv = (rho - rhol)/(rhov-rhol); 
    if (Vm1 < Vml || Vm1 > Vmv) 
        nphase = 1; 
        p = p1; % Pa 
    else 
        nphase = 2; 
% vapor pressure 
        p = p2; % Pa 
% thermo derivatives 
        term1 = R/(Vml-b) - R/(Vmv-b); 
        term2 = R*(log((Vml-b)/(Vmv-b)) + b/(Vmv-b) - b/(Vml-b)); 
        term3 = R*T/(Vml-b)^2 - 2*a/Vml^3; 
        term4 = R*T/(Vml-b)+R*T*b/(Vml-b)^2 - 2*a/Vml^2; 
        term5 = R*T/(Vmv-b)+R*T*b/(Vmv-b)^2 - 2*a/Vmv^2; 
        term6 = R*T/(Vmv-b)^2 - 2*a/Vmv^3;  
        dVmvdtsat = (term1/term3 + term2/term4) / (term5/term4 - term6/term3); 
        dVmldtsat = ( term1 + term6*dVmvdtsat )/ term3; 
        drhovdtsat = -rhov^2/m*dVmvdtsat; % kg/m^3/K 
        drholdtsat = -rhol^2/m*dVmldtsat; % kg/m^3/K 
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    end 
fprintf(1,'nphase: %i p1 %e Vm1 %e mu1 %e phiv %e p2 %e Vmv %e Vml %e muv %e \n',nphase, p1, Vm1, mu1, phiv, p2, Vmv, Vml, muv ); 
end 
% heat loss 
Q = 100; % J/sec 
if (nphase == 1) 
   dTdt = -Q/(Cv*Vol*rho); % K/sec 
else 
   phil = 1.0 - phiv; 
   Ul = 1/m*(1.5*R*T - a/m*rhol); 
   Uv = 1/m*(1.5*R*T - a/m*rhov); 
   dUvap = Uv - Ul; 
   dUdT_l = 1/m*1.5*R; 
   dUdrho_l = -a/m^2; 
   dUdT_v = 1/m*1.5*R; 
   dUdrho_v = -a/m^2; 
   drhodt = 0.0; 
   EB_numerator_term1 = -Q; 
   EB_numerator_term2 = -dUvap*Vol*rhov/(rhov-rhol)*drhodt; 
   EB_numerator = EB_numerator_term1 + EB_numerator_term2; 
   EB_denominator_term1 = Vol*rhol*phil*(dUdT_l + dUdrho_l*drholdtsat); 
   EB_denominator_term2 = Vol*rhov*phiv*(dUdT_v + dUdrho_v*drhovdtsat); 
   EB_denominator_term3a = phiv*drhovdtsat; 
   EB_denominator_term3b = -rhov/(rhov-rhol)*drholdtsat; 
   EB_denominator_term3c = -rhov*(rho-rhol)/(rhov-rhol)^2*(drhovdtsat - drholdtsat); 
   EB_denominator_term3 = dUvap*Vol*(EB_denominator_term3a + ... 
       EB_denominator_term3b + EB_denominator_term3c); 
   EB_denominator = EB_denominator_term1 + EB_denominator_term2 + ... 
       EB_denominator_term3; 
   dTdt = EB_numerator / EB_denominator; 
end 
 
% save old value of pressure 
pold = p; 
if (isave == 1)  
% datamat column 1:  number of phases 
% datamat column 2:  1-phase density 
% datamat column 3:  1-phase pressure 
% datamat column 4:  1-phase chemical potential 
% datamat column 5:  2-phase liquid density 
% datamat column 6:  2-phase vapor density 
% datamat column 7:  2-phase pressure 
% datamat column 8:  2-phase chemical potential 
% datamat column 9:  2-phase vapor fraction 
    datamat(i,1) = nphase; 
    datamat(i,2) = m/Vm1; 
    datamat(i,3) = p1; 
    datamat(i,4) = mu1; 
    if (T <= Tc) 
        datamat(i,5) = rhol; 
        datamat(i,6) = rhov; 
        datamat(i,7) = p2; 
        datamat(i,8) = muv; 
    end 
    datamat(i,9) = phiv; 
end
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newraph_nd.m 
% 
%  Newton-Raphson method with numerical approximations to the derivative. 
% 
function [x0,err] = newraph_nd(x0); 
maxit = 100; 
tol = 1.0e-6; 
err = 100.0; 
icount = 0; 
xold =x0; 
while (err > tol & icount <= maxit) 
   icount = icount + 1; 
   f = funkeval(xold); 
   h = min(0.01*xold,0.01); 
   df = dfunkeval(xold,h); 
   xnew = xold - f/df; 
   if (icount > 1) 
      err = abs((xnew - xold)/xnew); 
   end 
   %fprintf(1,'icount = %i xold = %e f = %e df = %e xnew = %e  err = %e \n',icount, xold, f, df, xnew, err); 
   xold = xnew; 
end 
% 
x0 = xnew; 
if (icount >= maxit) 
   % you ran out of iterations 
   fprintf(1,'Sorry.  You did not converge in %i iterations.\n',maxit); 
   fprintf(1,'The final value of x was %e \n', x0); 
end 
 
function df = dfunkeval(x,h) 
fp = funkeval(x+h); 
fn = funkeval(x-h); 
df = (fp - fn)/(2*h); 
 
 
function f = funkeval(p) 
global a b Vol rho Cv m Tc tol h kB mm pi Vm R method_AE 
global Tcurrent 
T = Tcurrent; 
% get molar volumes 
Vvec = roots([p,(-b*p-R*T),a,-a*b]); 
Vmv = max(Vvec); %m^3/mol; 
Vml = min(Vvec); %m^3/mol; 
% evaluate the function delta mu/RT 
f = log((Vml-b)/(Vmv-b)) + b/(Vmv-b) - b/(Vml-b) - 2*a/(R*T)*(1/Vmv-1/Vml); 


