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I. Problem Formulation

We have a fluid flowing down a pipe. It’s a single component fluid. When the fluid
enters the system, it is at a temperature greater than the critical temperature. The pipe is not
perfectly insulated. As the fluid flows down the pipe, it loses heat to the surroundings. The
temperature drops. As a result, the fluid may partially condense. We want to describe the time
and spatial dependence of the system. Specifically, we want the following variables as a
function of time and space: the temperature, T, the pressure, p, the vapor fraction, ¢y, the density
of the vapor phase, py, and the density of the liquid phase, p..

This hand-out assumes that you have already the previous two hand-out in this series.
The first hand-out was titled, “Forms of the Microscopic Energy Balance”. We will use this as
our starting point for our evolution equations. The second hand-out is titled, “Continuum
Description of a Condensation Process in a System of Fixed Mass and Fixed Volume”. In that
hand-out, we examined condensation of a single-component van der Waals gas in a closed
system. Now, we have a flowing system. All the other assumptions will be the same.

If we have a single component system and we restrict ourselves to variations in the axial
dimension only, then from the previous hand-out titled, “Generalized Evolution Equations for
Mass, Momentum and Energy”, we know that we will have three balances: one for momentum,
one for the axial velocity, and one for the energy.
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We assume the fluid is inviscid and we neglect any potential energy terms. We will have to add
a heat loss through the uninsulated walls to the energy balance. Since the problem is one-
dimensional, all of the divergences and gradients will become partial derivatives with respect to
axial position. We will assume that the thermal conductivity is constant for a given phase, but is
not the same for both the liquid and vapor phases. Therefore, we cannot pull the thermal
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conductivity out of the divergence. We will obtain the pressure and the enthalpy from an
equation of state. In this case, we will use the van der Waals equation of state, because that is
the simplest equation of state that one can use and still get vapor-liquid equilibrium (VLE). With
all of these changes, the equations become,
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We now remind ourselves of the appropriate variables for describing a two-phase system.
Within each infinitesimal volume, we define volume fractions as

vV, B V_V
b= and by =~ (7)
where
1= ¢|_ + ¢v (8)

The volume of this differential element is constant,

V=V, +V, ©)
The mass within this element is composed of liquid and vapor

M=M_+M, (10)
The density of the individual phases within the differential element are

M
PL :ﬂ and Py = . (11)
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Substituting equation (11) into equation (10) yields
M =Vp=V.p_+Vip, (12)

Substituting equations (7) and (8) into equation (12) yields
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pP=0.pL +0ypy :(1_¢v)p|_+¢vpv (13)

Solving for the vapor fraction yields
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Therefore, if we know the total density, the liquid density and the vapor density, we can obtain
the vapor fraction.

We can write a balance on the mass of the vapor phase in a differential volume. The
accumulation of vapor mass in the element is

AP V) _ oy a(pgt%) (15)

accumulation =

The convection of vapor mass is given by

convection = (p,V, v-AA"). —(p,V, V- AA")
= (va by V- AA,)in - (va by V- AA,)out (16)
= (pv by V- AA)in - (pv Gy V- AA)out

where AA’ is the dimensionless cross-sectional area of the differential volume normal to the
velocity and AA =VAA’ is the same with dimensions. The generation of vapor mass is

generation = AVr, (17)

Therefore, the vapor mass balance is
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As always, divide by the volume and take the limit as the differential volume goes to zero.

a(pZTd)V) =-V- (pv (I)V V)+ Irvap (19)

This term has the rate of vaporization in it. We will use this “vapor mass balance” to define the
rate of vaporization in terms of known variables later on.
Now we can proceed to further develop the energy balance.



Continuum Description of a Condensation Process — D. Keffer, Dept. of Chemical Engineering, The University of Tennessee, Knoxville

a[;v%ﬁj 5 (1 o oT

6
ot ot z\ 2 oz\ ¢ oz (©)
The specific enthalpy can be expressed as
GoNm e Nem o pViH +p Vo H,
L \
Nnj N[n ApLVL +vav (20)
_ p vV H +p,VyH, _ pLd HL +pyoyH,y
Y p
where H . and ﬁv are the specific enthalpies of the liquid and vapor phases. Substituting
equation (20) into equation (6) we have
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Simplification yields
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Simplifying the accumulation terms on the RHS yields
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We now substitute equation (24) and (25) into equation (23).
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Also, we are going to rearrange equation (19) for r,
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and substitute that into equation (26)
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Collecting like terms, we have
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The PDE only has derivatives (either temporal or spatial) of the density and velocity, as well as
the enthalpy and pressure. The enthalpy and pressure will be related to the density and
temperature via an equation of state. Notably, there are no time derivatives of vapor fractions in
the equation.

Now, in a one-phase region, we have two degrees of freedom and the enthalpy and
pressure are functions of both the density and temperature.

H=H(p,T) (30.a)

p=p(p.T) (30.b)

Therefore, the time derivative is going to be written as
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The presence of the time derivative of the temperature is acceptable. We will use the energy
balance to solve for the temperature as a function of time. The presence of the time derivative of
the density is also not a problem, since we have an expression for the evolution of the density
from the continuity equation. If we directly substitute the continuity equation into equation (31),
we have

a_H:[aHj o_[H V-(pv) for one phase (32)
a \ar ) ot \op ),

Now when we have two phases, we have one degree of freedom and the enthalpies and
the pressure are a function of temperature only



Continuum Description of a Condensation Process — D. Keffer, Dept. of Chemical Engineering, The University of Tennessee, Knoxville

H = HL(pL(T)’T) and Hy = Hv(pv (T)1T) (33.2)

p=p(T) (33.b)

Therefore, the time derivative is going to be written as
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So, in order to solve this problem, we will need the thermodynamic partial derivatives that
appear in equations (32) and (34). In order to proceed any farther, we have to identify a specific
equation of state.

It is true that the rate of vaporization does appear in the energy balance, but this we know
because
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where p,, will come from the thermodynamic analysis and where the temporal and spatial
derivatives can be related to the temperature via
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where the partial derivative [8_'I'Vj comes from the thermodynamic equation of state. Also
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we know that
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so that the time derivative is
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and the spatial derivative is
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Therefore, we have all the information we need to solve the problem.
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If we are only interested in the steady state behavior of the system, the energy balance of
equation (29) becomes
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If we have no flow in the system (and thus no spatial derivatives), the energy balance becomes,
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In order to compare with our previous lecture package, if we make the additional assumption that
the volume of the container is fixed, we have constant total density
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This is equivalent to our energy balance from the non-flowing case, except that here we have
written it in terms of the enthalpy, rather than the internal energy.
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I1. Derivation for van der Waals Equation of State

At this point we need an equation of state. We will proceed with the van der Waals
(vdW) equation of state (EOS), since it is the simplest EOS that allows for vapor liquid
equilibrium (VLE).

The pressure for the vdW EOS is given by

RT  a
P=V "o V2 (33)

where Vp, is a molar volume, related to our density via

m

v, =2 (34)
p

The specific enthalpy of the vdW fluid is

G RT(3 ,a m (35)
m{2 mRT m-pb

We will need the following derivatives

(a_H _R[3, m (36)
oT ), m[2 m-pb

(OH _RT( , a  bm : 37)
op ), m mRT  (m-pb)

In the one phase region, we substitute equations (36) and (37) into equation (30)

H_R[3, m Jor RT( , 8  bm o @)
ot m|2 m-pblot m mRT  (m—pb)

In a two phase system, we can write equation (35) for each phase.

H =RT[3 8. m and H, =0 [3_p@8y M (39)
m{2 mRT m-pb m{2 mRT m-p,b

In the two-phase system, there is only one degree of freedom, which we choose as the
temperature, therefore, our energy balance changed to that of equation (32) and as a result, we
not only need the derivatives in equation (36) and (37) but we also need the change in density
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with respect to temperature along the saturation line. We have previously derived this result in
the hand-out for the closed system. Here we simply restate it,
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Differentiating equation (34) , we have
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so we have the derivatives of the density that we require in the energy balance.
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I11. The Solution Algorithm

The big picture is that we have three nonlinear partial differential equations that we wish
to solve, namely the mass, momentum, and energy balance. We have three unknowns, p(t,r),
v(t,r), T(t,r). Ateach point in time and space, we will require a number of other quantities,
which will be determined not through the integration of an evolution equation but rather from a
thermodynamic constraint. These quantities include

(i) the number of phases,

(ii) the density of the hypothetical one phase system, p(t,r),

(iii) the pressure of the hypothetical one phase system,

(iv) the density of the hypothetical liquid of the two phase system,

(v) the density of the hypothetical vapor of the two phase system,

(vi) the pressure (vapor pressure) of the two phase system, and

(vii) the volume fraction of the vapor phase.

The algorithm goes as follows. At any point in time and space, we know the current
temperature. If this temperature is above the critical temperature, we have a one phase system.
If this temperature is below the critical temperature, then we must determine the number of
phases. This determination is made by first iteratively calculating the vapor pressure and liquid
and vapor densities of the two phase system. If they density of the one phase system falls
between the densities of the two phase system, then the one phase system lies within the two-
phase envelope and will separate into two phases. At this point, we use equation (14) to
calculate the vapor fraction and we have everything we need to evaluate all of the terms on the
RHS of the mass, momentum, and energy balances.

11
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IV. Transport properties for a two-phase system.

At this point, we have the thermodynamic properties of the material. However, we need
the transport properties, specifically the thermal conductivity. The simplest level of
approximation is to provide a constant value or a simple function for the thermal conductivity of
the liquid and the thermal conductivity of the vapor phase, then create a rule for the thermal
conductivity of the two-phase mixture. Here we provide such an example.

For a monatomic, ideal gas from kinetic theory, we know that the thermal conductivity is
given by equation (9.3-12) of BSL2

JTMKeT A
kY =£nm—BCV (43)

C 37_[ ’}'Cdz Vv

For a monatomic liquid, the thermal conductivity can be approximated via Bridgman’s
equation (9.4-2) amd (9.4-4) of BSL2

L L\3 |C
kb =3kg| 2= | v, =3kg| | |22 8_pL (44)
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Now, in a region with two phases, the conductivity of the mixture depends upon the orientation
of the two phases. We begin the analysis with Fourier’s law for a system with variation in one-
dimension

dT

=k, — 45
q © 4 (45)

where q is the conductive heat flux. For the case of heat transfer in parallel (where we imagine
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that the liquid and vapor form layers parallel to the flow direction), we know that the driving
dar . . . L
force,d—, is the same at steady state in each region since they connect to the same initial and
z

final boundaries. If we write equation (45) for each of the two phases as well as for the total

system (T), and equate the gradients across the vapor and liquid phases, we have

T_dT \

S dz

T dr
dz

dT

m (46)

We also acknowledge that the total rate of transport is the sum of the rate of transport in each of

the three regions,

Alqh=Aq-+Aq (47)
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where A’ is the cross-sectional area of phase J. In the assumption of parallel phases, one might

J
simply equate the ratio of areas to the phase volume fractions A%T = ¢’ . Combining equations

A
(45), (46) and (47) and this assumption lead to an expression for the total thermal conductivity
parallel to the flow direction,

key = ke +"k! (48)

For the case of mass transport in series (where the liquid and vapor phases form layers
perpendicular to the flow direction), we acknowledge that at steady state the flux in equation (45)
is the same for each region and for the system total. Furthermore, the cross-sectional area of
each region relevant to transport perpendicular to the flow is constant. Therefore, we have

q' =q" =q" (49)

Furthermore, we acknowledge that the total driving force is the sum of the driving forces across

each region,
T L \%
drj’ _dTj" dT (50)
dz dz dz

Combining equations (45), (49) and (50) lead to an expression for the total diffusivity
perpendicular to the interface,

TR &)
ke, koo ke

In reality, it is unlikely that a two phase system are distributed in parallel or perpendicular
slabs, but rather some complicated geometry that delivers a mean thermal conductivity
somewhere between these two limits. Moreover, this geometry is surely a function of volume
fraction of the two phases. Imagine a phase that is mostly vapor. It has small droplets of liquid
in it. This can be modeled as a system that has a purely vapor phase in parallel with a
vapor/liquid phase in series. Thus substituting equation (51) into (48), we have

1
k., = (¢L +(1-e)p” {ki" + kiVJ +e¢” k) (52)

where ¢ is bound between 0 and 1 and is 0 to retrieve the limit in which the phases are just in
series. It increases as the degree of parallel resistance increases. The quantitative value of € and
its dependence on the other variables in the system would have to be determined by fitting to
experiment or theory. An analogous expression could be generated for the case where we have
mostly liquid phase with a few vapor bubbles.
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