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I.  Problem Formulation 
 
 We have a  fluid flowing down a pipe.  It’s a single component fluid.  When the fluid 
enters the system, it is at a temperature greater than the critical temperature.  The pipe is not 
perfectly insulated.  As the fluid flows down the pipe, it loses heat to the surroundings.  The 
temperature drops.  As a result, the fluid may partially condense.  We want to describe the time 
and spatial dependence of the system.  Specifically, we want the following variables as a 
function of time and space:  the temperature, T, the pressure, p, the vapor fraction, φV, the density 
of the vapor phase, ρV, and the density of the liquid phase, ρL.  
 This hand-out assumes that you have already the previous two hand-out in this series.  
The first hand-out was titled, “Forms of the Microscopic Energy Balance”.  We will use this as 
our starting point for our evolution equations.  The second hand-out is titled, “Continuum 
Description of a Condensation Process in a System of Fixed Mass and Fixed Volume”.  In that 
hand-out, we examined condensation of a single-component van der Waals gas in a closed 
system.  Now, we have a flowing system.  All the other assumptions will be the same. 
 If we have a single component system and we restrict ourselves to variations in the axial 
dimension only, then from the previous hand-out titled, “Generalized Evolution Equations for 
Mass, Momentum and Energy”, we know that we will have three balances:  one for momentum, 
one for the axial velocity, and one for the energy. 
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We assume the fluid is inviscid and we neglect any potential energy terms.  We will have to add 
a heat loss through the uninsulated walls to the energy balance.  Since the problem is one-
dimensional, all of the divergences and gradients will become partial derivatives with respect to 
axial position.  We will assume that the thermal conductivity is constant for a given phase, but is 
not the same for both the liquid and vapor phases.  Therefore, we cannot pull the thermal 
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conductivity out of the divergence.  We will obtain the pressure and the enthalpy from an 
equation of state.  In this case, we will use the van der Waals equation of state, because that is 
the simplest equation of state that one can use and still get vapor-liquid equilibrium (VLE).  With 
all of these changes, the equations become, 
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 We now remind ourselves of the appropriate variables for describing a two-phase system.   
 Within each infinitesimal volume, we define volume fractions as 
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where 
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The volume of this differential element is constant,  
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The mass within this element is composed of liquid and vapor 
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The density of the individual phases within the differential element are 
 

L

L
L V

M
=ρ   and  

V

V
V V

M
=ρ      (11) 

 
Substituting equation (11) into equation (10) yields 
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Substituting equations (7) and (8) into equation (12) yields 
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Solving for the vapor fraction yields 
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Therefore, if we know the total density, the liquid density and the vapor density, we can obtain 
the vapor fraction. 
 We can write a balance on the mass of the vapor phase in a differential volume.  The 
accumulation of vapor mass in the element is  
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The convection of vapor mass is given by 
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where ΔA’ is the dimensionless cross-sectional area of the differential volume normal to the 
velocity and ΔA =VΔA’ is the same with dimensions.  The generation of vapor mass is  
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Therefore, the vapor mass balance is 
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As always, divide by the volume and take the limit as the differential volume goes to zero. 
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This term has the rate of vaporization in it.   We will use this “vapor mass balance” to define the 
rate of vaporization in terms of known variables later on. 
 Now we can proceed to further develop the energy balance. 
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The specific enthalpy can be expressed as 
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where LĤ  and VĤ are the specific enthalpies of the liquid and vapor phases.  Substituting 
equation (20) into equation (6) we have 
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Simplification yields 
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Eliminate liquid fraction and liquid density,  
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Simplifying the accumulation terms on the RHS yields 
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Simplifying the convection terms on the LHS of equation (21) yields 
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We now substitute equation (24) and (25) into equation (23).   
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Also, we are going to rearrange equation (19) for vapr   
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Collecting like terms, we have 
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The PDE only has derivatives (either temporal or spatial) of the density and velocity, as well as 
the enthalpy and pressure.  The enthalpy and pressure will be related to the density and 
temperature via an equation of state.  Notably, there are no time derivatives of vapor fractions in 
the equation. 
 Now, in a one-phase region, we have two degrees of freedom and the enthalpy and 
pressure are functions of both the density and temperature. 
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The presence of the time derivative of the temperature is acceptable.  We will use the energy 
balance to solve for the temperature as a function of time.  The presence of the time derivative of 
the density is also not a problem, since we have an expression for the evolution of the density 
from the continuity equation.  If we directly substitute the continuity equation into equation (31), 
we have  
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Now when we have two phases, we have one degree of freedom and the enthalpies and 

the pressure are a function of  temperature only 
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( )( )TTHH LLL ,ρ=   and  ( )( )TTHH VVV ,ρ=    (33.a) 
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Therefore, the time derivative is going to be written as 
 

t
T

T
H

T
H

t
T

T
H

t
T

T
H

t
H

t
T

T
H

t
H

sat

L

satL

L

sat

L

sat

L

satL

L

sat

L

L

satL

L

sat

LL

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

  for two phases   (34) 

 
So, in order to solve this problem, we will need the thermodynamic partial derivatives that 
appear in equations (32) and (34).  In order to proceed any farther, we have to identify a specific 
equation of state. 
 It is true that the rate of vaporization does appear in the energy balance, but this we know 
because 
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where Vρ  will come from the thermodynamic analysis and where the temporal and spatial 
derivatives can be related to the temperature via 
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so that the time derivative is 
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and the spatial derivative is  
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Therefore, we have all the information we need to solve the problem. 
 
 If we are only interested in the steady state behavior of the system, the energy balance of 
equation (29) becomes 
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If we have no flow in the system (and thus no spatial derivatives), the energy balance becomes, 
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In order to compare with our previous lecture package, if we make the additional assumption that 
the volume of the container is fixed, we have constant total density 
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This is equivalent to our energy balance from the non-flowing case, except that here we have 
written it in terms of the enthalpy, rather than the internal energy. 
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II.  Derivation for van der Waals Equation of State 
 
 At this point we need an equation of state.  We will proceed with the van der Waals 
(vdW) equation of state (EOS), since it is the simplest EOS that allows for vapor liquid 
equilibrium (VLE). 
 The pressure for the vdW EOS is given by  
 

2
mm V
a

bV
RTp −
−

=          (33) 

 
where Vm is a molar volume, related to our density via 
 

ρ
=

mVm           (34) 

 
The specific enthalpy of the vdW fluid is  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−

+
ρ

−=
bm

m
mRT
a

m
RTH 2

2
3        (35) 

 
We will need the following derivatives 
 

⎥
⎦

⎤
⎢
⎣

⎡
ρ−

+=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

ρ bm
m

m
R

T
H

2
3         (36) 
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⎜⎜
⎝
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+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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∂
22
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m
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      (37) 

 
In the one phase region, we substitute equations (36) and (37) into equation (30)  
 

( )
( )vρ⋅∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ρ−
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∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
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∂
∂

22
2
3
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a

m
RT

t
T

bm
m

m
R

t
H    (38) 

 
In a two phase system, we can write equation (35) for each phase. 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−

+
ρ

−=
bm

m
mRT
a

m
RTH

L

L
L 2

2
3  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ−

+
ρ

−=
bm

m
mRT
a

m
RTH

V

V
V 2

2
3  (39) 

 
In the two-phase system, there is only one degree of freedom, which we choose as the 
temperature, therefore, our energy balance changed to that of equation (32) and as a result, we 
not only need the derivatives in equation (36) and (37) but we also need the change in density 
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with respect to temperature along the saturation line.  We have previously derived this result in 
the hand-out for the closed system.  Here we simply restate it,  
 

( ) ( )

( )

( )

( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

−
−

−

=
∂
∂

32

32

22

22

2232

2

2

2

2

2

ln

2

L
m

L
m

B

V
m

V
m

B

L
m

L
m

B
L

m

B

V
m

V
m

B
V
m

B

L
m

L
m

B
L

m

B

L
m

V
m

V
m

L
m

B

L
m

L
m

B

V
m

B
L

m

B

sat

V
m

V
a

bV

Tk

V
a

bV

Tk

V
a

bV

Tbk
bV

Tk

V
a

bV

Tbk
bV

Tk

V
a

bV

Tbk
bV

Tk

bV
b

bV
b

bV
bV

k

V
a

bV

Tk

bV
k

bV
k

T
V

  (40) 

 

( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

∂
∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
+

−
−

−
=

∂
∂

32

32

2

2

L
m

L
m

B

sat

V
m

V
m

V
m

B
V
m

B
L

m

B

sat

L
m

V
a

bV

Tk

T
V

V
a

bV

Tk
bV

k
bV

k

T
V

    (41) 

 
 Differentiating equation (34) , we have 
 

T
V

mT
m

∂
∂ρ

−=
∂
ρ∂ 2

         (42) 

 
so we have the derivatives of the density that we require in the energy balance.   
 



Continuum Description of a Condensation Process – D. Keffer, Dept. of Chemical Engineering, The University of Tennessee, Knoxville 

 11

III.  The Solution Algorithm 
 

The big picture is that we have three nonlinear partial differential equations that we wish 
to solve, namely the mass, momentum, and energy balance.  We have three unknowns, ρ(t,r), 
v(t,r), T(t,r).  At each point in time and space, we will require a number of other quantities, 
which will be determined not through the integration of an evolution equation but rather from a 
thermodynamic constraint.  These quantities include  

(i) the number of phases,  
(ii) the density of the hypothetical one phase system, ρ(t,r),  
(iii) the pressure of the hypothetical one phase system, 
(iv) the density of the hypothetical liquid of the two phase system,  
(v) the density of the hypothetical vapor of the two phase system,  
(vi) the pressure (vapor pressure) of the two phase system, and 
(vii) the volume fraction of the vapor phase. 

 
 The algorithm goes as follows.  At any point in time and space, we know the current 
temperature.  If this temperature is above the critical temperature, we have a one phase system.  
If this temperature is below the critical temperature, then we must determine the number of 
phases.  This determination is made by first iteratively calculating the vapor pressure and liquid 
and vapor densities of the two phase system.  If they density of the one phase system falls 
between the densities of the two phase system, then the one phase system lies within the two-
phase envelope and will separate into two phases.  At this point, we use equation (14) to 
calculate the vapor fraction and we have everything we need to evaluate all of the terms on the 
RHS of the mass, momentum, and energy balances. 
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IV.  Transport properties for a two-phase system. 
 
 At this point, we have the thermodynamic properties of the material.  However, we need 
the transport properties, specifically the thermal conductivity.  The simplest level of 
approximation is to provide a constant value or a simple function for the thermal conductivity of 
the liquid and the thermal conductivity of the vapor phase, then create a rule for the thermal 
conductivity of the two-phase mixture.  Here we provide such an example. 
 For a monatomic, ideal gas from kinetic theory, we know that the thermal conductivity is 
given by equation (9.3-12) of BSL2 
 

 V
v

BV
c C

d
Tmk

k ˆ
3
2

2π

π
π

=         (43) 

 
 For a monatomic liquid, the thermal conductivity can be approximated via Bridgman’s 
equation (9.4-2) amd (9.4-4) of BSL2 
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33      (44) 

 
Now, in a region with two phases, the conductivity of the mixture depends upon the orientation 
of the two phases.  We begin the analysis with Fourier’s law for a system with variation in one-
dimension 

 
dz
dTkq c−=           (45) 

where q is the conductive heat flux. For the case of heat transfer in parallel (where we imagine 

that the liquid and vapor form layers parallel to the flow direction), we know that the driving 

force,
dz
dT , is the same at steady state in each region since they connect to the same initial and 

final boundaries. If we write equation (45) for each of the two phases as well as for the total 

system (T), and equate the gradients across the vapor and liquid phases, we have 

 
VLT

dz
dT

dz
dT

dz
dT

==          (46) 

We also acknowledge that the total rate of transport is the sum of the rate of transport in each of 

the three regions, 

 VV
z

LL
z

TT
z qAqAqA +=          (47) 
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where J
zA  is the cross-sectional area of phase J.  In the assumption of parallel phases, one might 

simply equate the ratio of areas to the phase volume fractions J
T
z

J
z

A
A φ= . Combining equations 

(45), (46) and (47) and this assumption lead to an expression for the total thermal conductivity 

parallel to the flow direction, 

 V
c

VL
c

LT
c kkk φ+φ=||          (48) 

 For the case of mass transport in series (where the liquid and vapor phases form layers 

perpendicular to the flow direction), we acknowledge that at steady state the flux in equation (45) 

is the same for each region and for the system total.  Furthermore, the cross-sectional area of 

each region relevant to transport perpendicular to the flow is constant.  Therefore, we have 

 VLT qqq ==           (49) 

Furthermore, we acknowledge that the total driving force is the sum of the driving forces across 

each region, 

 
VLT

dz
dT

dz
dT

dz
dT

+=          (50) 

Combining equations (45), (49) and (50) lead to an expression for the total diffusivity 

perpendicular to the interface, 

 V
c

L
c

T
c kkk

111
+=

⊥

          (51) 

 In reality, it is unlikely that a two phase system are distributed in parallel or perpendicular 
slabs, but rather some complicated geometry that delivers a mean thermal conductivity 
somewhere between these two limits.  Moreover, this geometry is surely a function of volume 
fraction of the two phases.  Imagine a phase that is mostly vapor.  It has small droplets of liquid 
in it.  This can be modeled as a system that has a purely vapor phase in parallel with a 
vapor/liquid phase in series.  Thus substituting equation (51) into (48), we have 

 ( )( ) V
c

V
V
c

L
c

VLT
c k

kk
k εφ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+φε−+φ=

−1
111       (52) 

where ε  is bound between 0 and 1 and is 0 to retrieve the limit in which the phases are just in 
series.  It increases as the degree of parallel resistance increases.  The quantitative value of ε and 
its dependence on the other variables in the system would have to be determined by fitting to 
experiment or theory.  An analogous expression could be generated for the case where we have 
mostly liquid phase with a few vapor bubbles.   
 




