Continuum Description of a Condensation Process — D. Keffer, Dept. of Chemical Engineering, The University of Tennessee, Knoxville

Continuum Description of a Condensation Process of a Multicomponent Fluid
in a System of Fixed Mass and Fixed VVolume

David Keffer
Department of Chemical Engineering
The University of Tennessee, Knoxville
dkeffer@utk.edu
started: March 8, 2005
last updated: March 6, 2008

I. Problem Formulation

Consider a fluid containing Na moles of component A with molecular weight ma and Ng
moles of component B with molecular weight mg, initially above the critical temperature of the
mixture, Tcmix, IN @ closed volume, V. We remove heat at a constant rate, Q, causing the
temperature to drop. Eventually the system will fall into the two phase region and phase
separate. We want to describe the time dependence of the system. Specifically, we want the
following variables as a function of time: the temperature, T, the pressure, p, the vapor fraction,
dv, the density of the vapor phase, py, the density of the liquid phase, p.., the mass fraction of A
in the vapor phase, wa v, and the mass fraction of A in the liquid phase, wa .

We begin our analysis with the overall mass balance. We define the system density to be

P== 1)

Since the system is closed and the volume is fixed, the density is constant

op
F_o 2
p )

We can also examine a mass balance on component A. Again there is nothing moving in or out
of the system and there is no generation of A, so we have the accumulation term equal to zero.

Pa B g ®
ot ot

Since the density is constant, the mass fraction of A is also constant.
We are going to define volume fractions as

V. B V_V
b= and by =, (4)
where
1= ¢|_ + ¢v (5)
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The volume of this system is constant,
V=V +V, (6)
The total mass of this system is constant

M=M_+M,
=M, +Mg, )+(M,, +M,,) (7)
=(NA,LmA + NB,LmB)+(NA,VmA + NB,va)

The mass of component A in this system is constant
MAzMA,L+MA,V =NA,LmA+NA,VmA (8)
The density of each of the phases is

M, _ N M, + NB,LmB

P, = V. v and p, = v, v, ©)
The density of the components in each of the phases are

PaL =WalPL = I\C/EL , PaL =We P = I\f/iL :

Pav =WayPy = I\C/CV . Pay =Wgypy = '\<|/3v , (10)
Substituting equation (9) into equation (7) yields

M =Vp=V p +V,p, (11)
Substituting equations (4) and (5) into equation (11) yields

P=0upL +dupy =10y I, +dypy (12)
Solving for the vapor fraction yields

# =L (13)

A~ P

We can now repeat these past few steps for component A. Substituting equation (10) into
equation (8) yields
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My =pa Ve +PavVy (14)
Substituting equations (4) and (5) into equation (14) yields

Pa=Parde +Pavdy =PaLl=0y)+Paydy (15)
Solving for the vapor fraction yields

o, = A Par (16)
Pav =PaL

We will require a balance on the total mass of the vapor phase

8(vav ) _V a(pv oy ) —r (17)
ot ot vap

where ry,p is the rate of vaporization with units of mass/time.
We will also require a balance on the mass of A in the vapor phase

ot ot ot

opaVy) _, dlpanth) _,, 6(WA,VpV¢w)=V{W Ao | 4 Mo }
AV at
", (18)
:VWA,V rvap +Vp\/ﬂ/ 8t

AV

In equations (17) and (18) there are two unknown variables, ry,, and . For the moment,

AV

we leave ry,y and as unknowns.

We will also require an energy balance,

NpU

. (19)

where U is the specific internal energy of the entire system and AU, is the specific internal
energy of vaporization. The internal energy U can be expressed as

:NLmU +Nva :pLVLUL+pVVVUV:pLVLUL+pVVVUV
Nm " Nm ' PV, +p,V, N,m, + N mj

U (20)

where U and Uy are the specific internal energies of the liquid and vapor phases. Substituting
equation (20) into equation (19) we have
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a(IOLVLU L+ AUy ) _
p =-Q (21)
Substitute in equation (12)
Va((p_pvﬂlpL-i_pVﬂ/UV):_Q (22)

ot

Use the product rule to differentiate,

oU au, -u,) oo d
Vp—Lt+V ——Y L4V, -U = 23
PtV = Uy -U )= (29)
Substitute in equation (7) into equation (14)
Vp%wmwﬁuv—m)rm:—cz (24)

We recognize the presence of the internal energy of vaporization,

Vo v, WU au o 25)

where the internal energy of vaporization is defined as AU, =U,, —U, . Substitute in equation
(11) into equation (25)

oU oU
VpLd)LFL_FVpV(I)V 7\/ = _AUvaprvap _Q (26)

At this point, this is precisely the same energy balance we had for the single component system.

Now, in a one-phase region of a binary mixture, we have three degrees of freedom and
the internal energy is a function of temperature, density, and composition.

U=U(T,p,w,) (27)

Therefore, the time derivative is going to be written as

a_uz(a_Uj a_u[a_u] 6_p+[aU] ow, (28)
ot \ar ), ot (op), o low,) ot
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The presence of the time derivative of the temperature is acceptable. We will use the energy
balance to solve for the temperature as a function of time. The presence of the time derivatives
of the density and the composition is a problem, since we have not yet presented a way to
calculate those time derivatives. However, in a one-phase system, the density and the mass
fraction of A are constants. Therefore

aq = aJ a for closed, one-phase system with fixed volume (29)
ot oT )., ot

So our energy balance in the one phase system is

a___Q (30)

ot U
V =
P ( or )M

Now when we have two phases in a binary system, we have two degrees of freedom and
the internal energy is a function of temperature and density only

UL=UL(T7pL7WA,L(T’pL)) and U, =Uv(TlvaWA,v(Tvpv)) (31)

Therefore, the time derivative is going to be written as

ou, (au ) £+ ou, apL oW,
ot T Jap, O P )| q ot
_ auL) £+(aUL apL{aUL ( j o, (%J o
or sat,p_ ot ap L Jlsat,T ot aWA sat t apL sat ot
__(auLj {auL) %j ar auL) +(8ULJ (awA) op,
L or sat,p_ aWA sat ar ot apL sat,T 8WA sat apL sat ot
for a closed two-phase system with fixed volume (32)

This equation has a fundamental problem in that it includes a time derivative of the liquid
density. We did not see this problem in the single component version of this solution because
when we had only one component, there was only one degree of freedom in the system and that
was the temperature. It was okay to have a time derivative of the temperature.

At this point we have to do something new to eliminate the presence of the time
derivative of the liquid density in the simulation.

It is true that, due to the constraints imposed on our system by the fact that our system
volume is constant, all the variables that we are going to determine from thermodynamic
constraints (¢v, pv, pL, War, and way) are determined once the temperature is known. In that
sense, we can acknowledge that they are all functions of temperature, ie.p, (T), and if we

differentiate this expression we have,
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ot oT

M.V.M, ot

However, the fundamental problem is that we do not know what this partial derivative looks like.
We are having to solve for p,_ at the same time that we solve for T, from the algebraic constraints

imposed by thermodynamics. We have no differential equation for ((3“—_?)] . The only
M.V .M,
equation we have that we have not used yet is equation (15).
Pa=ParPL +PavPy :pA,L(1_¢V)+pA,V¢V (15)

One can think of this as an additional constraint that must be satisfied along with the
thermodynamic criteria. If we conceptually move this material constraint into a thermodynamic
constraint, then we have only one degree of freedom at VLE. In this case, we can write,

U =U(Tp (T)w, (T) and U, =U,(T,p,(T)w,,(T) (34)

so that

8UL_(8ULj aT (U ) dp [0V ) wa
o Lot o Uop ), ot low, ) o

B GUL) aT (auLj (%j* g{aULJ (awA,Lj* o -
T o, ot op,. - oT ), ot | ow,, T ar ), ot
_ (aULj +[6UL] (6&]* +[6ULJ [awA,Lj* a
I T Jom, \OpPL _— T )l oWy, T or ). |et
In this case our energy balance becomes of equation (26) becomes
ouU,
VpL¢L = AU vap vap Q (26)
ﬂ: _AUvaprvap_Q (36)
P - "
ow
i (8UL) {auLj (apL {aUL] ( A,LJ N
v ot P W, apL T.w, ot sat aWAvL pT ar sat ||
s [auvj +[8UVJ [8,0\, J{auV] (GWA,V]
or RN apv T.W, oT sat aWA,V pT ot sat |,
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The asterisk indicates that equation (15) must also be considered as a constraint. The rate of
vaporization that appears in equation (36) is given by equation (17)

Aod) ar)
If we use the product rule and chain rule for differentiation we have
(= 2u) =V(¢V Poip, %} =V(¢v (%%j iy %] (37)
The vapor fraction is related to the densities via equation (13), so that
op, _ 1 {@_%Lj_ pP—p, {apv _8pLj (38)
o po-p ot at) (p-pflot ot

which can be written as

E3

Ji o

17
sat aT

L PP ((ap\/j
sat (Pv_pl_)z aT

O . L p_

1 (apLj
o p-poot | p—p 0T

Thus the rate of vaporization is

@(aﬂj _L(%j
ot sat A~ P or sat oT yoy, 8,0
[y =V CAN- A ol (40)
_pv(p—pL)[(apvj _(apLj J o p-p ot
2
(pV —-p L) aT sat or sat

This can be simplified as
{@ _ pv(p—pL)}(ﬁpv j
2
(pv _PL) or

a2

a. . m o (41)
o p—p ot

sat

sat _|

' +pv(p—pv)(6pLJ

: FT + L‘a—p] (42)
sat (pV 4 L) ot sat

o p—p ot

o (fenacs
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where we used the following relations,

ale-p)_r-p ple-p)_(e-p)a-p) ale-p)
(pv_pL)Z P~ P (pv_pL)Z (pv_pL)Z (pv_pL)Z
_e=p)—p)-plp=p) _poi—pr—po+p" — PP+ AP 43)
(pv _PL)2 (p\, _pL)2
_—eo+p” _-plp-p)
(pv _pL)2 (pv _pL)2
and
ale-p) o _ale-p) ala-2)_ale-p)-nla -p)_
(pv_pL)Z A~ PL (pv_pL)Z (IO\/_pL)Z (pv_pL)2 (44)
APL=AP AL FAP_ PP _AP—n)
(pv _pL)2 (pv _pL)2 (pv _pl_)2

Substituting equation (42) into the energy balance of equation (36) and solving for the time
derivative of the temperature yields

AU, V A 0p_
ar _ —p ot
at * *
ow
b, (aaUTj [a j (@L {Wtj ( J .
Wy PL Tw ot sat aWAvL T or sat ||
vlaa [auvj +[6UVJ [8,0\, +(8UV] (awA,v]
ar ), Loy ), Lam o (ow,, ) (ot |

_pL(p_pL)

opy

LAde-p)

9P,

+ Auva{
(o

_PL)Z

(7

oT

sat

(pv _PL)

X

oT

)

|

(45)

Our challenge now is to find the ten partial derivatives that appear in equation (45),

ouU
oT

ou
op

[
[

).
).

ou
op

oT

).
IR

op,

aWA L

aULl’p’(

oT

opy

oT

L

a\NA,V

:

aWA
auvj (
T.p

8WA

oT

oT

*
’ (
sat

*

sat

sat

from the combined thermodynamic constraints and equation (15).
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I1. General Thermodynamic Information

In an ordinary 2-phase VLE system, we have 2 degrees of freedom. Given, for example the
temperature and the liquid density, we can find all of the other properties, including the vapor
density and the composition in both phases. Thus we are finding three unknowns. We have
three equations, namely mechanical equilibrium (pressures are equal)

pL(T'pL'WA,L): pV(T’pV’WA,V) (46)
and chemical equilibrium (chemical potentials of each component are equal)

MA,L(T’pL’WA,L)zuA,V (T’prA,v) (47)

HB,L(T1PL1WA,L):MB,V (T’pV1WA,V) (48)

Three equations and three unknowns: no problem. However, we are going to introduce another
equation, which is equation (15) in which equation (13) has been used to eliminate the vapor
fraction.

pPv —P pP—pP
Pa :pLWA,LV—+pVWA,V—L (49)
Pv —PL Pv =P,

In this equation p and pa are constants from the problem statement. This additional equation will
be used to determine the liquid density. So now we have four equations and four unknowns: no
problem. Now it is up to us to show how to get all the partial derivatives from equation (45).
We will differentiate all four of these equations with respect to temperature, so that we
can obtain four partial derivatives.
.
sat aT

( op, j W, Opy.
aT sat 1 6T sat | aT sat

Finally, we will need a thermodynamic equation of state to obtain the remaining derivatives that
we need:

[aULj (auLj (auL] [auvj (auvj [auvj (51)
oT Jy \dp ), Now, ) et ), ap ), Law, )

(50)
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I11. Derivation for the multicomponent van der Waals Equation of State

At this point we need an equation of state. We will proceed with the multicomponent van
der Waals (vdW) equation of state (EOS), since it is the simplest EOS that allows for vapor
liquid equilibrium (VLE).

The pressure for the vdwW EOS for a mixture is given by

RT a.
— _ %mix 52
P Vm - bmix VrT? ( )

where Vp, is a molar volume, related to our density and composition via

_ XaMy + XgMy
P

V

m

(53)

and where the composition dependence of the fluid is contained in the mixture van der Waals
size parameter, byix,

NC
b, = ijbj , (54)
j=1

and the mixture van der Waals interaction parameter, amix,

NC NC

i = D D XX, - (55)

i=1 j=1

The specific internal energy of the vdW fluid is

U =l{§ RT _ﬁ} (56)
m| 2 \Y/

m

The derivatives that we require in (41) and (42) have been obtained in another hand-out titled,
“The Statistical Mechanical Derivation of the van der Waals Equation of State for a
multicomponent fluid and its associated thermodynamic properties”. Here we summarize the
results. The partial derivatives in equation (42) (written in terms of molar volume and mole
fraction) are

(a_uj —c,=13RsR ! i (57)
aT ) ., m| 2 Y\ VAR
PsWa 1— 2 Zmix\Tm 3m|><

RTV?

10
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(au"‘] =20m (58)
N ), Va
NC
U, = (a_u] :EkBT —iz X;3; (59)
aNi TV.N 2 Vm j=1

These can be evaluated at either the liquid density and composition or the vapor density and
composition to get the correct value for either phase. In order to convert from molar volume to
density, use

6_p :_XAmA+XBmB (60)
ov,, N sz

In order to convert from mole fraction to mass fraction use

(dWA] _ WaW (61)

dx, X Xg

Next, we need the partial derivatives in equation (41). They can be obtained from

Ax=b (62)
where
_ . . . AT
X = (apv j aXA,V (8pLj 8XA,L (63)
- oT oT oT or
| (% _ aﬁj
aT PL XA aT Py 1 Xa
OHaL _ O py
b= oT _— oT — (64)
Olg, B gy
aT PL XA 6T Py 1 Xa
- O -
and

11
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opy T Xay 8XA,V oy T op, T Xa aXA,L oL T
[aHA,vJ (a“’A,VJ [auA,LJ £5MA,LJ
é = apv T Xay aXA’V py. T apL T XaL axA’L pL T (65)
(GHB,VJ (8MB,V) [auB,LJ Lﬁus,L}
opy T Xay aXA,V ov. op, ToXas aXA,L oL T
“PatPLWaL dw,, Pa—PyWay dw,
py(p—p ) 2% plpy —p) =2
_{‘F Wav (p P )} ! L{ dXay TWa o (pv - p) Y dX, ]

All of the partial derivatives required in equation (56) are available in the other hand-out, “The
Statistical Mechanical Derivation of the van der Waals Equation of State for a multicomponent
fluid and its associated thermodynamic properties™.

Il. The Solution Algorithm
The big picture is that we have one nonlinear ordinary differential equation: an energy

balance. We know how to solve this numerically, using for example a Runge-Kutta method. We
have one unknown, T(t). In a one phase region, the energy balance reduces to

oT -Q
g T 29
ot [6Uj (29)
Vp
T )y,
In the two phase region, our energy balance can be written as
~AU,V ”V % _
ar _ py—p. ot
; oL (aULj ( j (8 Lj ( L] (aWA,L +
B NG S WY LT ow, ) Lar ), ;
el o) L) (]
A I T )y, 8,0\, - oT OW,y, 1 orT |,
L AU {—m(p—m)(@pvj +pv(p—pv)(8pLj }
va 2 2
’ (pv _pL) aT sat (pv -p L) aT sat (45)

The ordinary differential equation is properly posed. All we need to solve it is an initial

condition T(t=ty)=T,.

12
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The only remaining issue is whether we have one phase or two phases, whether we use
the energy balance in equation (29) or (45). This is an issue of thermodynamic stability. In the
single component case, we could use a simplified graphical technique to determine the stability
of the relative systems. If the total density of the 1-phase system fell between the densities of the
liquid and vapor in the two phase system, then we had a two phase system. In the binary case,
the phase diagram has an additional dimension for composition, so this simple prescription will
not work. Instead, we can evaluate the Helmholtz free energy of the one-phase system and the
two-phase system. Whichever system has the lower free energy is present. For a single-phase,
the multicomponent Helmholtz free energy is

A N, N, V. —b.. 1
An =W = kBT;Xi In(Xi)_kBT - kBT;Xi In(%J_V_amix

m

For two phases, this expression can be used twice using the molar volume and the compositions
of each phase. The total Helmholtz free energy is then a weighted average of the liquid and
vapor free energies.

RS = XA XA,

where x" is the total mole fraction of the vapor phase (total moles in vapor over total moles in
system).
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