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I.  Purpose: 

This document is a problem statement for a project on the subject of bifurcations in reactive 
systems, including the phenomena of period doubling and chaotic behavior. 
 

II.  Description of Physical System: 

We consider a continuously stirred tank reactor (CSTR).  This reactor has flow in and flow out.  
The important assumption regarding a CSTR is that the composition of the output stream is the 
same as that of the reactor contents.  In this case, we are concerned only with material balances.  
We do not consider an energy balance.  This essentially assumes that the reactor is operating 
under isothermal conditions. 
 
Within this reactor, there are three liquid-phase irreversible reactions that take place: 
 
 BBA 32   
 CB   
 BBD 32   
 
Each of these reactions is elementary so we can write the respective rates of each reaction as 
 
 2

11 BACCkr   

 BCkr 22   

 2
33 BDCCkr   

 
For any component in the system, the generic material (on a mass or molar basis) balance is 
given by  
 
 nconsumptiogenerationoutinonaccumulati   
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where the in and out terms are due to flow and the generation and consumption terms are due to 
the chemical reactions.  For a reactor of volume, V, we can write balances on the concentration 
of species i, iC , as 

 

 2
1, BAiini

i CCkFCFC
dt

dC
V   

 
where RN  is the number of reactions in the system and ij ,  is the stoichiometric coefficient of 

component i in reaction j, which is negative for reactants and positive for products.  For our 
system, we have four balances 
 

 2
1, BAAinA

A CCkFCFC
dt

dC
V   

 

 2
32

2
1, BDBBABinB

B CCkCkCCkFCFC
dt

dC
V   

 

 BCinC
C CkFCFC

dt

dC
V 2,   

 

 2
3, BDDinD

D CCkFCFC
dt

dC
V   

 
where F is a volumetric flowrate of the inlet and outlet streams. 
 

III.  Derivation of Dimensionless Forms of the Equations: 

We now make this equation dimensionless for ease in solving.  We will normalize all 

concentrations by iniC , . and time by F
V   Therefore, the dimensionless concentration is  

 

ini

i
i C

C
C

,

    
V

F
tt   

 
We eliminate the dimensional variable in terms of the dimensionless variables via direct 
substitution. 
 

 22
,,1,,, BAinBinAAinAinA

A
inA CCCCkCFCFC

td

Cd
FC 




 

 

 23
,3,2

23
,1B,,, BDinBBinBBAinBinBinB

B
inB CCCkCCkCCCkCFCFC

td

Cd
FC 




 



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

3 

 

 BinBinCinC
C

inC CCkCFCFC
td

Cd
FC 




,2C,,,  

 

 22
,,3D,,, BDinBinDinDinD

D
inD CCCCkCFCFC

td

Cd
FC 




 

 
We divide through the balance for component i by iniFC ,  

 

 2
2

,11 BA
inB

A
A CC

F

Ck
C

td

Cd 



 

 

 2,,322,,1
B1 BD

inBinD
BBA

inBinAB CC
F

CCk
C

F

k
CC

F

CCk
C

td

Cd 



 

 

 B
inC

inBC C
FC

Ck
C

td

Cd 



,

,2
C1  

 

 2
2

,3
D1 BD

inBD CC
F

Ck
C

td

Cd 



 

 
We introduce the following dimensionless quantities.  First we have a set of dimensionless ratios 
of molar feedrates 
 

 
ini

inB

C

C

,

,
i i of feedratemolar 

B of feedratemolar 
    

 
Second, we have a set of Dahmköhler numbers (ratio of reaction rates to flow rates) 
 

 
F

Ck
D inB

a

2
,1

1,      
F

k
Da

2
2,       

F

Ck
D inB

a

2
,3

3,   

 
So that the dimensionless molar balances become 
 

 2
1,1 BAaA

A CCDC
td

Cd 



 

 

 2
3,2,

2
1,B1 BDDaBaBAAa

B CCDCDCCDC
td

Cd 



  
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 BCa
C CDC

td

Cd 



2,C1  

 

 2
3,D1 BDa

D CCDC
td

Cd 



 

 

IV.  Parameter Specifications 

For this problem, set the molar ratios to the following values. 
 

  

3.50  

0.001  

1.0  

1.5  

D

C

B

A











 

 
Set the Dahmköhler numbers to the following values. 
 

 

400.0;  D

80.0; D

18000.0;  D

a,3

a,2

a,1







 

 
Set the initial conditions to zero.  (Assume the reactor is initially full of an unreactive solvent.) 
 
 0.0 DCBA CCCC  

 
It’s not essential, but your plots will be better scaled if you set the inlet of C to zero.  This can be 
done simply by setting the in term in the C balance to zero.  If C is the desired product, it is 
probably not fed to the reactor. 
 

 BCa
C CDC

td

Cd 



2,C0  

 

V.  Problem Assignment 

Explore the behavior of the reactor by varying values of D .  This change in D  corresponds to 
a decrease in the amount of component D fed to system.  
 
Specifically, include the following six values of 31,2.4,18.4,15.4,9.3,5.3D  . 
 
(a) For each value of D , locate the critical point. 
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(b) For each value of D , locate the critical point. 
 
(c) For each value of D , plot the dimensionless concentrations as a function of time. 
 
(d) For each value of D , generate phase plots that illustrate the relevant behavior of the system. 
 
(e) Present your results in a professional looking report.  Append code (input files) as necessary. 

 

VI.  Numerical Considerations 

(1)  Use both techniques for solving systems of nonlinear algebraic equations (e.g. the Newton 
Raphson method) and for solving systems of ordinary differential equations (e.g. the classical 
fourth-order Runge-Kutta method) as necessary.   
 
(2)  The maximum allowable step size for your ODE solving routine may vary with D .  If your 
time steps are too big, the algorithm will fail by either providing inaccurate results or crashing. 
 
(3)  The time it takes to reach steady state may vary with D . Solve the ODEs out as long as it 
takes to clearly identify that a steady state has been reached and what type of state it is. 
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