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Homework Assignment Number Three Solutions 
 
Problem (1)   
 Consider the initial value problem: 
 

 )()( xbyxa
dx

dy
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where we have an initial condition of the form: 
 
 oo yxxy  )(          

 
with the specific values given by: 
 
 2)( xa , )3sin()( xxxb  , 1)0( xy  
 
(a)  Analytically solve for y(x) from x = 0 to 4. 
(b)  Plot the analytical solution. 
(c)  Use Euler with a time step of 0.4 
(d)  Use Euler with a time step of 0.04 
(e)  Use Runge-Kutta with a time step of 0.4 
(f)  Use Runge-Kutta with a time step of 0.04 
(g)  Compare the relative error of the Euler estimate of y(x=4) for both sized steps.  Explain. 
(h)  Compare the relative error of the Runge-Kutta estimate of y(x=4) for both sized steps.  
Explain. 
(i)  Compare the relative errors of the Euler and Runge-Kutta estimates of  y(x=4) for a time step 
of 0.04.  Explain. 
(j)  Compare the relative errors of the Runge-Kutta estimates of  y(x=2) and y(x=4) for a time 
step of 0.04.  Explain. 
 
Solution: 
(a) Analytically solve for y(x) from x = 0 to 4. 
This is a nonhomogeneous problem with a solution of the form: 
 
      xyxyxy phnh           

 
We obtain the homogeneous solution by solving: 
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This is easily shown, (using separation of variables) to yield a solution 
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 The nonhomogeneous solution is given by: 
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Check initial condition. 
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 (b)  Plot the analytical solution. 
In MATLAB:
  

» x=[0:0.1:4];  
» nx = max(size(x)); 
» for i =1:1:nx 
t=x(i); 
y(i)=157*exp(-2*t)/169 +((26*t+5)*sin(3*t) + (-39*t+12)*cos(3*t))/169; 
end 
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» plot(x,y); xlabel('x'); ylabel('y') 
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 (c)  Use Euler with a time step of 0.4 
 (d)  Use Euler with a time step of 0.04 
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(e)  Use Runge-Kutta with a time step of 0.4 
 (f)  Use Runge-Kutta with a time step of 0.04 
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 (g)  Compare the relative error of the Euler estimate of y(x=4) for both sized steps.  
Explain. 
 
analytical solution:  y(x=4) = -1.0648 
for time step of 0.4, y(x=4) = -1.4134 percent error 32.74% 
for time step of 0.04, y(x=4) = -1.0924 percent error 2.59% 
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(h)  Compare the relative error of the Runge-Kutta estimate of y(x=4) for both sized steps.  
Explain. 
 
analytical solution:  y(x=4) = -1.0647855058 
for time step of 0.4, y(x=4) =  -1.0617     percent error 0.29% 
for time step of 0.04, y(x=4) = -1.0647851095e+000 percent error 3.7225e-005% 
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(i)  Compare the relative errors of the Euler and Runge-Kutta estimates of  y(x=4) for a time step 
of 0.04.  Explain. 
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analytical solution:  y(x=4) = -1.0648 
Euler for time step of 0.04, y(x=4) = -1.0924 percent error 2.59% 
RK4 for time step of 0.04, y(x=4) = -1.0648 percent error 0.0013612% 
 
The Runge-Kutta method is much more accurate because it is a fourth order method while the 
Euler method is only first order. 
 
(j)  Compare the relative errors of the Runge-Kutta estimates of  y(x=2) and y(x=4) for a time 
step of 0.04.  Explain. 
 
analytical solution:  y(x=2) = -0.45220335509 
analytical solution:  y(x=4) = -1.0647855058 
for time step of 0.04, y(x=2) = -0.45220311856  percent error  5.2307e-005% 
for time step of 0.04, y(x=4) = -1.0647851095 percent error 3.7225e-005% 
 
The errors appear to be about the same at both points.   
 
Problem (2) 
 Numerically solve the acetylene vibrational/translational problem for the initial 
conditions:   
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for t = 0 to 2 sec, using the following values for the masses and the spring constants. 
 
 0.1Hm ,  0.12Cm ,  0.1HCk ,  0.10CCk  

 
Solution: 
 

(a)  Solve the problem using the Runge-Kutta fourth-order method. 
 
Solved using sysode.m with the following input file: 
 

function dydt = sysodeinput(x,y,nvec); 
% 
%  This is the HCCH problem 
% 
% sample input:   
% sysode(2,100,0,2,[-0.1 0 0.25 0.5 0.0 0.0 0.0 0.0]') 
% 
mh = 1; 
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mc = 12; 
khc = 1; 
kcc = 10; 
A(1,:) =[0 0 0 0 1 0 0 0]; 
A(2,:) =[0 0 0 0 0 1 0 0]; 
A(3,:) =[0 0 0 0 0 0 1 0]; 
A(4,:) =[0 0 0 0 0 0 0 1]; 
A(5,:) =[-khc/mh khc/mh 0 0 0 0 0 0]; 
A(6,:) =[-khc/mc -(khc+kcc)/mc kcc/mc 0 0 0 0 0]; 
A(7,:) =[0 kcc/mc -(khc+kcc)/mc khc/mc 0 0 0 0]; 
A(8,:) =[0 0 khc/mh -khc/mh 0 0 0 0]; 
dydt = A*y'; 
 
 (b)  Compare the analytical and numerical solutions. 
 
Solution: 
  plot of analytical displacements    plot of analytical 
velocities 
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 numerical results - displacements and velocities 
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The analytical and numerical solutions are virtually identical up to 2 seconds. 
 
Problem (3)   
Find an application from your own experience or a classical problem in your own field of 
research that results in a system of at least 2 ODEs, linear or nonlinear.   

(a)  Describe the physical problem from which the equation arises.  Describe it in sufficient 
detail that an engineer from a different discipline could understand it. 

(b)  Write the ODEs.  Write a complete set of reasonable initial conditions. 
(c)  If possible, analytically solve for the solution(s).   
(d)  Plot the solution (analytical or numerical). 
(e)  Explain the physical significance of the solution(s) and its behavior. 
 

Problem (4)   
Perform a stability analysis on the linear ODE model you created in Problem (3). 
 (a)  Find the eigenvalues and eigenvectors. 
 (b)  Describe the type of critical point. 
 (c)  Describe the stability of the critical point. 
 (d)  Give a physical description of the eigenvectors.  
 (e)  Show a phase plot with the critical point, eigenvectors, and a couple representative 
trajectories plotted on it. 
 
Problem (5) 
 In the notes on ODE stability, there is the example of a first order reaction occurring in 
an adiabatic CSTR.  Repeat the problem when the reaction is second order.  Use all of the same 
parameters as are used in the example in the notes, except make the reactor volume 10 liters.   

For those students who are not chemical engineers, I give the parameters and ODEs below.  
For those students who are chemical engineers, you should be able to derive these ODEs. 
 
 x = y(1);     % extent of reaction 
   T = y(2);       % Temperature K 
 Cin = 3.0;      % inlet concentration mol/l 
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   C = Cin*(1-x);   % concentration 
 Q = 60e-3;      % volumetric flowrate l/s 
   R = 8.314;      % gas constant J/mol/K 
   Ea = 62800;     % activation energy J/mol 
   ko = 4.48e+6;    % reaction rate prefactor 1/s 
   k = ko*exp(-Ea/(R*T)); % reaction rate constant 1/s 
   V = 10;       % reactor volume l 
   Cp = 4.19e3;    % heat capacity J/kg/K 
   Tin = 298;      % inlet feed temperature K 
   Tref = 298;     % thermodynamic reference temperature K 
   DHr = -2.09e5;   % heat of rxn J/mol 
   rho = 1.0;    % density kg/l 
   dydt(1) = 1/V*(Q*Cin - Q*C - k*C*C*V);  % mass balance mol/s 
   dydt(2) = 1/(Cp*rho*V)*(Q*Cp*rho*Tin  - Q*Cp*rho*T - 
DHr*k*C*C*V);     % NRG balance J/s 
   dydt(1) = -1/Cin*dydt(1); % convert conc. to extent 
 
 (a)  Find the critical points. 
 (b)  Determine the type and stability of the critical point by plotting a few trajectories in 
the phase plane. 
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Solution to Problem (5) 
 
The critical points are located at: 
yc1 = 
    0.0302 
  302.5164 

yc2 = 
    0.3025 
  343.2630 

yc3 = 
    0.8648 
  427.4140 

 
These critical points were obtained by using the routine syseqn.m as it appears on the website 
and input file syseqninput.m with the following content: 
function [f] = syseqninput(x0) 
 x = x0(1);    % extent of reaction 
   T = x0(2);       % Temperature K 
 Cin = 3.0;      % inlet concentration mol/l 
   C = Cin*(1-x);   % concentration 
 Q = 60e-3;      % volumetric flowrate l/s 
   R = 8.314;      % gas constant J/mol/K 
   Ea = 62800;     % activation energy J/mol 
   ko = 4.48e+6;    % reaction rate prefactor 1/s 
   k = ko*exp(-Ea/(R*T)); % reaction rate constant 1/s 
   V = 10;       % reactor volume l 
   Cp = 4.19e3;    % heat capacity J/kg/K 
   Tin = 298;      % inlet feed temperature K 
   Tref = 298;     % thermodynamic reference temperature K 
   DHr = -2.09e5;   % heat of rxn J/mol 
   rho = 1.0;    % density kg/l 
   f(1) = 1/V*(Q*Cin - Q*C - k*C*C*V);  % mass balance mol/s 
   f(2) = 1/(Cp*rho*V)*(Q*Cp*rho*Tin  - Q*Cp*rho*T - 
DHr*k*C*C*V); % NRG balance J/s 
 
The initial guesses I used to converge to each solution are given below: 
 
 » syseqn(1,[0,300]) 
Attempting solution with MATLABs fsolve function  
VARIABLE    INPUT     OUTPUT   
     1   0.0000000e+000  3.0181616e-002  
     2   3.0000000e+002  3.0251644e+002  
 
syseqn(1,[0.5,350]) 
Attempting solution with MATLABs fsolve function  
VARIABLE    INPUT     OUTPUT   
     1   5.0000000e-001  3.0247541e-001  
     2   3.5000000e+002  3.4326303e+002  
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syseqn(1,[0.9,460]) 
Attempting solution with MATLABs fsolve function  
VARIABLE    INPUT     OUTPUT   
     1   9.0000000e-001  8.6482379e-001  
     2   4.6000000e+002  4.2741397e+002  
 
(b)  
The mass and energy balances are plotted below, as a function of extent and temperature.  Where 
they intersect, we have a critical point.  A phase plane with critical points and trajectories is also 
shown. 
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From the trajectory plots given above we can determine the nature of the critical points 

(steady state solutions in this example).  The low-conversion/low-temperature and the high-
conversion/high-temperature solutions are stable, node-like attractors.  The intermediate solution 
is an unstable node.  The eigenvalues of this systems are purely real.  The eigenvalues associated 
with the attractors are less than zero.  At least one eigenvalue associated with the unstable node 
is negative. 

We can also see some qualitative information about the system.  We can define roughly 
the basins of attraction for the two attractors.  For the coarse grid we used, any initial 
temperature of 400 K or higher converged to the high critical point.  Any initial temperature of 
320 K or lower converged to the low critical point.   For initial temperatures of 340, 360 and 380 
K, those with high initial extents of reaction proceeded to the low root; those with low initial 
extents of reaction converged to the high root.   

Some initial conditions with low initial extent of reaction and low temperature, 
proceeded through temperatures higher than the high root on their way to the high root.  This is 
because the reactor is full of unreacted product.  It reacts initially, which, since the reaction is 
exothermic, heats up the reactor.  It then takes some time for new feed to enter and cool the 
reactor to its steady state temperature. 
 
 The trajectories were generated using the sysode.m program as it appears on the website 
and a sysodeinput.m file analogous to that given for syseqninput.m above. 


