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Homework Assignment Number One Solutions 
 
For Problems 1 through 3 below, find  
(a) the determinant of A 
(b) the reduced row echelon form of A 
(c) the reduced row echelon form of the Augmented Ab matrix. 
(d) the rank of A. 
(e) the rank of the augmented Ab matrix. 
(f) the inverse of A if it exists 

(g) a solution to bxA   if it exists. 

 
Problem 1.   
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Solution: 
 
This problem has one unique solution. 
 
This was my MatLab script in hw9p01.m 
 
clear all; 
A = [1 2 -1; 1 5 1; 1 4 2] 
b = [1; 2; 5] 
detA = det(A) 
rrefA = rref(A) 
rankA = rank(A) 
Ab = [A,b] 
rrefAb = rref(Ab) 
rankAb = rank(Ab) 
invA = inv(A) 
x = invA*b 
bcheck = A*x 
bdiff = b - bcheck 
 
This was the output: 
>> hw9p01 
 
A = 
     1     2    -1 
     1     5     1 
     1     4     2 
 
b = 
     1 
     2 
     5 
 
detA =     5 
 
rrefA = 
     1     0     0 
     0     1     0 
     0     0     1 
 
rankA =     3 
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Ab = 
 
     1     2    -1     1 
     1     5     1     2 
     1     4     2     5 
 
rrefAb = 
     1     0     0     5 
     0     1     0    -1 
     0     0     1     2 
 
rankAb =     3 
 
invA = 
    1.2000   -1.6000    1.4000 
   -0.2000    0.6000   -0.4000 
   -0.2000   -0.4000    0.6000 
 
x = 
    5.0000 
   -1.0000 
    2.0000 
 
bcheck = 
    1.0000 
    2.0000 
    5.0000 
 
bdiff =   1.0e-15 * 
    0.8882 
    0.8882 
    0.8882 
 
Problem 2. 
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Solution: 
 
This problem has an infinite number of solutions. 
This was my MatLab script in hw9p02.m 
 
clear all; 
A = [1 1 1 1; 1 2 1 -1; 1 3 2 -2; 1 4 3 -3] 
b = [1; 0; 1; 2] 
detA = det(A) 
rrefA = rref(A) 
rankA = rank(A) 
Ab = [A,b] 
rrefAb = rref(Ab) 
rankAb = rank(Ab) 
A3 =rrefAb(1:3,1:3) 
x4 = 1 
b3 = rrefAb(1:3,5) - rrefAb(1:3,4)*x4 
invA3 = inv(A3) 
x3 = invA3*b3 
x = [x3; x4] 
bcheck = A*x 
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bdiff = b - bcheck 
 
This was the output: 
>> hw9p02 
 
A = 
     1     1     1     1 
     1     2     1    -1 
     1     3     2    -2 
     1     4     3    -3 
 
b = 
     1 
     0 
     1 
     2 
 
detA =   3.3307e-16 
 
rrefA = 
     1     0     0     2 
     0     1     0    -2 
     0     0     1     1 
     0     0     0     0 
 
rankA =     3 
 
Ab = 
     1     1     1     1     1 
     1     2     1    -1     0 
     1     3     2    -2     1 
     1     4     3    -3     2 
 
rrefAb = 
     1     0     0     2     0 
     0     1     0    -2    -1 
     0     0     1     1     2 
     0     0     0     0     0 
 
rankAb =     3 
 
A3 = 
     1     0     0 
     0     1     0 
     0     0     1 
 
x4 =     1 
 
b3 = 
    -2 
     1 
     1 
 
invA3 = 
     1     0     0 
     0     1     0 
     0     0     1 
 
x3 = 
    -2 
     1 
     1 
 
x = 
    -2 
     1 
     1 
     1 
 
bcheck = 
     1 
     0 
     1 
     2 
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bdiff = 
     0 
     0 
     0 
     0 
 

 
Problem 3.   
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Solution: 
 
This problem has no solutions. 
 
This was my MatLab script in hw9p03.m 
 
clear all; 
A = [1 2 -1; 1 5 1; 2 7 0] 
b = [1; 2; 5] 
detA = det(A) 
rrefA = rref(A) 
rankA = rank(A) 
Ab = [A,b] 
rrefAb = rref(Ab) 
rankAb = rank(Ab) 
 
This was the output: 
>> hw9p03 
 
A = 
     1     2    -1 
     1     5     1 
     2     7     0 
 
b = 
     1 
     2 
     5 
 
detA =     0 
 
rrefA = 
    1.0000         0   -2.3333 
         0    1.0000    0.6667 
         0         0         0 
 
rankA =     2 
 
Ab = 
     1     2    -1     1 
     1     5     1     2 
     2     7     0     5 
 
rrefAb = 
    1.0000         0   -2.3333         0 
         0    1.0000    0.6667         0 
         0         0         0    1.0000 
 
rankAb =     3 
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Problem 4.  (Kreyszig, 8th Edition, page 330, Problem Set 6.3, Problem 18) 
 

 
 
Using Kirchoff’s Current & Voltage laws, determine the three unknown currents. 
(http://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws) 
 
Solution: 
Given the electrical circuit, we write Kirchoff’s current law for the top node: 
 
 0iii 321   

 
and we write Kirchoff’s current law for the bottom node: 
 
 0iii 321   

 
By inspection, these 2 applications of Kirchoff’s current law are linearly dependent.  We can 
only use one of them.  We can also write Kirchoff’s voltage law for the left loop (going 
clockwise): 
 
 212211 EEiRiR   
 
and we can also write Kirchoff’s voltage law for the right loop (going clockwise): 
 
 23322 EiRiR   

 
where 24E,12E,8R,12R,4R 21321   

 
The three independent equations can be written in matrix form as: 
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
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

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If we plug in our numerical values, we find the rank of the matrix to be  3 and the determinant to 
be -176 so all of our equations are linearly independent and we can solve.  First we obtain the 
inverse. 
 

 




















100

010

001

RR0

0RR

111

32

21  

 
Zero off-diagonal elements of column one. (Row2 = Row2 + 1R *Row1) 
 

 





















100

01R

001

RR0

RRR0

111

1

32

112  

 
Make the diagonal element of row one unity. (Row1 = -Row1 ) 
 

 







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




 






100
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001

RR0
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1

32

112  

 

Make the diagonal element  of row two unity. (Row2 = 
12 RR

1


Row2 ) 

 

 




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



















100

0
RR

1

RR

R
001

RR0
RR

R
10

111

1212

1

32

12

1  

 
Zero off-diagonal elements of column two. (Row1 = Row1 +Row2) (Row3 = Row3 + 2R Row2) 
 

 








































1
RR

R
RR

RR

0
RR

1
RR

R

0
RR

1

RR

R
1

RR
RR

R00

RR
R

10

RR

R
101

12

2

12

12

1212

1

1212

1

12

12
3

12

1

12

1
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Make the diagonal element of row three  unity. (Row3 = 

12

12
3 RR

RR
R

1




Row3 ) 
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

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



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
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







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




















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3
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3
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2
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1212

1
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1
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1
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1
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R

1
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R
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R
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R
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0
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1
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R

0
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R
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100
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R
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R
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Zero off-diagonal elements of column three. (Row1 = Row1 + 










12

1

RR

R
1 Row3) and  

(Row2 = Row2 +
12

1

RR

R


 Row3) 

 
So that the left hand side of the above matrix becomes the identity matrix and the right hand side 
becomes the inverse, namely: 
 


























































































































































12

12
3

12

12
3

12

2

12

12
3

12

12

12

12
3

12

1

12

12
3

12

2

12

1

12

12

12
3

12

12

12

1

12

1

12

12
3

12

1

12

12
3

12

2

12

1

12

12

12
3

12

12

12

1

12

1

RR

RR
R

1

RR

RR
R

RR

R

RR

RR
R

RR

RR
RR

RR
R

1

RR

R

RR

RR
R

RR

R

RR

R

RR

1

RR

RR
R

RR

RR

RR

R

RR

R

RR

RR
R

1

RR

R
1

RR

RR
R

RR

R

RR

R
1

RR

1

RR

RR
R

RR

RR

RR

R
1

RR

R
1

 

 
We can simplify this matrix to obtain: 
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 












































RR

RR

RR

R

RR

RR
RR

R

RR

R

RR

RR
RR

R

RRRR

RRRR

RR

RR

A

12221

1331

2

21

2232

1
 

 
where 323121 RRRRRRRR   

 
Numerical substitution into this matrix will show that the inverse satisfies the equation: 
 
 IAA 1   

 
The solution is then: 
 

 
 

































































































2727.0

1818.2

4545.2

3

24

27

11

1

E

EE

0

RR

RR

RR

R

RR

RR
RR

R

RR

R

RR

RR
RR

R

RRRR

RRRR

RR

RR

bAi

2

21

12221

1331

2

21

2232

1
 

 
Problem 5.  
Given the set of chemical reactions: 
 
  26244 HHCCHCH   

283624 HHCHCCH   

2104834 HHCHCCH   

21046262 HHCHCHC   

OH4CO2O3CH2 224   

OH6CO4O5HC2 2262   

OH8CO6O7HC2 2283   

OH10CO8O9HC2 22104   

22 CO2OCO2   

 
(a)  Write out the stoichiometric coefficient matrix. 
(b)  Determine the number of independent reactions using the stoichiometric coefficient matrix. 
(c)  Write a complete set of independent reactions. 
(d)  Write out the atomic matrix. 
(e)  Determine the number of independent reactions using the atomic matrix  
 
Solution: 
 (a)  Write out the stoichiometric coefficient matrix 
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There are nine reactions and nine molecules involved. 
  

rxn CH4 C2H6 C3H8 C4H10 H2 CO O2 H2O CO2 
1 -2 1 0 0 1 0 0 0 0 
2 -1 -1 1 0 1 0 0 0 0 
3 -1 0 -1 1 1 0 0 0 0 
4 0 -2 0 1 1 0 0 0 0 
5 -2 0 0 0 0 2 -3 4 0 
6 0 -2 0 0 0 4 -5 6 0 
7 0 0 -2 0 0 6 -7 8 0 
8 0 0 0 -2 0 8 -9 10 0 
9 0 0 0 0 0 -2 -1 0 2 
 
(b)  Determine the number of independent reactions using the stoichiometric coefficient matrix 
Find the rank of the matrix of the stoichiometric matrix. 
A=[-2 1 0 0 1 0 0 0 0 
-1 -1 1 0 1 0 0 0 0 
-1 0 -1 1 1 0 0 0 0 
0 -2 0 1 1 0 0 0 0 
-2 0 0 0 0 2 -3 4 0 
0 -2 0 0 0 4 -5 6 0 
0 0 -2 0 0 6 -7 8 0 
0 0 0 -2 0 8 -9 10 0 
0 0 0 0 0 -2 -1 0 2] 
rank(A) =  6 
The number of independent reactions is equal to the rank of the stoichiometric matrix = 6. 
 
(c)  Write a complete set of independent reactions 
Put the matrix in (upper triangular form, or using MATLAB, put the matrix in “reduced row echelon form”). 
rref(A)  = 
 
    1.0000         0         0         0         0         0    2.0000 
         0    1.0000         0         0         0         0    3.5000 
         0         0    1.0000         0         0         0    5.0000 
         0         0         0    1.0000         0         0    6.5000 
         0         0         0         0    1.0000         0    0.5000 
         0         0         0         0         0    1.0000    0.5000 
         0         0         0         0         0         0         0 
         0         0         0         0         0         0         0 
         0         0         0         0         0         0         0 

-2.0000   -1.0000 
   -3.0000   -2.0000 
   -4.0000   -3.0000 
   -5.0000   -4.0000 
   -1.0000         0 
         0   -1.0000 
         0         0 
         0         0 
         0         0 

 
So, a set of independent equations is: 
 

4222 CHO2COOH2   

62222 HCO5.3CO2OH3   

83222 HCO5CO3OH4   

104222 HCO5.6CO4OH5   

22 O5.0COCO   

222 HO5.0OH5   

 
(d)  Write out the atomic matrix  
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atom CH4 C2H6 C3H8 C4H10 H2 CO O2 H2O CO2 
C 1 2 3 4 0 1 0 0 1 
H 4 6 8 10 2 0 0 2 0 
O 0 0 0 0 0 1 2 1 2 
 
(e)  Determine the number of independent reactions using the atomic matrix  
 
 Row2 = 4*Row1 - Row2 

  
atom CH4 C2H6 C3H8 C4H10 H2 CO O2 H2O CO2 
C 1 2 3 4 0 1 0 0 1 
H 0 2 4 6 -2 4 0 -2 4 
O 0 0 0 0 0 1 2 1 2 

 
This matrix is in upper triangular form.  The rank is 3. 
The number of independent reactions = number of components - rank of atomic matrix. 
The number of independent reactions = 9 - 3 = 6 
 
Problem 6.   
Find the eigenvalues and eigenvectors that describe the vibrational motion of acetylene, HCCH.  
Assume that the molecule is one-dimensional.  Solve either symbolically in terms of Hm , cm , 

HCk  and CCk , or assign numbers to these four variables and solve numerically.  Explain the 

significance of the eigenvalues and eigenvectors. 
 
Solution: 
 
 Following the procedure used in class for carbon dioxide, we write Newton’s equations 
in matrix form as: 
 

 x

x

x

x

x

m

k

m

k
m

k

m

kk

m

k
m

k

m

kk

m

k
m

k

m

k

H

C

C

H

H

HC

H

HC

C

HC

C

CCHC

C

CC

C

CC

C

CCHC

C

HC

H

HC

H

HC



























































2

2

1

1

00

0

0

00

 

 
The determinant of this matrix is 0 and the rank is 3 so one of the eigenvalues is zero.  (Just as in 
the carbon dioxide case). 
 
The characteristic equation of the matrix is: 
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 0
112

11122
2

2

22
23













































































CHCH

CCHC

CHC

HC

CHC

CCHC

H

HC

C

CCHC

mmmm

kk

mmm

k

mmm

kk

m

k

m

kk 
  

 
The roots of this fourth order polynomial are the eigenvalues.  The eigenvalues are 
 
 01   

 
CH

CHHC

mm

mmk 
2  

 
CH

CHCHCCHHC

mm

Kmkmkmk

2

2
3


  

 
CH

CHCHCCHHC

mm

Kmkmkmk

2

2
4


  

where 
 

 22222222 4424 CHCCHCCHCHCCCHHCHCCHCHHC mkmmkkmkmmkmkkmkK   

 
These roots can be obtained by grievously laborious hand manipulations or by entering the 
matrix in a symbolic manipulator software, like Maple, and typing eigenvals(a).   
 
The eigenvectors are as follows: 
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where 
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 Pictorially we see that eigenvalue one corresponds to a uniform translation: 
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C C HH

 
 
Eigenvalue two corresponds to the vibration (no change in center of mass, compress one C-H 
bonds and extend one C-H bond, no change to C-C bond): 
 

       

C C HH

 
 
Eigenvalue three corresponds to the vibration  (no change in center of mass, extend C-H bonds 
and extend C-C bond): 
 

       

C C HH

 
 
Eigenvalue four corresponds to the vibration  (no change in center of mass, extend C-H bonds 
and compress C-C bond): 
 

       

C C HH

 
 
 
Problem 7.   
Consider that you have a three-component reactive mixture, all undergoing reversible reactions, 
as pictured below: 
 

A1

A2 A3

k12

k21

k32

k13

k23

k31

 
 

In this picture, the A’s are concentrations of the three species and the k’s are rate constants.  An 
example of this system is the kinetic equilibrium between para-, meta-, and ortho-xylene.   
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(a)  Find the eigenvalues and eigenvectors for the following rate constants in a batch reactor. 
k12 = 0.50; 
k21 = 0.25; 
k13 = 0.20; 
k31 = 0.05; 
k23 = 0.30; 
k32 = 0.15; 
 
(b)  Give a physical interpretation of these eigenvalues and eigenvectors. 
 
 
Solution: 
(a)  Find the eigenvalues and eigenvectors for the following rate constants in a batch reactor. 
 
From class we know that the steady state molar balances are written as:   
 

  

33231223113
3

33222321112
2

33122111312
1

A)kk(AkAk
dt

dA

AkA)kk(Ak
dt

dA

AkAkA)kk(
dt

dA







    

 
and we change this system of equations into matrix & vector form: 
 

AX
dt

Ad
          

 
where 
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In MATLAB: 
 
» A=[-(k12+k13) k21 k31 
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k12 -(k21+k23) k32 
k13 k23 -(k31+k32)] 
 
A = 
   -0.7000    0.2500    0.0500 
    0.5000   -0.5500    0.1500 
    0.2000    0.3000   -0.2000 
 
»  [w,lam]=eig(A) 
w = 
   -0.6337    0.3309    0.2182 
    0.7628    0.4810    0.4364 
   -0.1291   -0.8119    0.8729 
lam = 
   -0.9908         0         0 
         0   -0.4592         0 
         0         0    0.0000 
 
(b)  Give a physical interpretation of these eigenvalues and eigenvectors. 
(c)  Find the steady-state composition. 
 
 
The eigenvector corresponding to the zero eigenvalue is the infinite time (equilibrium) 
concentrations.  If the variables are mole fractions then the must sum to unity, and we can 
normalize the corresponding eigenvector from  
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To get an idea of the physical meaning of the other two eigenvectors, consider that, when the 
variables are mole fractions, they sum to unity.  Thus at all times, the following statements are 
true: 
  1A0 i   for i = 1 to 3  

  1A
3

1i
i 



 

 
These two equations form a plane in the positive quadrant of the x,y,z coordinate system.  The 
solution vector A  lies on this plane at all times.  A vector normal to this plane is  
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Note that  
 
 0wn 1   

0wn 2   
 

Thus the first two eigenvectors lie in the plane defined by 1A
3

1i
i 



. 

 

If we picture just the 1A
3

1i
i 



 plane we see that, starting from any initial condition (set of mole 

fractions), we will reach the same equilibrium.  The path that we take through time and 
concentration space is called the “reaction path”.  The first two eigenvectors represent the only 
straightline reaction paths.  (In the figure, they are dotted).  The third eigenvector is, as stated 
above, the steady state solution.  Any other, set of initial conditions, will give a curved reaction 
path. 
 An additional feature of the eigenvectors is that a reaction path will never cross an 
eigenvector.  We see how the eigenvectors divide the plane into 2 sections.  A reaction path that 
starts in the top section will reach the equilibrium from the top section.  Likewise, a reaction path 
that starts in the bottom section will reach the equilibrium from the bottom section. 
  

A1

A3

A2

w1

w2

w3

 
 
(I learned this physical explanation from Dr. Balakataia of the University of Houston, when he 
was on sabbatical at the University of Minnesota (1992-1993) and was teaching advanced 
mathematics for chemical engineers.) 
 
(d)  Find the steady-state composition. 
 
 The steady state composition is given by  
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0AX
dt

Ad
   

 
We can solve this system of linear algebraic equations for A  and find that the steady 

state solution is given by the third eigenvector: 
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(d)   Additionally, allow for flow into and out of the reactor, making it a CSTR.  Assume 
constant volume in the tank.  Derive the model, (write the mass balances).  Find the steady-state 
composition. 
 
F1_in = 0.1; 
F2_in = 0.0; 
F3_in = 0.05; 
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where  

in,3in,2in,1out FFFF   

  

 

























































in,3

in,2

in,1

3

2

1

out32312313

32out232112

3121out1312

F

F

F

b                            

A

A

A

A

)Fkk(kk

k)Fkk(k

kk)Fkk(

X

 

 
so that  
 

 bAX
dt

Ad
  

 
and, at steady state  
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 0bAX
dt

Ad
  or bAX   

 
We then solve for A  and find that the steady state solution is given by: 
IN MATLAB 
» fout=f1in+f2in+f3in 
 
fout =    0.1500 
 
» A=[-(k12+k13+fout) k21 k31 
k12 -(k21+k23+fout) k32 
k13 k23 -(k31+k32+fout)] 
A = 
   -0.8500    0.2500    0.0500 
    0.5000   -0.7000    0.1500 
    0.2000    0.3000   -0.3500 
 
» rank(A) 
ans = 3 
 
» b =- [f1in;f2in;f3in] 
b = 
    -0.1000 
         0 
    -0.0500 
 
» x = inv(A)*b 
 
x = 
    0.2266 
    0.2698 
    0.5036 
 
This is the new steady state solution of the open system. 
 


