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Midterm Examination Solutions
February 25, 2014

1. Solution of a System of Nonlinear Algebraic Equations

Consider the set of nonlinear algebraic equations

0=10x, —4x. +9
0=exp(x,)—4x7 +1

(a) Use the multivariate Newton-Raphson method to find the roots to this system of equations
near (2,2) and (-1,1). Report the RMS error on x and the number of iterations to converge.

Solution:

I used the code nrndn.m | modified the last two lines of the input file as follows.
function f = funkeval (x)

n = max(size(x));

f = zeros(n,1);

(1) = 10*x(1) - 4*x(2)"3 +9;
T(2) = exp(X(1)) - 4*x(2)"2 + 1;

To find the root near (2,2), at the command prompt, | typed

>> [x,err,f] = nrndn([2,2],1.0e-6,1)

This generated the following output.

>> [x,err,f] = nrndn([2,2],1.0e-6,1)
iter = 1, err = 1.17e+00 ¥ = 5.78e+00
iter = 2, err = 3.86e-01 f = 1.28e+01
iter = 3, err = 1.73e-01 f = 3.17e+00
iter = 4, err = 3.05e-02 f = 4.13e-01
iter = 5, err = 8.36e-04 f = 1.07e-02
iter = 6, err = 6.30e-07 f = 7.99e-06

X = 2.8136 2.1017

err = 6.2953e-07

f = 7.9882e-06

Therefore, the root near (1,1) is (x,,x,) = (2.8136,2.1017). The RMS error on x is 6.2x107. It
took six iterations to converge.

To find the root near (-1,1), at the command prompt, | typed

>> [x,err,f] = nrndn([-1,1],1.0e-6,1)

This generated the following output.
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iter = 1, err = 2.42e-01 £ = 4.00e+00
iter = 2, err = 7.23e-02 f = 8.47e-01
iter = 3, err = 3.15e-03 f = 3.15e-02
iter = 4, err = 8.86e-06 f = 8.40e-05
iter = 5, err = 1.64e-10 f = 1.82e-09

X = -0.8133 0.6007

err = 1.6358e-10

f = 1.8203e-09

Therefore, the root near (-1,1) is (x,,x,) = (-0.8133,0.6007). The RMS error on x is 1.6x10°%°.
It took five iterations to converge.

2. Solution of a System of Ordinary Differential Equations
The Van der Pol oscillator is a non-conservative oscillator with non-linear damping. It evolves
in time according to the second order differential equation,

1 —y(l—xz)fl—);+x20

where x is the position coordinate, which is a function of the time ¢, and y is a scalar parameter
indicating the nonlinearity and the strength of the damping.

(a) Convert this second order ODE to a system of two first order ODEs.

(b) Use the classical fourth-order Runge Kutta method to solve this ODE from 1 =0 to =10
for 1 =1/2 and subject to the initial conditions, x(r =0)=1 and x(t =0)=0. Sketch the plot
and report the value of x at t = 10.

solution:
(a) Convert this second order ODE to a system of two first order ODEs.

There is a three-step procedure to converting a higher order ODE to a system of first order
ODEs.

First, identify the new variables.

_dx

=x and ==
Bz Y, dt

Second, write the new ODEs in terms of the new variables

ayy

=, and —== ﬂ(l— » )yz —N
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Third, write the initial conditions in terms of the new variables.
y(t=0)=1 and y,(t=0)=0

(b) Use the classical fourth-order Runge Kutta method to solve this ODE from 1 =0 to =10
for 1 =1/2 and subject to the initial condition, x(¢=0)=1.0. Sketch the plot and report the
value of x at t = 10.

| used the code rk4n.m.

| changed the input function to

function dydx = funkeval(X,Yy);

mu = 0.5;
dydx(1l) = y(2);
dydx(2) = mu*(1-y(1)"2)*y(2)-y(1);

At the command line prompt, | typed

>> [X,y]=rk4n(100,0,10,[1,0]);

This is the plot that was generated.

To obtain the value of x(+=10), | >
accessed the last value of the first

variable.

>>y(101,1)
ans = -1.4601

Therefore, x(t =10) = -1.4601

To confirm that my answer is reasonable,
| reran the code with 1000 intervals.
>> [x,y]=rk4n(1000,0,10,[1,0]);

This is the plot that was generated.

To obtain the value of x(#=10), | accessed
the last value of the first variable.

>>y(1001,1)
ans = -1.4601

Therefore, x(t =10)=-1.4601
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3. Formulation and Solution of a System of Linear Algebraic Equations
Consider a liquid-liquid extractor as shown in the figure below that removes benzene from a
primarily cyclohexane Feedstream using a furfural Solvent stream.

Extract Solvent
E, {Xep Xegor Xe g} S, {Xspr Xs 00 Xggt
<4—— extractor ¢

—> —>
Feed Raffinate
F, {Xepr Xpor Xe gt R, {Xgps Xror Xrat

You are given all four flow rates and the compositions of the Feed (F) and Solvent (S) streams.
Your task is to determine the composition of the two exiting streams, the Raffinate (R) and
Extract (E).

F=100mollhr S =150mollhr R =95mollhr E =155mollhr

xF,b = 01 xS,b = 00010 xR,b = 7 xE,b = 7
X, =09 x5, =0.0001 X ="? X =?
x.,=00  x,=0.9989 X =7? X =?

An analysis of the system yields six equations for your six unknowns.

(1) a benzene molar balance: Rxy, +Exy, = Fx, , +8xg,
(2) a cyclohexane molar balance: Rx,  +Ex; . =Fx, +58x,
(3) raffinate mole fractions sum to unity: Xpp+tXg, +xg =1
(4) extract mole fractions sum to unity: Xpp+Xp, +Xp,=1
N : x
(5) benzene equilibrium constraint: K, ="22=20.0
XRb
. . X
(6) c-hexane equilibrium constraint: K, =-£<=0.01
xR,c

(a) Formulate the equations as a system of six linear algebraic equations in six unknowns.
(b) Convert the equations to matrix notation, 4x=5. Identify 4, x and 5.

(c) Determine and report the compositions of the Raffinate and Extract streams.
Solution:

(a) Formulate the equations as a system of six linear algebraic equations in six unknowns.



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

benzene mole balance:
cyclohexane mole balance:

Rxy, + Ex;, =Fx;, +8xg,

Rxp .+ Ex;, = Fxg +8xg,

raffinate mole fraction constraint: XpptXg, +xg, =1

extract mole fraction constraint: XgptXp, +Xp,=1

benzene equilibrium constraint: Xp, =X, K, =0

-x, K, =0

e

c-hexane equilibrium constraint: X

,C

(b) Convert the equations to matrix notation, 4x=>5. Identify 4, x and 5.

Xy R 00 E 0 O] [ Fx, , + Sxg, |

Xp. 0 RO 0 E O Fxp .+ 8xg,
REY, | 111 o000 B 1
=l 4% 0 0 0111 BT

Xp, -K, 0 0 100 0

£ | 0 -K. 0 01 0] 0|

(c) Determine and report the compositions of the Raffinate and Extract streams.

| created the Matlab Script titled exam01_s14 p01.m and provided below.

clear all;

F = 100;

S = 150;

R = 95;

E = 155;

XFb = 0.1;

XFc = 0.9;

XFf = 0.0;

xSb = 0.001;

XSc = 0.0001;

XST = 0.9989;

Kb = 20.0;

Kc = 0.010;

A=[ROOEOO
OROOEDO
111000
000111
-Kb 00100
0 -Kc 0 0 1 0];

b= [F*xXFb + S*xSb
F*xFc + S*xSc
1
1
0
01;
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detA = det(A)
invA = inv(A);
X = InvA*b

At the Matlab prompt, | typed

>> examO0l_s14 pO1

This yielded the following output
detA =  3.0848e+05

X =
0.0032
0.9323
0.0645
0.0635
0.0093
0.9271

Therefore the unknown compositions are

X(1) =0.0032 = X, , X(2)=0.9323 = X, . X(3) =0.0645 = Xp s
X(4) =0.0635 = x; , X(5) =0.0093 = x, x(6) = 0.9271= x; ,



