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Midterm Examination 
Administered:  Monday, October 11, 2004 

 
Consider the second-order nonlinear ordinary differential equation boundary value problem.  
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with the boundary conditions 
 
 ( ) oo yty =    and    ( ) ff yty =             (2) 

 
Provide a detailed step-by-step algorithm of how you numerically obtain an approximate solution to this problem.  
Write the equations for specific examples of algorithms, e.g. Newton-Raphson or Euler, where used.   Indicate loops 
where necessary. 
 
solution: 
 
In class, we discussed nesting an algebraic equation (AE) solver, like the Newton Raphson method,  inside an ODE 
solver, like the Runge Kutta method, when we couldn’t isolate the derivative on the left-hand-side of the ODE.  In 
class we also separately discussed nesting an ODE solver inside an AE solver to solve boundary value problems.  
This problem combines the two cases. We have a boundary value problem in which the derivative cannot be 
isolated on the left-hand-side.  For this problem, we will have to nest an AE solver inside an ODE solver inside an 
AE solver. 
 
First, this ODE is a second order ODE, so transform it to a system of two first order ODEs. 
 
Transformation step 1.  Define variables. 
 
 yy =1                       (3.a)  

 
dt
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Transformation step 2.  Write first-order ODEs. 
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Transformation step 3.  Write conditions. 
 
 ( ) oo yty =1    and    ( ) ff yty =1           (5) 

 
Now the transformation is complete.  We can write an algorithm to solve this system of first order ODEs. 
 
The solution has three loops. 
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 The outermost loop is an iterative loop to determine the correct initial value of ( )oty2 .  This value is required 
so that we can solve the system of ODEs as an initial value problem.  The outermost loop would be, for example, a 
Newton-Raphson iterative loop. 
 The middle loop is a standard ODE-solving root, like the Euler method (or RK4, if we want to be more 
accurate).  Given a guess of ( )oty2 , we can solve the ODEs out to time tf.  Then we can compare our solution with 

the boundary condition at  tf  to determine if we have a good guess of ( )oty2 . 
 The interior loop is another iterative loop because for every time step in the middle loop, we require the value 

of 
dt

dy2 .  However, equation (4.b) is nonlinear in 
dt

dy2 .  We cannot isolate 
dt

dy2 .  Therefore, we need to use 

something like Newton-Raphson method to solve for 
dt

dy2  at each timestep. 

 
The specific algorithm is as follows. 
 
1.  Guess  a value of ( )oty2 . 

2.  Guess  a value of 
ot

dt
dy2  

3.  Use an iterative procedure to solve nonlinear algebraic equations, such as the Newton-Raphson method with 
numerical approximations to the deriviatives, to solve equation (4.b) at  to.  Start with the ODE for y2 evaluated at 
to. 
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3.a  We can rearrange and write this equation as  
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3.b  Evaluate equation (6) at the current time. 

3.c  Evaluate the derivative of equation (6), 
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3.d  Evaluate a new guess for 
ot

dt
dy2 , using the Newton-Raphson formula. 
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3.e.  Using this new value of new

to
dt

dy2 , loop back to step (3.b) until the residual in equation (6) is within an 

acceptably small tolerance. 
 
4.  Now that we have the time derivatives at the current time, use the Euler method, for example, to solve for your 
variables at the new time: 
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5.    Loop back to step 3, now solving for 
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 at the next time by equation equation (4.b) at  ti+1.  Exit from 

this loop when you have reached tf .  At the next time step, use your converged value of 
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6.   Calculate the residual of the outer most loop, namely 
 
 ( )( ) ( ) ffo ytytyf −= 12                 (7) 

 
where ( )fty1  was obtained in step 5 and yf  is the given boundary condition. 

 

7.  Calculate the numerical approximation of the derivative, ( )otdy
df

2

, by looping through steps 2 through 5 for 
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8.  Use the Newton Raphson method to estimate a new value of ( )oty2  
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9.  Using this new value of ( )new

oty2 , loop back to step (2) until the residual in equation (7) is within an acceptably 
small tolerance. 
 
 


