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ChE/MSE 505 

Advanced Mathematic for Engineers 
Final Exam 

Fall Semester, 2003 
Instructor:  David Keffer 

Administered:  8:00-10:00 am, Monday December 8, 2001 
 
Consider the integral equation 
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(a)  Is this integral equation linear or nonlinear? 
(b)  Is this integral equation Volterra or Fredholm? 
(c)  Is this integral equation of the first or second kind? 
(d)  Use a numerical method to find an approximate solution to )x(φ  from xo to xf.=3.  Use a 
discretization step of 1x =∆ .  You are free to solve this as you choose, as long as you state your 
assumptions.  However, I suggest you use the trapezoidal rule to approximate the integral, 
although that is not mandatory.  I would like to see numerical values for the solution.  There is 
no use for calculators in this problem. 
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Solution:   
Since the range of interest is 3-1=2 and the step size is 1, we will have n=2 intervals and n+1=3 
points where the function is to be evaluated.   
 
We write out the integral equation for each value of x=1, 2, and 3. 
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We use the Trapezoidal rule to evaluate the integral 
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 In the first equation, the integral is zero because the upper and lower limits of integration are the 
same.  The equations become. 
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This is a set of two linear algebraic equations.  There are only two unknowns because equation 
(1) provides the value of 1φ .  Now we rewrite the equations: 
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Simplify a little more for the sake of convenience 
 
 10             :2x 2 −=φ=  
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 21 49            :3x 32 −=φ+φ=  
 
Solving the last equation for 3φ  yields 
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So the solution is approximated by: 
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This is probably a very bad approximation.  We would require a much finer discretization to get 
a more accurate picture of the solution. 
 
 
 
 
 
 


