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I.  Objective: 

Engineering Objectives: 

Using regular solution theory, create a temperature vs. composition phase diagram of 

solid-liquid equilibria of a binary mixture.   

 

Computational Objectives: 

Apply the ability to numerically solve systems of nonlinear algebraic equations to 

engineering problems.  Specifically, use the ability to solve a system of two nonlinear algebraic 

equations to determine the composition of co-existing phases over a range of temperatures, in 

order to generate the phase diagram.  Use parameter stepping to automate the solution of 

nonlinear algebraic equations across a temperature range. 

II.  Background:  Gibbs Free Energy Curves 

In determining the phase equilibria of binary mixtures we are generally asked to perform two 

tasks:  For a given pressure, P, and temperature, T, find (i) the phases present and (ii) the 

composition of the phases.   

The first task can be accomplished by examining the Gibbs Free Energy of the two phases.  

Consider a case where we could reasonably expect to find a solid and liquid.  In general, we plot 

the molar Gibbs free energy of the mixture in both phases.  The phase with the lower Gibbs free 

energy is the one we expect to see. 

For example, in Figure 1, we plot the molar Gibbs free energy of a hypothetical mixture in 

the solid and liquid phases.  We specify a temperature.  Because we are dealing with condensed 

phases, we may often assume that the pressure dependence of the Gibbs free energy is minimal 

and neglect considering the pressure, i.e. we assume that our results hold for all pressures.  In 

Figure 1., we see that the Gibbs free energy of the solid is less than that of the solid for all 

compositions.  Therefore, we expect to observe only the solid phase, regardless of the 

composition of the bulk material. 

 

 
Figure 1.  (Ω𝑠𝑜𝑙 = -15 kJ/mol, Ω𝑙𝑖𝑞 = -10 kJ/mol, T=300 K) 

 

In Figure 2., at a higher temperature, we see that the Gibbs free energy of the liquid is lower 

at all compositions, so we expect only to see the liquid phase.   
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Figure 2.  (sol = -15 kJ/mol, liq = -10 kJ/mol, T=1300 K) 

 

In Figure 3., at an intermediate temperature, we see that the Gibbs free energy of the solid is 

lower at low mole fractions of component A but the Gibbs free energy of the liquid is lower at 

high mole fractions of component A.  In this case, the phases present are more complicated.  At 

low mole fractions of A, we expect only solid.  At very high mole fractions of A, we expect only 

liquid.  However, at intermediate values, for bulk mole fractions of A between 0.694 and   0.787, 

we expect to see two phases, one liquid and one solid, with the liquid phase being A-rich, that is 

having a mole fraction of A (namely 0.787) higher than the bulk value and a solid being A-poor, 

that is having a mole fraction of A (namely 0.694) lower than the bulk value.  We will see how 

we determine this two phase region and how we determine the compositions of each phase. 

 

 
Figure 3.  (sol = -15 kJ/mol, liq = -10 kJ/mol, T=1000 K) 

 

III.  Background:  Phase equilibria 

As shown in Figures 1. and 2., when one phase has a lower Gibbs free energy at all 

components, then that phase will be present.  As shown in Figure 3., when the phase with the 

lower Gibbs free energy changes with composition, we will observe two phases for some values 

of bulk composition. 

Determining the composition of the two phases (and thus the range of the two-phase region) 

requires we satisfy the constraint of chemical equilibria.  The constraint of chemical equilibria 

says that the partial molar Gibbs free energy of component A in the solid phase is equal to the 

partial molar Gibbs free energy of component A in the liquid phase.  Mathematically,  
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 𝐺̄𝐴
𝑙𝑖𝑞 = 𝐺̄𝐴

𝑠𝑜𝑙          (1) 

 

The partial molar Gibbs free energies of component A in each phase is expressed as  

 

 𝐺̄𝐴
𝑙𝑖𝑞 ≡ (

∂𝐺𝑙𝑖𝑞

∂𝑥𝐴
)

𝑇,𝑃
   and   𝐺̄𝐴

𝑠𝑜𝑙 ≡ (
∂𝐺𝑠𝑜𝑙

∂𝑥𝐴
)

𝑇,𝑃
   (2) 

 

We don’t need to worry about component B, due to the constraint that the mole fractions 

must sum to unity,  

 

 𝑥𝐴
𝑙𝑖𝑞 + 𝑥𝐵

𝑙𝑖𝑞 = 1   so  𝑥𝐵
𝑙𝑖𝑞 = 1 − 𝑥𝐴

𝑙𝑖𝑞
    (3) 

 

so the mole fraction of component B is not an independent variable.  Analogous equations can be 

written for the solid phase.   

Substituting equation (2) into equation (1) and rearranging yields: 

 

   𝑓1(𝑥𝐴
𝑙𝑖𝑞 , 𝑥𝐴

𝑠𝑜𝑙) = 𝐺̄𝐴
𝑙𝑖𝑞 − 𝐺̄𝐴

𝑠𝑜𝑙 = (
∂𝐺𝑙𝑖𝑞

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑙𝑖𝑞

− (
∂𝐺𝑠𝑜𝑙

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑠𝑜𝑙

= 0  (4) 

 

This equation has two unknowns, 𝑥𝐴
𝑙𝑖𝑞 , 𝑥𝐴

𝑠𝑜𝑙 .  So long as we can obtain the partial derivatives 

of the Gibbs free energy we have a nonlinear algebraic equation.  But we have two unknowns, so 

we need another equation.  Equation (1) and (2) are the mathematical statement that the slopes of 

the curves in Figure 3. must be equal at the equilibrium compositions.  The second equation we 

need is that the lines defined by the equilibrium compositions and their respective slopes be 

equal.  This boils down to the intercepts being equal.  Consider the basic equation of a line: 

 

 𝑦 = 𝑚 ⋅ 𝑥 + 𝑏          (5) 

 

If we write this for both liquid and solid phases we have,  

 

 𝐺𝑙𝑖𝑞 = (
∂𝐺𝑙𝑖𝑞

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑙𝑖𝑞

⋅ 𝑥𝐴
𝑙𝑖𝑞 + 𝑏 and 𝐺𝑠𝑜𝑙 = (

∂𝐺𝑠𝑜𝑙

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑠𝑜𝑙

⋅ 𝑥𝐴
𝑠𝑜𝑙 + 𝑏  (6) 

 

The intercepts, b, are the same.  If we equate intercepts, we can rewrite 

 

 𝑏 = 𝐺𝑙𝑖𝑞 − (
∂𝐺𝑙𝑖𝑞

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑙𝑖𝑞

⋅ 𝑥𝐴
𝑙𝑖𝑞

= 𝐺𝑠𝑜𝑙 − (
∂𝐺𝑠𝑜𝑙

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑠𝑜𝑙

⋅ 𝑥𝐴
𝑠𝑜𝑙   (7) 

 

This yields the equation: 

 

   𝑓2(𝑥𝐴
𝑙𝑖𝑞 , 𝑥𝐴

𝑠𝑜𝑙) = 𝐺𝑙𝑖𝑞 − (
∂𝐺𝑙𝑖𝑞

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑙𝑖𝑞

⋅ 𝑥𝐴
𝑙𝑖𝑞 − 𝐺𝑠𝑜𝑙 + (

∂𝐺𝑠𝑜𝑙

∂𝑥𝐴
)

𝑇,𝑃
|

𝑥𝐴
𝑠𝑜𝑙

⋅ 𝑥𝐴
𝑠𝑜𝑙 = 0 (8) 
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Equations (4) and (8) provide two equations necessary to solve for the two unknown 

compositions.  Graphically, equations (4) and (8) can be shown on the free energy curve in 

Figure 4.  This graphical method of finding the compositions is called the “common tangent” 

method.  In Figure 4., the common tangent is drawn.  As you can see, it is practically impossible 

to distinguish the tangent points by eye.   

In this derivation of the two equations we relied on the graphical technique to lead us to 

the corresponding equations.  We should note that from the point of theory, the two equations 

can equivalently be expressed as the conditions of chemical equilibrium, namely, 

 

 𝐺̄𝐴
𝑙𝑖𝑞 = 𝐺̄𝐴

𝑠𝑜𝑙  and    𝐺̄𝐵
𝑙𝑖𝑞 = 𝐺̄𝐵

𝑠𝑜𝑙      

 

 
Figure 4.  (sol = -15 kJ/mol, liq = -10 kJ/mol, T=1000 K) 

 

Even if we focus on the area of interest in Figure 4., as is done in Figure 5., still it is difficult 

to determine the tangent points.  We see that the graphical method has practical impediments 

toward implementation.  
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Figure 5. Magnification of Figure 4. 

 

However we can solve equations (4) and (8) simultaneously, as a set of coupled nonlinear 

algebraic equations, using any of a number of standard routines covered in this course and 

implemented in nrndn.m, which implements the Newton-Raphson method with Numerical 

approximations to the Derivatives for N equations. We can use the plots of the free energy 

curves to get some good initial guesses for the equilibrium compositions. 

 

IV.  Background:  Creating the phase diagram 

 

From the Gibbs free energy curves at a specified temperature, we determine (i) which phases 

are present and (ii) the compositions of the phases.  If we repeat this procedure over a series of 

temperatures, we can generate a phase diagram.   

Consider the free energy curves in Figure 6.   At T = 700 K, we see there is only a solid 

phase.  At T = 800 K, we see that the curves coincide only at xA = 1.0, or pure A.  At T = 900 K, 

we see that there are two phases with 𝑥𝐴
𝑙𝑖𝑞

= 0.919 and 𝑥𝐴
𝑠𝑜𝑙 = 0.839.  At T = 1000 K, we see that 

there are two phases with 𝑥𝐴
𝑙𝑖𝑞

= 0.787and 𝑥𝐴
𝑠𝑜𝑙 =0.694.  At T = 1000 K, we see that there are two 

phases with 𝑥𝐴
𝑙𝑖𝑞

= 0.597and 𝑥𝐴
𝑠𝑜𝑙 =0.523.  At T=1200K, we see that the curves coincide only at 

xA = 0.0, or pure B.  At T= 1300 K, we see there is only a liquid phase.   

These compositions could have been estimated graphically by the method of common 

tangents.  In fact, they were obtained numerically, as we will discuss below.  Regardless of how 

the compositions were obtained, we can create the phase diagram by combining the data from 

Figure 6 into a single plot with temperature as a function of mole fraction.  This phase diagram 

(using more points that the seven points given below) is plotted in Figure 7. 
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Figure 6.  Free energy curves for example 1. 
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Figure 7(a).  Phase diagram for example 1.  (sol = -15 kJ/mol, liq = -10 kJ/mol)  

 

 
Figure 7(b).  Phase diagram close-up for example 1.  (sol = -15 kJ/mol, liq = -10 kJ/mol)   
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The phase diagram in Figure 7(a). shows a single liquid present above 1200 K, a single solid 

phase present below 800 K, and both liquid and solid phases possible at intermediate 

temperatures.  Whether you observe two phases depends upon the composition.  If you have a 

chunk of solid that is 80% A, it will remain a single solid phase as long as the temperature is 

below about 925 K.  If you have a liquid of 80% A, it will remain a single liquid phase until you 

cool it down to about 1000 K.  If you have a liquid of 80% A, which you rapidly cool to 950 K, 

then you will observe a solid forming, with composition 76.8% A, leaving a liquid that is  85.9% 

A.   

In Figure 7(b), we provide a close-up of the maximum in the temperature located at a 

composition of about 0.10 mole fraction A.  This maximum is a result of the fact that the mixing 

constants in the regular solution theory are both negative, but the solid is more negative than the 

liquid.  So, the  material would prefer to remain mixed, even at temperatures above both pure 

component melting points.  For solid-liquid equilibrium, this represents a congruent phase 

transition.  In vapor-liquid equilibrium, this phenomenon is called a high-boiling azeotrope.  . 

 

You can use a mass balance to determine the respective amounts of liquid and solid. 

 

  𝑎𝑐𝑐 = 𝑖𝑛 − 𝑜𝑢𝑡 + 𝑔𝑒𝑛        (9) 

 

At equilibrium there is no accumulation and our system is without reaction, so there is also 

no generation term.  The in term is the amount of bulk material (80% A) and the out term is the 

respective amounts of liquid and solid at equilibrium.  The mass balance on A becomes: 

 

  0 = 𝑚𝑏𝑢𝑙𝑘𝑥𝐴
𝑏𝑢𝑙𝑘 − 𝑚𝑙𝑖𝑞𝑥𝐴

𝑙𝑖𝑞 − 𝑚𝑠𝑜𝑙𝑥𝐴
𝑠𝑜𝑙       (10) 

 

and the total mass balance is 

 

  0 = 𝑚𝑏𝑢𝑙𝑘 − 𝑚𝑙𝑖𝑞 − 𝑚𝑠𝑜𝑙        (11) 

 

Solving for 𝑚𝑙𝑖𝑞 we have 

 

0 = 𝑚𝑏𝑢𝑙𝑘𝑥𝐴
𝑏𝑢𝑙𝑘 − 𝑚𝑙𝑖𝑞𝑥𝐴

𝑙𝑖𝑞 − (𝑚𝑖𝑛 − 𝑚𝑙𝑖𝑞)𝑥𝐴
𝑠𝑜𝑙   

0 = 𝑚𝑏𝑢𝑙𝑘(𝑥𝐴
𝑏𝑢𝑙𝑘 − 𝑥𝐴

𝑠𝑜𝑙) + 𝑚𝑙𝑖𝑞(𝑥𝐴
𝑠𝑜𝑙 − 𝑥𝐴

𝑙𝑖𝑞)   

𝑓𝑙𝑖𝑞 =
𝑚𝑙𝑖𝑞

𝑚𝑏𝑢𝑙𝑘
=

(𝑥𝐴
𝑏𝑢𝑙𝑘−𝑥𝐴

𝑠𝑜𝑙)

(𝑥𝐴
𝑙𝑖𝑞

−𝑥𝐴
𝑠𝑜𝑙)

  and   𝑓𝑠𝑜𝑙 = 1 − 𝑓𝑙𝑖𝑞    (12) 

 

Sometimes equation (12) is called “the lever rule”.  It’s just a result of the two mass balances 

in equation (10) and (11).   If 𝑚𝑏𝑢𝑙𝑘is not given, we can select an arbitrary basis of 1 mole of 

starting material. 

In the example above, if we quickly cooled 1 mole of a liquid that was originally 80% A 

down to 950 K, we would have 0.352 moles of liquid with composition 85.9% A and 0.648 

moles of solid with composition 76.8% A. 
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V.  Theory:  Free energies of phase changes 

At this point we see conceptually how to create a phase diagram given the free energy 

curves.  Now, we will discuss a simple theory that allows us to generate the free energy curves 

themselves. 

The Gibbs free energy of the binary mixture in a phase  is given by the sum of the Gibbs 

free energies of the pure components in their reference states plus a free energy change due to 

mixing.  

 

𝐺
𝜑

(𝑇, 𝑥) = 𝐺𝐴
𝑜(𝑇) + 𝐺𝐵

𝑜(𝑇) + Δ𝐺𝑚𝑖𝑥
𝜑

(𝑇, 𝑥𝐴)      (13) 

 

Because we will ultimately be interested only in the relative values of 𝐺𝑚𝑖𝑥
𝜑

(𝑇, 𝑥) for each of 

the phases, and because the reference terms are the same for each phase , we can ignore the 

reference terms.   The reference state has associated with it a phase.  If we choose the reference 

state to be the pure component phase present at the given temperature, then we have to account 

for the free energy due to a phase change. 

 

𝐺
𝜑

(𝑇, 𝑥) = ∑ 𝑥𝐴Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒(𝑇)𝑁

𝐴 + Δ𝐺𝑚𝑖𝑥
𝜑

(𝑇, 𝑥𝐴)     (14) 

 

We can encounter three cases where the free energy due to phase change is different. 

Case 1.  Temperature lower than both pure component melting temperatures (T < TA and T < 

TB) 

 In this case, the reference states of the pure components are both solids.   

 If the mixture is a solid,  

  𝐴𝑠 + 𝐵𝑠 → 𝐴𝐵𝑠 

  And the associated free energy due to phase change is zero. 

  Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒 = 0 and Δ𝐺𝐵

𝑝ℎ𝑎𝑠𝑒 = 0 

 If the mixture is a liquid, then the process we are observing is 

  𝐴𝑠 + 𝐵𝑠 → 𝐴𝐿 + 𝐵𝐿 → 𝐴𝐵𝐿 

 And the associated free energy due to phase change is the free energy of melting, which is a 

positive number, since the free energy of a liquid is greater than that of a solid. 

  Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒 = Δ𝐺𝐴

𝑚𝑒𝑙𝑡 and Δ𝐺𝐵
𝑝ℎ𝑎𝑠𝑒 = Δ𝐺𝐵

𝑚𝑒𝑙𝑡 

 

Case 2.  Temperature between pure component melting temperatures   (T < TA and T > TB) 

 In this case, the reference state of pure A is a solid and B is a liquid.   

 If the mixture is a solid,  

  𝐴𝑠 + 𝐵𝐿 → 𝐴𝑠 + 𝐵𝑆 → 𝐴𝐵𝑠 

 And the associated free energy due to phase change is that due to B freezing, which is the 

negative of the free energy of melting. 

  Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒 = 0 and Δ𝐺𝐵

𝑝ℎ𝑎𝑠𝑒 = −Δ𝐺𝐵
𝑚𝑒𝑙𝑡 

 If the mixture is a liquid, then the process we are observing is 

  𝐴𝑠 + 𝐵𝐿 → 𝐴𝐿 + 𝐵𝐿 → 𝐴𝐵𝐿 

And the associated free energy due to phase change is the free energy of melting A, which is 

a positive number, since the free energy of a liquid is greater than that of a solid. 

  Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒 = Δ𝐺𝐴

𝑚𝑒𝑙𝑡 and Δ𝐺𝐵
𝑝ℎ𝑎𝑠𝑒 = 0 
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Case 3.  Temperature greater than both pure component melting temps (T > TA and T > TB) 

  

 In this case, the reference state of both pure A and B is liquid.  

 If the mixture is a solid,  

  𝐴𝐿 + 𝐵𝐿 → 𝐴𝑠 + 𝐵𝑆 → 𝐴𝐵𝑠 

And the associated free energy due to phase change is that due to A and B freezing, which is 

the negative of the free energy of melting. 

  Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒 = −Δ𝐺𝐴

𝑚𝑒𝑙𝑡 and Δ𝐺𝐵
𝑝ℎ𝑎𝑠𝑒 = −Δ𝐺𝐵

𝑚𝑒𝑙𝑡 

 If the mixture is a liquid, then the process we are observing is 

  𝐴𝐿 + 𝐵𝐿 → 𝐴𝐿 + 𝐵𝐿 → 𝐴𝐵𝐿 

  And the associated free energy due to phase change is zero. 

  Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒 = 0 and Δ𝐺𝐵

𝑝ℎ𝑎𝑠𝑒 = 0 

 

A simple expression for the free energy of melting is given by the difference of the energetic 

and entropic contributions to the free energy of melting: 

 

Δ𝐺𝐴
𝑚𝑒𝑙𝑡 = Δ𝐻𝐴

𝑚𝑒𝑙𝑡 − 𝑇Δ𝑆𝐴
𝑚𝑒𝑙𝑡        (15) 

 

VI.  Theory:  Free energies of mixing  

As soon as we consider a mixture, we need to include a Gibbs free energy due to mixing.  

Regular solution theory provides us with an expression for the Gibbs free energy due to mixing 

in phase j 

 

 Δ𝐺𝑚𝑖𝑥
𝜑

= Ω
𝜑𝑥𝐴(1 − 𝑥𝐴) + 𝑅𝑇 ∑ 𝑥𝑖 𝑙𝑛( 𝑥𝑖)𝑖       (16) 

 

In binary mixtures, this becomes: 

 

 Δ𝐺𝑚𝑖𝑥
𝜑

= Ω
𝜑𝑥𝐴(1 − 𝑥𝐴) + 𝑅𝑇[𝑥𝐴 𝑙𝑛( 𝑥𝐴) + (1 − 𝑥𝐴) 𝑙𝑛( 1 − 𝑥𝐴)]   (17) 

 

We express the functions explicitly in 𝑥𝐴 because 𝑥𝐵 is not independent. (𝑥𝐵 = 1 − 𝑥𝐴) 

Regular solution theory for a binary mixture then requires two parameters, the interaction 

parameter in the liquid phase, Ω𝐿, and the interaction parameter in the solid phase, Ω
𝑆
.  A 

positive interaction parameter physically equates to a repulsive interaction between components 

A and B, in which case, A and B would rather separate than mix.  A negative interaction 

parameter physically equates to an attractive interaction between components A and B, in which 

case, A and B would rather mix than separate.  

 

The total molar Gibbs free energy of the mixture is then the sum of the free energy due to 

phase change and free energy due to mixing.  Substituting equation (17) into equation (14) we 

have 

 

𝐺
𝜑

(𝑇, 𝑥) = ∑ [𝑥𝐴Δ𝐺𝐴
𝑝ℎ𝑎𝑠𝑒(𝑇)]𝑁

𝐴 + Ω
𝜑𝑥𝐴(1 − 𝑥𝐴) + 𝑘𝑇[𝑥𝐴 𝑙𝑛( 𝑥𝐴) + (1 − 𝑥𝐴) 𝑙𝑛( 1 −

𝑥𝐴)](18) 
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Equation (18) can be written for all phases.  The phase change term is non zero for each 

component with a pure component phase different than the mixture phase at the given 

temperature. 

Equation (18) is what is plotted in Figures 1. through 6., for  = solid and  = liquid.  

(For your information, in Figures 1. through 6., we used the following parameters: 

 

 𝑇𝐴 = 800𝐾, 𝑇𝐵 = 1200𝐾, Ω𝑠𝑜𝑙 = −15 𝑘𝐽/𝑚𝑜𝑙, Ω𝑙𝑖𝑞 = −10 𝑘𝐽/𝑚𝑜𝑙 
 Δ𝐻𝐴

𝑚𝑒𝑙𝑡 = 8 kJ/mol, Δ𝐻𝐵
𝑚𝑒𝑙𝑡 = 12 kJ/mol, Δ𝑆𝐴

𝑚𝑒𝑙𝑡 = 10 J/mol/K, Δ𝑆𝐵
𝑚𝑒𝑙𝑡 =

10 J/mol/K 

 

Since both interaction parameters were negative, both pure components preferred to mix in 

both the liquid and solid phases. 

 

VII.  Assignment 

Consider the binary system described by the following data: 

 

𝑇𝐴 = 800𝐾, 𝑇𝐵 = 1200𝐾, Ω𝑠𝑜𝑙 = 15 𝑘𝐽/𝑚𝑜𝑙, Ω𝑙𝑖𝑞 = −10 𝑘𝐽/𝑚𝑜𝑙 
Δ𝐻𝐴

𝑚𝑒𝑙𝑡 = 8 kJ/mol, Δ𝐻𝐵
𝑚𝑒𝑙𝑡 = 12 kJ/mol, Δ𝑆𝐴

𝑚𝑒𝑙𝑡 = 10 J/mol/K, Δ𝑆𝐵
𝑚𝑒𝑙𝑡 = 10 J/mol/K 

 

Task One.  Generate Free Energies for the solid and liquid phases for temperature from 300, 

400, …1300 K.  These plots should have the form of Figure 6.   

Note:  Because of the natural logarithm in equation (2), the free energy does not exist exactly 

at 𝑥𝐴 = 0 or 𝑥𝐴 = 1.  An easy way to get around this is to create your composition vector as 

follows: 

 
% 

%  create vector of mole fractions of A & exclude 0 and 1 

% 

xlo = 0.0; % set low value of xA 

xhi = 1.0; % set high value of xA 

dx = 0.01; % set discretization step size 

xAvec = [xlo:dx:xhi]; % create uniform vector fo xA 

nxA = max(size(xAvec)); % determine length of xA 

xAvec(1) = dx/10.0; % move first point off zero a little bit 

xAvec(nxA) = 1.0 - dx/10.0; % move last point off one a little bit 

 

 

Task Two.  Using the free energy plots, determine the number and type of phases present at 

each temperature.  Then, using the free energy plots for initial guesses of the phase compositions, 

determine the compositions of each phase, using your choice of technique to solve a system of 

two equations (equations (4) and (8)) for two unknowns.  (Note, this problem will yield a more 

complicated phase diagram than the example worked out above.  At some temperatures, you will 

have two solid phases in equilibrium.  At other temperatures, you will have 2 different solid-

liquid equilibria, depending upon the bulk composition.)   

 

Task Three.  Create the phase diagram using the information from Task Two.  This should 

be in the general form of Figure 7.  You should use a technique for solving a system of two non-
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linear algebraic equations like the Newton-Raphson method with Numerical approximations to 

the Derivatives for N equations (as implemented in nrndn.m).  You will also need to parameter 

step through temperature, using your converged solution at one temperature as your initial guess 

for the next temperature.  Refer to the Parameter Stepping notes for example scripts that 

implement parameter stepping. 

 

Note:  Because of the natural logarithm in the free energy, all values of the mole fractions must 

always be bounded by 0 and 1.  For compositions very close to these bounds, there is the 

possibility that the discretization used for the numerical derivation may violate this rule and 

cause the program to crash.  Therefore, I recommend that you change the value of the variable 

dxcon given near line 58 of nrndn.m from its default of 0.01 to a smaller value, such as given 

below. 

 
% 

%  initialize the size of the discretization  

% for numerical differentiation 

% 

dxcon(1:n) = 0.00001; 

 

Task Four.  Adjust the melting temperatures, enthalpies and entropies of mixing and mixing 

parameters to approximately represent a real eutectic phase diagram of your choice. 
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Nomenclature 

 

𝑓𝜑  mole fraction of  bulk in phase  

𝐹𝑗  molar flowrate of stream j 

𝐺𝑖
𝑜  molar Gibbs free energy of pure component i in reference state 

𝐺𝜑  molar Gibbs free energy of a mixture 

𝐺̄𝑖
𝜑

  partial molar Gibbs free energy of component i in phase   

Δ𝐺𝑖
𝑚𝑒𝑙𝑡  molar Gibbs free energy of melting of pure component i 

Δ𝐺𝑚𝑖𝑥
𝜑

  molar Gibbs free energy of mixing in phase  

Δ𝐺𝑖
𝑝ℎ𝑎𝑠𝑒

 change in molar Gibbs free energy due to phase change of pure component i 

Δ𝐻𝑖
𝑚𝑒𝑙𝑡  molar enthalpy of melting of pure component i 

k  Boltzmann constant 

N  total number of moles 

𝑁𝑖  moles of species i in bulk 

P  pressure 

Δ𝑆𝑖
𝑚𝑒𝑙𝑡  molar entropy of melting of pure component i 

T  temperature 

𝑥𝑖
𝜑

  mole fraction of component i in phase  

Ω𝑙𝑖𝑞  regular solution theory interaction parameter for liquid phase 

Ω𝑠𝑜𝑙  regular solution theory interaction parameter for solid phase 
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Summary of Equations 

Regular solution theory in a nutshell.   

The total free energy of either liquid (liq) or solid (sol) phase is made up of two terms, one representing a phase 

change if the phase is not the equilibrium state and one representing the contribution due to mixing. 

 

∆𝐺𝑙𝑖𝑞 = ∆𝐺𝑙𝑖𝑞
𝑝ℎ𝑎𝑠𝑒

+ ∆𝐺𝑙𝑖𝑞
𝑚𝑖𝑥 (1.liq) 

 

∆𝐺𝑠𝑜𝑙 = ∆𝐺𝑠𝑜𝑙
𝑝ℎ𝑎𝑠𝑒

+ ∆𝐺𝑠𝑜𝑙
𝑚𝑖𝑥  (1.sol) 

 

The mixing term has the following form which is the sum of an enthalpy term and an entropy term. 

 

∆𝐺𝑙𝑖𝑞
𝑚𝑖𝑥 = Ω𝑙𝑖𝑞𝑥𝐴𝑥𝐵 + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + 𝑥𝐵𝑙𝑛(𝑥𝐵)] (2.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑚𝑖𝑥 = Ω𝑠𝑜𝑙𝑥𝐴𝑥𝐵 + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + 𝑥𝐵𝑙𝑛(𝑥𝐵)] (2.sol) 

 

where R is the gas constant (8.314 J/mol/K) and where 𝑥𝐴 is the atomic fraction of A, and 𝑥𝐵 is the atomic 

fraction of B.  Remember, in a binary mixture, 𝑥𝐵 is not an independent variable.  Rather, 𝑥𝐵 = 1 − 𝑥𝐴.  Note:  

Because of the natural logarithm in equation (2), the free energy does not exist exactly at 𝑥𝐴 = 0 or 𝑥𝐴 = 1. 

 

The phase change term has the following form. 

 

∆𝐺𝑙𝑖𝑞
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

+ 𝑥𝐵∆𝐺𝑙𝑖𝑞,𝐵
𝑝ℎ𝑎𝑠𝑒

 (3.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

+ 𝑥𝐵∆𝐺𝑠𝑜𝑙,𝐵
𝑝ℎ𝑎𝑠𝑒

 (3.sol) 

 

where 𝑑𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

 and 𝑑𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

 are phase change free energies of pure component A in the liquid and solid phases 

respectively.  They are defined as  

 

∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

= {
∆𝐺𝐴

𝑚𝑒𝑙𝑡(𝑇) 𝑖𝑓 𝑇 < 𝑇𝐴
𝑚𝑒𝑙𝑡

0 𝑖𝑓 𝑇 ≥ 𝑇𝐴
𝑚𝑒𝑙𝑡  

(4.liq.a) 

 

∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

= {
0 𝑖𝑓 𝑇 ≤ 𝑇𝐴

𝑚𝑒𝑙𝑡

−∆𝐺𝐴
𝑚𝑒𝑙𝑡(𝑇) 𝑖𝑓 𝑇 > 𝑇𝐴

𝑚𝑒𝑙𝑡  
(4.sol.a) 

 

 

∆𝐺𝑙𝑖𝑞,𝐵
𝑝ℎ𝑎𝑠𝑒

= {
∆𝐺𝐵

𝑚𝑒𝑙𝑡(𝑇) 𝑖𝑓 𝑇 < 𝑇𝐵
𝑚𝑒𝑙𝑡

0 𝑖𝑓 𝑇 ≥ 𝑇𝐵
𝑚𝑒𝑙𝑡  

(4.liq.b) 

 

∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

= {
0 𝑖𝑓 𝑇 ≤ 𝑇𝐵

𝑚𝑒𝑙𝑡

−∆𝐺𝐵
𝑚𝑒𝑙𝑡(𝑇) 𝑖𝑓 𝑇 > 𝑇𝐵

𝑚𝑒𝑙𝑡  
(4.sol.b) 

 

where  

 

∆𝐺𝐴
𝑚𝑒𝑙𝑡(𝑇) = ∆𝐻𝐴

𝑚𝑒𝑙𝑡 − 𝑇 ∆𝑆𝐴
𝑚𝑒𝑙𝑡 (5.a) 

 

∆𝐺𝐵
𝑚𝑒𝑙𝑡(𝑇) = ∆𝐻𝐵

𝑚𝑒𝑙𝑡 − 𝑇 ∆𝑆𝐴
𝑚𝑒𝑙𝑡 (5.b) 

 

In this problem, we will solve two equations for two unknowns.  The two equations can be understood from the 

point of view of the common tangent construction.  There is a tangent line to the liquid free energy curve and a 

second tangent line to solid free energy curve, given in equation (a).  These tangent lines have the age-old form. 
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𝑦 = 𝑚𝑥 + 𝑏 (6) 

 

where 𝑚 is the slope of the line and 𝑏 is the y-intercept.  At the equilibrium liquid and solid composition we can 

write this equation as  

 

𝑦𝑙𝑖𝑞 = 𝑚𝑙𝑖𝑞𝑥𝑙𝑖𝑞,𝐴 + 𝑏𝑙𝑖𝑞  (7.liq) 

 

𝑦𝑠𝑜𝑙 = 𝑚𝑠𝑜𝑙𝑥𝑠𝑜𝑙,𝐴 + 𝑏𝑠𝑜𝑙  (7.sol) 

 

To be clear, our goal is to find the unknown liquid and solid compositions, 𝑥𝑙𝑖𝑞,𝐴 and 𝑥𝑠𝑜𝑙,𝐴.  Because there is a 

common tangent, we have two equations that define the unknown compositions, namely the slopes are the same and 

the y-intercepts are the same. 

 

𝑓1(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) = 𝑚𝑙𝑖𝑞 − 𝑚𝑠𝑜𝑙 = 0 (8.i) 

 

𝑓2(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) = 𝑏𝑙𝑖𝑞 − 𝑏𝑠𝑜𝑙 = 0 (8.ii) 

 

To evaluate equation (8.i), we must recognize that the slope of the liquid or solid free energy curve is the partial 

derivative of that curve with respect to the atomic fraction of A.   

 

𝑚𝑙𝑖𝑞 =
𝜕∆𝐺𝑙𝑖𝑞

𝜕𝑥𝐴

|
𝑥𝑙𝑖𝑞,𝐴

 
(9.liq) 

 

𝑚𝑠𝑜𝑙 =
𝜕∆𝐺𝑠𝑜𝑙

𝜕𝑥𝐴

|
𝑥𝑠𝑜𝑙,𝐴

 
(9.sol) 

We can rearrange equation (7) to solve for the intercepts 

 

𝑏𝑙𝑖𝑞 = 𝑦𝑙𝑖𝑞 − 𝑚𝑙𝑖𝑞𝑥𝑙𝑖𝑞,𝐴 (10.liq) 

 

𝑏𝑠𝑜𝑙 = 𝑦𝑠𝑜𝑙 − 𝑚𝑠𝑜𝑙𝑥𝑠𝑜𝑙,𝐴 (10.sol) 

 

where 𝑦𝑙𝑖𝑞 and 𝑦𝑠𝑜𝑙  are points on the respective free energy curves (equation 1) evaluated at  𝑥𝑙𝑖𝑞,𝐴 and 𝑥𝑠𝑜𝑙,𝐴. 

 

 

𝑦𝑙𝑖𝑞 = ∆𝐺𝑙𝑖𝑞(𝑥𝑙𝑖𝑞,𝐴) (11.liq) 

 

𝑦𝑠𝑜𝑙 = ∆𝐺𝑠𝑜𝑙(𝑥𝑠𝑜𝑙,𝐴) (11.sol) 

 

Substitution of equations (9), (10) and (11) into equation (8) yields 

 

𝑓1(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) =
𝜕∆𝐺𝑙𝑖𝑞

𝜕𝑥𝐴

|
𝑥𝑙𝑖𝑞,𝐴

−
𝜕∆𝐺𝑠𝑜𝑙

𝜕𝑥𝐴

|
𝑥𝑠𝑜𝑙,𝐴

= 0 
(12.i) 

 

𝑓2(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) = ∆𝐺𝑙𝑖𝑞(𝑥𝑙𝑖𝑞,𝐴) −
𝜕∆𝐺𝑙𝑖𝑞

𝜕𝑥𝐴

|
𝑥𝑙𝑖𝑞,𝐴

𝑥𝑙𝑖𝑞,𝐴 − ∆𝐺𝑠𝑜𝑙(𝑥𝑠𝑜𝑙,𝐴) +
𝜕∆𝐺𝑠𝑜𝑙

𝜕𝑥𝐴

|
𝑥𝑠𝑜𝑙,𝐴

𝑥𝑠𝑜𝑙,𝐴 = 0 
(12.ii) 

 

 

Addendum:  Help with obtaining the analytical derivative of free energy with respect to the atomic fraction of 

A. 

 

Start by differentiating equation (1) 
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𝜕∆𝐺𝑙𝑖𝑞

𝜕𝑥𝐴

=
𝜕∆𝐺𝑙𝑖𝑞

𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

+
𝜕∆𝐺𝑙𝑖𝑞

𝑚𝑖𝑥

𝜕𝑥𝐴

 
(13.liq) 

 

𝜕∆𝐺𝑠𝑜𝑙

𝜕𝑥𝐴

=
𝜕∆𝐺𝑠𝑜𝑙

𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

+
𝜕∆𝐺𝑠𝑜𝑙

𝑚𝑖𝑥

𝜕𝑥𝐴

 
(13.sol) 

 

Next we differentiate the mixing term in equation (2).  Remember, in a binary mixture, 𝑥𝐵 is not an independent 

variable.  Rather, 𝑥𝐵 = 1 − 𝑥𝐴.  So, first rewrite equation (2) substituting 1 − 𝑥𝐴 for 𝑥𝐵. 

 

∆𝐺𝑙𝑖𝑞
𝑚𝑖𝑥 = Ω𝑙𝑖𝑞𝑥𝐴(1 − 𝑥𝐴) + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + (1 − 𝑥𝐴)𝑙𝑛(1 − 𝑥𝐴)] (14.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑚𝑖𝑥 = Ω𝑠𝑜𝑙𝑥𝐴(1 − 𝑥𝐴) + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + (1 − 𝑥𝐴)𝑙𝑛(1 − 𝑥𝐴)] (14.sol) 

 

Now differentiate with respect to 𝑥𝐴.  We left out intermediate steps.  Check for yourself. 

 

𝜕∆𝐺𝑙𝑖𝑞
𝑚𝑖𝑥

𝜕𝑥𝐴

= Ω𝑙𝑖𝑞(1 − 2𝑥𝐴) + 𝑅𝑇𝑙𝑛 (
𝑥𝐴

1 − 𝑥𝐴

) 
(15.liq) 

 

𝜕∆𝐺𝑠𝑜𝑙
𝑚𝑖𝑥

𝜕𝑥𝐴

= Ω𝑠𝑜𝑙(1 − 2𝑥𝐴) + 𝑅𝑇𝑙𝑛 (
𝑥𝐴

1 − 𝑥𝐴

) 
(15.sol) 

 

Next we differentiate the phase change term in equation (3).  Remember, in a binary mixture, 𝑥𝐵 is not an 

independent variable.  Rather, 𝑥𝐵 = 1 − 𝑥𝐴.  So, first rewrite equation (3) substituting 1 − 𝑥𝐴 for 𝑥𝐵. 

 

∆𝐺𝑙𝑖𝑞
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

+ (1 − 𝑥𝐴)∆𝐺𝑙𝑖𝑞,𝐵
𝑝ℎ𝑎𝑠𝑒

 (16.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

+ (1 − 𝑥𝐴)∆𝐺𝑠𝑜𝑙,𝐵
𝑝ℎ𝑎𝑠𝑒

 (16.sol) 

 

Now differentiate with respect to 𝑥𝐴.   

 

𝜕∆𝐺𝑙𝑖𝑞
𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

= ∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

− ∆𝐺𝑙𝑖𝑞,𝐵
𝑝ℎ𝑎𝑠𝑒

 
(17.liq) 

 

𝜕∆𝐺𝑠𝑜𝑙
𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

= ∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

− ∆𝐺𝑠𝑜𝑙,𝐵
𝑝ℎ𝑎𝑠𝑒

 
(17.sol) 

 

We now have everything we need to solve this problem. 


