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Chapter 8.  Optimization 

8.1.  Introduction 

The contents of the first seven chapters prepare the scientist and engineer to accomplish an 
extraordinarily broad set of tasks—solving systems of algebraic equations, either linear or 
nonlinear, solving systems of ordinary differential equations, numerical differentiation, integration 
and linear regression.  For many undergraduate introductions to numerical methods, this would be 
sufficient.  However there is one task that undergraduates frequently face that we have not yet 
covered and that task is optimization.  Optimization means finding a maximum or minimum.  In 
mathematical terms, optimization means finding where the derivative is zero. 
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           (8.1) 

 
Typically, the function, )(xf , is called the objective function, since the objective is to optimize it.   

It is true that linear regression is one kind of optimization.  We observed in the derivation of 
the regression techniques in Chapter 2 that we analytically differentiated the sum of the squares of 
the error (SSE) with respect to the regression parameters and then set the expressions for those 
partial derivatives to zero, resulting in a system of linear algebraic equations.  If we can linearize 
the model (that is, massage the equation so that the unknown parameters appear in a linear form), 
then this is absolutely the way to proceed because it is always much easier to solve a system of 
linear algebraic equations than a system of nonlinear algebraic equations.   

However, life is nonlinear and sometimes we are asked to optimize parameters for nonlinear 
models.  To this end we provide a brief chapter on optimization of nonlinear systems.  There is a 
vast and ever-expanding literature on optimization techniques.  This quaint chapter is intended to 
provide a couple rudimentary techniques and introduce the student to the subject.  One virtually 
universally acknowledged source on optimization is “Numerical Recipes” by Press et al.  Students 
who find this chapter does not sate their curiosity are encouraged to seek out Chapter 10 of 
“Numerical Recipes”.  

8.2.  Optimization vs Root-finding in One-Dimension 

One can compare the goal of optimization in equation (8.1) with the goal of root-finding in 
equation (4.1) 
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The two equations are essentially the same, both setting a function equal to zero.  This motivates 
the idea that we can use our existing single-equation root-finding tools to optimize nonlinear 
equations.  If the function is simple, we can perform the differentiation by hand and obtain the 
functional form of the derivative.  At that point we can apply any single-equation root-finding 
technique, such as the bisection method or the Newton-Raphson method, without modification, 
using as an input )(xf   rather than ).(xf    

If we either cannot or will not differentiate the function analytically, we can still use the 
framework of the bisection method or the Newton-Raphson method where we use the finite 
difference formula to provide the first derivative of the function.  If we are using a technique like 
the bisection method, that is all we require as input.  If we are using a technique like the Newton-
Raphson method, which requires derivatives of the function, then we shall require the second 
derivative as well.  Fortunately, in Chapter 3, we provided finite difference formulae for the 
second derivative as well.   

Later in this chapter, we provide subroutines for using the bisection and Newton-Raphson 
method for one-dimensional optimization.  The only change in the bisection code necessary to 
convert it from a root-finding routine to an optimization routine is that, where we previously 
evaluated the function at the brackets, we now evaluate the first derivative of the function at the 
brackets using a finite difference formula.  The only changes in the Newton-Raphson with 
Numerical derivatives method to convert it from a root-finding routine to an optimization routine 
are that, (i) where we previously evaluated the function, we now evaluate the first derivative of the 
function using a finite difference formula and (ii) where we previously evaluated the first 
derivative of the function, we now evaluate the second derivative of the function using a finite 
difference formula. 

 
Example 8.1.  Bisection Method 

Consider the single nonlinear algebraic equation as our objective function,  
 

)()exp()( xsqrtxxf           (8.2) 
 

Although the derivative of this function can easily be evaluated, we will not do so for the sake of 
this application.  We will take as our brackets,  
 

 1.0x  and 55.0x . 
 
How did we find these brackets?  It was either by trial and error or we plotted f(x) vs x to 

obtain some idea where the minimum was.  For optimization, we need the slope to be negative at 

x  and the slope to be positive at x .  We will use a relative error on x as the criterion for 
convergence and we will set our tolerance at 10-6. 
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x  x )(  xf )(  xf  error

1 0.100000 0.550000 -4.76E-01 1.06E+00 8.18E-01
2 0.100000 0.325000 -4.76E-01 5.07E-01 6.92E-01
3 0.100000 0.212500 -4.76E-01 1.52E-01 5.29E-01
4 0.156250 0.212500 -9.58E-02 1.52E-01 2.65E-01
5 0.156250 0.184375 -9.58E-02 3.80E-02 1.53E-01
6 0.170313 0.184375 -2.59E-02 3.80E-02 7.63E-02
7 0.170313 0.177344 -2.59E-02 6.72E-03 3.96E-02
8 0.173828 0.177344 -9.41E-03 6.72E-03 1.98E-02
9 0.175586 0.177344 -1.30E-03 6.72E-03 9.91E-03

10 0.175586 0.176465 -1.30E-03 2.72E-03 4.98E-03
11 0.175586 0.176025 -1.30E-03 7.12E-04 2.50E-03
12 0.175806 0.176025 -2.95E-04 7.12E-04 1.25E-03
13 0.175806 0.175916 -2.95E-04 2.09E-04 6.25E-04
14 0.175861 0.175916 -4.30E-05 2.09E-04 3.12E-04
15 0.175861 0.175888 -4.30E-05 8.29E-05 1.56E-04
16 0.175861 0.175874 -4.30E-05 1.99E-05 7.81E-05
17 0.175868 0.175874 -1.15E-05 1.99E-05 3.90E-05
18 0.175868 0.175871 -1.15E-05 4.22E-06 1.95E-05
19 0.175869 0.175871 -3.65E-06 4.22E-06 9.76E-06
20 0.175869 0.175870 -3.65E-06 2.88E-07 4.88E-06
21 0.175870 0.175870 -1.68E-06 2.88E-07 2.44E-06

 
So in 21 iterations, we see the optimum value lies at x = 0.175870.  The bisection method 

guarantees a root.  However, since we are invoking a finite difference formula to estimate the 
derivative of the function, we are subject to the limitations in the accuracy of the numerical 
differentiation.  As for virtually any numerical method, it is conceivable that ill-posed problems 
exist for this procedure will not converge. 

 
Example 8.2.  Newton-Raphson with Numerical Derivatives Method 

Consider the same objective function as used in the previous example.  We will provide an 
initial guess for the Newton-Raphson method of x = 1.  We will use a relative error on x as the 
criterion for convergence and we will set our tolerance at 10-6. 

 
 xold f(xold) f’(xold) xnew error
1 2.000000 7.035625 7.48E+00 1.06E+00 1.00E+02
2 1.059095 2.397952 3.11E+00 2.89E-01 2.67E+00
3 0.288832 0.404506 2.95E+00 1.52E-01 9.06E-01
4 0.151500 -0.121024 5.40E+00 1.74E-01 1.29E-01
5 0.173898 -0.009088 4.64E+00 1.76E-01 1.11E-02
6 0.175858 -0.000054 4.58E+00 1.76E-01 6.75E-05
7 0.175870 0.000000 4.58E+00 1.76E-01 3.25E-09

 
So we converged to 0.175870 in only seven iterations.   
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8.4.  Other One Dimensional Optimization Techniques 

Nonlinear optimization can be a tricky business.  There is always the possibility of falling into 
local minimum rather than the desired global minimum.  Therefore, an exhaustive optimization 
search involves numerous initial guesses.  If the various initial guesses lead to the different 
minima, then the global minimum is the one with the lowest value of the objective function.   

Sometimes it is also worth trying different optimization techniques in order to avoid pitfalls of 
one method.  For this reason, two additional optimization techniques are described below.  The 
practical procedure in optimization is thus to try a given method.  If it fails to converge, then we 
move on to another method.  We naturally try the fastest methods (with quadratic convergence) 
first.  If that fails, we then try the slower methods.  Once we have a minimum, it is often useful to 
confirm the minimum by starting the optimization again (with the same method and with different 
methods) at a point very near the minimum to confirm the existence of the minimum (as opposed 
to simply having run out of iterations before convergence).  Thus we might try to optimize using 
the Newton-Raphson method first.  If it fails, we might then move on to Brent’s method, described 
below. 

A seminal resource in Numerical Methods is the book “Numerical Recipes” by Press, 
Teukolsky, Vetterling & Flannery.  They provide various excellent routines for one-dimensional 
optimization.  The codes are provided in either Fortran or C, depending on the version of the text 
book.  Because these tools are so refined, we have translated some of the routines into Matlab and 
made the translated codes available on the course website.  None of the codes translated from 
“Numerical Recipes” are reproduced in this book.   

Relevant to the topic of one-dimensional optimization, the Brent’s method of one-dimensional 
optimization (brent.m) and Brent’s method of  one-dimensional optimization with numerical 
derivatives (dbrent.m) are provided in Matlab.  These methods incorporate not simply theory but a 
variety of rules of thumb and tricks of the trade for optimization, gained over many years of 
experience by the authors of “Numerical Recipes”.  The two codes, brent.m and dbrent.m require 
three brackets.  Thus the translation of the bracket generating routine for one-dimensional 
optimization, mnbrak1.m is also included on the course website.  These routines require that the 
objective function be entered in a file funkeval.m.   

 
Example 8.3.  Brent Method 

Consider the same objective function in equation (8.2).  We first create the objective function, 
funkeval.m, 

 
function f = funkeval(x); 
f = exp(x) -  sqrt(x); 

 
We next generate brackets,  
 
» [ax, bx, cx] = mnbrak1(0.1,0.2,'min') 
 
ax =    0.1000 
bx =    0.2000 
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cx =    0.3618 
 

Note that the first two input arguments in mnbrak1 are two values of x, hopefully close to the root.  
The third argument, ‘min’, specifies minimization.  The outputs are three brackets required by both 
brent.m and dbrent.m. 
 
We next run the optimization code.  For example, if we use brent.m, with a relative tolerance on x 
(fourth argument) of 10-6 and the print option (fifth argument) turned on (1 = on, 0 = off), we have 
 
» [f,xmin] = brent(ax,bx,cx,1.0e-6,1,'min'); 
boundary 1:  a = 1.76e-001 f(a) =  7.73e-001  
boundary 2:  b = 1.76e-001 f(b) =  7.73e-001  
best guess:  x = 1.76e-001 f(x) =  7.73e-001  
2nd best guess:  w = 1.76e-001 f(w) =  7.73e-001  
previous w:  v = 1.76e-001 f(v) =  7.73e-001  
most recent point:  u = 1.76e-001 f(u) =  7.73e-001  
error = 4.35e-008 iter =    28  
  
ANSWER = 1.758669e-001  

 
So in 28 iterations, Brent’s method found the minimum at 0.17587 with an error of 4.35x10-8. 
 
Alternatively, we could use the dbrent.m code.   
 
» [f,xmin] = dbrent(ax,bx,cx,1.0e-6,1,'min'); 
boundary 1:  a = 1.76e-001 f(a) =  7.73e-001  
boundary 2:  b = 1.76e-001 f(b) =  7.73e-001  
best guess:  x = 1.76e-001 f(x) =  7.73e-001  
2nd best guess:  w = 1.76e-001 f(w) =  7.73e-001  
previous w:  v = 1.76e-001 f(v) =  7.73e-001  
most recent point:  u = 1.76e-001 f(u) =  7.73e-001  
error = 4.05e-008 iter =    20  
  
ANSWER = 1.758669e-001   

 
So in 20 iterations, Brent’s method with derivatives found the same minimum at 0.17587 with an 
error of 4.05x10-8. 

8.5.  Multivariate Nonlinear Optimization 

Real systems and materials are not only nonlinear but also are dependent on multiple 
parameters.  Therefore multivariate nonlinear optimization is a task that is practically necessary.  
The objective in multivariate nonlinear optimization is to minimize one objective function with 
respect to many variables,  
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It is often said that multivariate nonlinear optimization is an art not a science.  The challenge of 

finding any minimum in multi-dimensional space can be difficult.  The challenge of routinely 
finding a global minimum in multi-dimensional space is exceedingly difficult.  This task is still an 
active area of research.   

In this chapter we will provide discussion of three useful techniques for multivariate nonlinear 
optimization.  The first is the simple conversion of a root-finding technique.  The latter two are 
optimization techniques with codes translated from “Numerical Recipes”. 

8.6.  Optimization vs Root-finding in Multiple Dimensions 

Just as we converted the single-variable version of the Newton-Raphson with numerical 
derivatives method from a root-finding technique to an optimization technique, so too can we 
convert the multivariate Newton-Raphson method with numerical derivatives method from a root-
finding technique to an optimization technique.   

In this case, we have one objective function, fobj( x ), which a function of n variables.  At the kth 
iteration, the ith element of the residual in the Newton-Raphson method is first partial derivative of 
the objective function with respect to variable ix , evaluated at the current values of )(kx , 
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The i,j element of the Jacobian matrix at the kth iteration is the matrix of second partial derivatives, 
which in mathematical is called the Hessian matrix, 
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By inspection, the Hessian matrix is symmetric.   

It is likely that the derivatives required in the residual vector and Jacobian matrix will be 
evaluated numerically.  To do so, we employ the centered-finite difference formulae for first and 
second partial derivatives provided in Section 3.4.   

 
Example 8.4.  Multivariate Newton-Raphson with Numerical Derivatives Method 

Consider the objective function,  
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2
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2
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2
2

2
121  xxxxxxxxfobj      (8.6) 

 
If we provide an initial guess of     8,4, 21 xx , we find that this method produces the 

following results 
 

iteration 
1x  2x  error on residual error on x 

0 4 8 - - 
1 2.1373 4.4902 35.4 2.81 
2 1.3797 3.5274 6.81 0.866 
3 1.2308 3.4759 0.73 0.111 
4 1.2302 3.4781 1.02e-02 1.53e-03 
5 1.2302 3.4781 5.56e-6 8.22e-07 

 
So in 5 iterations, the Newton-Raphson method with numerical derivatives found the same 
minimum at x1 = 1.23 and x2 = 3.47 with a relative error on x of 8.22x10-7 and an RMS error on the 
residual of 5.56x10-6.  The value of the objective function at the minimum is 29.154, determined 
by substitution of the converged solution into the objective function.   

 

8.7.  Other Multivariate Optimization Techniques 

As was the case for the single-variable nonlinear optimization, a seminal resource in 
multivariate nonlinear optimization is the book “Numerical Recipes” by Press, Teukolsky, 
Vetterling & Flannery.  They provide various excellent routines for multi-dimensional 
optimization.  The codes are provided in either Fortran or C, depending on the version of the text 
book.  Because these tools are so refined, we have translated some of the routines into Matlab and 
made the translated codes available on the course website.  None of the codes translated from 
“Numerical Recipes” are reproduced in this book.    

We discuss two completely different approaches to multivariate nonlinear optimization 
presented in “Numerical Recipes”.  The first is the called either the “Nelder and Mead’s Downhill 
Simplex Method” or the “amoeba method”.  In the application of the amoeba method to an n-
dimensional optimization problem, one creates an n-dimensional volume using n+1 points.  For 
example a two-dimensional volume (typically called an area) can be created from 3 points.  The 
resulting two-dimensional shape is called a triangle.  Similarly, a three-dimensional volume can be 
created from 4 points.  The resulting three-dimensional shape is called a tetrahedron.   The same 
concept applies to n-dimensional space.  One creates this n-dimensional object and then allows it 
to explore n-dimensional space through a series of reflection, contraction and extrapolation 
operations.  The process can be liked to an amoeba who moves away from its least favorable of the 
n+1 points by extending a pseudopod in the opposite direction (reflection).  If it likes what it finds 
(a more hospitable environment, in this case indicated by a lower value of the objective function), 
it moves even further (extrapolation).  If it doesn’t like what it finds, it shrinks away (contraction).  
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Eventually all n+1 points are within a given tolerance of the minimum and the process is 
converged.  The advantage of this method is that it is simple and hard to crash.  The disadvantage 
is that it is slow and can require thousands or hundreds of thousands of iterations to converge.  The 
code amoeba.m that appears on the course website is a translation of the Fortran version of the 
code that appears in “Numerical Recipes”.  Because the amoeba method is slow, it should be used 
only as a last resort, when other quicker methods have failed to find the optimum.   This routine 
require that the objective function be entered in a file funkeval.m.   

 
Example 8.5.  Amoeba Method 

Consider the objective function,  
 

      473, 2
2

2
1

2
2

2
121  xxxxxxfobj       (8.7) 

 
For this two-dimensional problem, the amoeba method requires three initial guesses.  We only 

want to provide one initial guess.  Therefore, the code in general generates an additional n initial 
guess to the one guess provided by increase each variable in term by some fraction.  For example, 
if we provide an initial guess of    3,1, 21 xx  and our factor is 1%, then our additional two initial 
guesses are    3,01.1, 21 xx  and    03.3,1, 21 xx .  The initial value of the objective function 
for these three initial guesses are respectively, 33, 33.141 and 32.942.  We set two tolerances in the 
amoeba code, one for the unknowns and one for the objective function, both are set to 10-6 in this 
example.  These values constrain the range of x and fobj values across the n+1 points. 

The code is issued at the MATLAB command line prompt with the following command: 
 

» [f,x] = amoeba([1; 3],1.0e-6,1.0e-6) 
 

In the following table values of  x and fobj that correspond to the best of the  n+1 points are 
provided by iteration.  The errors on x and fobj are also reported. 

 
iteration 

1x  2x  fobj  error on x error on fobj  
1 1.00000000 3.03000000 32.941800 9.95E-03 6.03E-03
2 0.98000000 3.04500000 32.627278 1.77E-02 1.14E-02
3 0.97000000 3.11250000 32.348672 2.87E-02 1.82E-02
4 0.92500000 3.17625000 31.558717 5.06E-02 3.33E-02
5 0.88250000 3.34312500 30.560857 8.38E-02 5.68E-02
… … … … … …
62 0.06043011 6.97453100 12.819358 5.27E-06 5.58E-13
63 0.06043011 6.97453100 12.819358 2.88E-06 5.31E-13
64 0.06043011 6.97453100 12.819358 3.36E-06 1.58E-13
65 0.06043026 6.97453030 12.819358 1.33E-06 1.21E-13
66 0.06043017 6.97452980 12.819358 6.98E-07 2.06E-14

 
So in 66 iterations, the amoeba method found a minimum at x1 = 0.6043 and x2 = 6.9745 with a 
relative error on x of 6.98x10-7 and an RMS error on the objective function of 2.06x10-14.  The 
value of the objective function at the minimum is 12.819.   
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The second method for multivariate nonlinear optimization that has been translated from 
“Numerical Recipes” is the conjugate-gradient method.  The procedure of a conjugate gradient 
method is to perform a series of one-dimensional line minimizations.  We have already been 
introduced to good tools for one-dimensional line minimizations earlier in the chapter.  However, 
the directions (or gradients) of these lines do not correspond to the variable axes.  Instead these 
gradients are selected to be as independent of (or orthogonal to) each other as possible.  In the best 
case, the conjugate gradient method turns an n-dimensional optimization problem into a series of n 
one-dimensional optimization problems.  Because the conjugate gradient method uses information 
about derivatives (obtained numerically in this code as in the Newton-Raphson code), it will 
converge rapidly when one is near the optimum.   

 
Example 8.6.  Conjugate Gradient Method 

Consider the same objective function as was used in the previous example, equation (8.7).   We 
again provide an initial guess of    3,1, 21 xx .  We set a tolerance for the relative error on x to 
10-6 in this example.  The code is issued at the MATLAB command line prompt with the following 
command: 

 
» [f,x] = conjgrad([1;3],1.0e-6,1,'min') 

 
The third and fourth arguments are a printing variable (1 for printing intermediate information 
from each iteration) and a key set to minimization.  In the following table values of  x and fobj are 
provided by iteration.  The error on x is also reported. 

 
iteration 

1x  2x  fobj  error on x 
0 1.000000 2.000000 37.000000 1.00E+02 
1 -0.127925 3.691887 24.950576 6.24E+00 
2 -0.220721 6.266219 16.824407 4.16E-01 
3 0.060911 6.967095 12.819419 3.27E+00 
4 0.060641 6.974728 12.819360 3.24E-03 
5 0.060430 6.974531 12.819358 2.47E-03 
6 0.060430 6.974530 12.819358 4.16E-07 

 
So in 6 iterations, the conjugate gradient method found a minimum at x1 = 0.6043 and x2 = 6.9745 
with a relative error on x of 4.16x10-7 and the value of the objective function at the minimum is 
12.819.   

8.8.  Subroutine Codes 

In this section, we provide routines for implementing the various optimization methods 
described above that are not translated from “Numerical Recipes”.  Note that these codes 
correspond to the theory and notation exactly as laid out in this book.  These codes do not contain 
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extensive error checking, which would complicate the coding and defeat their purpose as learning 
tools.  That said, these codes work and can be used to solve problems. 

As before, on the course website, two entirely equivalent versions of this code are provided 
and are titled code.m and code_short.m.  The short version is presented here.  The longer version, 
containing instructions and serving more as a learning tool, is not presented here.  The numerical 
mechanics of the two versions of the code are identical. 

 
Code 8.1.  Bisection Method for optimization – 1 variable (bisect_opt1_short) 

 
function [x0,err] = bisect_opt1(xn,xp); 
maxit = 100; 
tol = 1.0e-6; 
err = 100.0; 
icount = 0; 
h = min(0.01*xn,0.01); 
fn = dfunkeval(xn,h); 
h = min(0.01*xp,0.01); 
fp = dfunkeval(xp,h); 
while (err > tol & icount <= maxit) 
   icount = icount + 1; 
   xmid = (xn + xp)/2; 
   h = min(0.01*xp,0.01); 
   fmid = dfunkeval(xmid,h); 
   if (fmid > 0) 
      fp = fmid; 
      xp = xmid; 
   else 
      fn = fmid; 
      xn = xmid; 
   end 
   err = abs((xp - xn)/xp); 
   fprintf(1,'i = %i xn = %e xp = %e fn = %e fp = %e err = %e \n',icount, xn, 
xp, fn, fp, err); 
end 
x0 = xmid; 
if (icount >= maxit) 
   fprintf(1,'Sorry.  You did not converge in %i iterations.\n',maxit); 
   fprintf(1,'The final value of x was %e \n', x0); 
end 
 
function df = dfunkeval(x,h) 
fp = funkeval(x+h); 
fn = funkeval(x-h); 
df = (fp - fn)/(2*h); 
 
function f = funkeval(x) 
f = exp(x)-sqrt(x); 

 
 

An example of using bisect_opt1_short is given below. 
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» [x0,err] = bisect_opt1_short(0.1,1); 
 
i = 1 xn = 1.000000e-001 xp = 5.500000e-001 fn = -4.759875e-001 fp = 
1.059054e+000 err = 8.181818e-001  
… 
i = 23 xn = 1.758699e-001 xp = 1.758700e-001 fn = -2.037045e-007 fp = 
2.877649e-007 err = 6.100434e-007  
 
x0 =   0.17586992979050 
err =    6.100434297642754e-007 

 
So in 23 iterations, the bisection method found the same minimum at 0.17587 with an error of 
6.10x10-7. 

 
Code 8.2.  Newton-Raphson Method with numerical derivatives for optimization – 1 variable 
(nrnd_opt1_short) 

 
function [x0,err] = nrnd_opt1(x0); 
maxit = 100; 
tol = 1.0e-6; 
err = 100.0; 
icount = 0; 
xold =x0; 
while (err > tol & icount <= maxit) 
   icount = icount + 1; 
   h = min(0.01*xold,0.01); 
   f = dfunkeval(xold,h); 
   df = d2funkeval(xold,h); 
   xnew = xold - f/df; 
   if (icount > 1) 
      err = abs((xnew - xold)/xnew); 
   end 
   fprintf(1,'icount = %i xold = %e f = %e df = %e xnew = %e  err = %e 
\n',icount, xold, f, df, xnew, err); 
   xold = xnew; 
end 
x0 = xnew; 
if (icount >= maxit) 
   % you ran out of iterations 
   fprintf(1,'Sorry.  You did not converge in %i iterations.\n',maxit); 
   fprintf(1,'The final value of x was %e \n', x0); 
end 
 
function df = dfunkeval(x,h) 
fp = funkeval(x+h); 
fn = funkeval(x-h); 
df = (fp - fn)/(2*h); 
 
function d2f = d2funkeval(x,h) 
fp = funkeval(x+h); 
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fo = funkeval(x); 
fn = funkeval(x-h); 
d2f = (fp - 2*fo + fn)/(h*h); 
 
function f = funkeval(x) 
f = exp(x)-sqrt(x); 

 
An example of using nrnd_opt1_short is given below. 
 
» [x0,err] = nrnd_opt1_short(2) 
icount = 1 xold = 2.000000e+000 f = 7.035625e+000 df = 7.477507e+000 xnew = 
1.059095e+000  err = 1.000000e+002  
… 
icount = 7 xold = 1.758700e-001 f = -2.621053e-009 df = 4.582021e+000 xnew = 
1.758700e-001  err = 3.252574e-009  
 
x0 =   0.17586997424458 
err =    3.252573753217557e-009 
 
So in 7 iterations, the Newton-Raphson method with numerical derivatives found the same 
minimum at 0.17587 with an error of 3.25x10-9. 

 
 

Code 8.3.  Newton-Raphson Method with numerical derivatives for optimization – n 
variables (nrnd_optn_short) 

 
function [x,err,f] = nrnd_optn(x0,tol,iprint) 
maxit = 1000; 
n = max(size(x0)); 
Residual = zeros(n,1);  
Jacobian = zeros(n,n); 
InvJ = zeros(n,n); 
dx = zeros(n,1); 
x = zeros(n,1); 
xold = zeros(n,1); 
dxcon = zeros(n,1); 
dxcon(1:n) = 0.01; 
x = x0; 
err = 100.0; 
iter = 0; 
while ( err > tol )  
   for j = 1:1:n 
    dx(j) = min(dxcon(j)*x(j),dxcon(j)); 
   end 
   Residual = dfunkeval(x,dx,n); 
   Jacobian = d2funkeval(x,dx,n); 
   xold = x; 
   invJ = inv(Jacobian); 
   deltax = -invJ*Residual; 
   for j = 1:1:n 
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      x(j) = xold(j) + deltax(j); 
   end 
   iter = iter +1; 
   err = sqrt( sum(deltax.^2) /n  ) ; 
   f = sqrt(sum(Residual.*Residual)/n); 
   if (iprint == 1) 
      fprintf (1,'iter = %4i, err = %9.2e f = %9.2e \n ', iter, err, f); 
   end 
   if ( iter > maxit) 
      Residual 
      error ('maximum number of iterations exceeded'); 
   end 
end 
 
function df = dfunkeval(x,dx,n) 
df = zeros(n,1); 
for i = 1:1:n  
   xtemp(1:n) = x(1:n); 
   xtemp(i) = x(i) + dx(i); 
   fp = funkeval(xtemp); 
   xtemp(i) = x(i) - dx(i); 
   fn = funkeval(xtemp); 
   df(i) = (fp - fn)/(2*dx(i)); 
end 
 
function Jacobian = d2funkeval(x,dx,n) 
Jacobian = zeros(n,n); 
for i = 1:1:n 
   xtemp(1:n) = x(1:n); 
   xtemp(i) = x(i) + dx(i); 
   fp = funkeval(xtemp); 
   xtemp(i) = x(i); 
   fo = funkeval(xtemp); 
   xtemp(i) = x(i) - dx(i); 
   fn = funkeval(xtemp); 
   Jacobian(i,i) = (fp - 2*fo + fn)/(dx(i)*dx(i)); 
end 
for i = 1:1:n-1 
   for j = i+1:1:n 
      xtemp(1:n) = x(1:n); 
      xtemp(i) = x(i) + dx(i); 
      xtemp(j) = x(j) + dx(i); 
      fpp = funkeval(xtemp); 
      xtemp(i) = x(i) + dx(i); 
      xtemp(j) = x(j) - dx(i); 
      fpn = funkeval(xtemp); 
      xtemp(i) = x(i) - dx(i); 
      xtemp(j) = x(j) + dx(i); 
      fnp = funkeval(xtemp); 
      xtemp(i) = x(i) - dx(i); 
      xtemp(j) = x(j) - dx(i); 
      fnn = funkeval(xtemp); 
      Jacobian(i,j) = (fpp - fpn -fnp + fnn)/(4*dx(i)*dx(j)); 
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   end    
end 
for i = 2:1:n 
   for j = 1:1:i-1 
      Jacobian(i,j) = Jacobian(j,i); 
   end 
end 
 
function fobj = funkeval(x) 
fobj = (x(1)-3)^2 + (x(2)-7)^2 + x(1)*x(2)^2 - x(1)^2*x(2) + 4; 
 

 
An example of using nrnd_optn_short is given below. 
 
» [x,err,f] = nrnd_optn_short([4,8],1.0e-6,1) 
iter =    1, err = 2.81e+000 f = 3.54e+001  
 iter =    2, err = 8.66e-001 f = 6.81e+000  
 iter =    3, err = 1.11e-001 f = 7.30e-001  
 iter =    4, err = 1.58e-003 f = 1.02e-002  
 iter =    5, err = 8.22e-007 f = 5.56e-006  
  
x =   1.23017202549369   3.47805528788098 
err =    8.220328680806535e-007 
f =    5.555092652529348e-006 
 
So in 5 iterations, the Newton-Raphson method with numerical derivatives found the same 
minimum at x1 = 1.23 and x2 = 3.47 with a relative error on x of 8.22x10-7 and an RMS error on the 
residual of 5.56x10-6.  The value of the objective function at the minimum is 29.154, determined 
by substitution of the converged solution into the objective function.   

 

8.9.  Problems 

Problems are located on course website. 
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