
Ordinary Differential Equations - 104

Chapter 7. Solution of Ordinary Differential
Equations

7.1. Introduction

The dynamic behavior of many relevant systems and materials can be described with ordinary
differential equations (ODEs). In this chapter, we provide an introduction to the techniques for
numerical solution of ODEs. We begin with a single, first-order ODE initial value problem. We
then extend the process to high-order ODEs, systems of ODEs and boundary value problems. The
techniques described in this chapter work for both linear and nonlinear ODEs. However, we point
out that for linear ODEs and some non-linear ODEs there may exist more elegant analytical
solutions. In this book, we do not investigate the analytical solutions but limit ourselves to
numerical methods that provide valid solutions.

7.2. Initial Value Problems

Regardless of whether one intends to solve an ordinary differential equation (ODE) with
analytical or numerical techniques, the problem must first be properly posed. Let us initially limit
ourselves to a single, first-order ODE, involving a single independent variable x and a single
dependent variable  xy . Differential equations that involve more than one independent variable
are called partial differential equations (PDEs) and are not considered in this book. Differential
equations that involve more than one dependent variable constitute systems of ODEs and
addressed later in this chapter. The solution to an ODE is a function,  xy . The most general
formulation of this ODE is

   0)(),(,  xyxyxf (7.1)

where we have invoked the shorthand notation, dxdyxy )(, for the derivative of y with respect
to x. Often, it is possible through algebraic manipulation of equation (7.1) to isolate the derivative
on the LHS,

  )(,)(xyxfxy  (7.2)

Ordinary Differential Equations - 105

This is perhaps the most familiar form of an ODE, but it is not the most general.

ODEs are frequently categorized as linear and nonlinear ODEs. It is important to remember
that the linearity of the ODE is defined by the linearity of y only (and specifically not of x). The
unknown y must be operated on exclusively by linear operators in order for the ODE to be
considered linear. (Recall that the differential operator is a linear operator.) The general form of a
linear first order ODE is

 0)()()()()( xcxyxbxyxa (7.3)

The coefficients,)(xa ,)(xb and)(xc can be nonlinear functions of x.

Regardless of whether one is solving an ODE of the form given in (7.1), (7.2) or (7.3), the
problem is not properly posed and does not have a unique solution until an initial condition is
supplied. The initial condition provides a value of the function at one point.

 00)(yxxy  (7.4)

The initial value problem (IVP) is the combination of the ODE and the initial condition.

7.3. Euler Method

It is instructive to begin our study of numerical techniques for solving ODEs with a first order
method. In practice, we will never use a first-order method to solve an ODE, due to its low
accuracy. Nevertheless, the first-order method plays an important role as an instructional tool.

The Euler method relies on a Taylor series truncated after the linear term.

     2
1 hOh

dx

df
xfxf

ix
ii  (3.2)

which can be rewritten in the nomenclature of ODEs as

     iii xyxxyxy 1 (7.5)

where the discretization is given by ii xxx  1 . Equation (7.5) is the Euler method. One

begins at the initial condition    00 ,, yxyx  as given in the problem statement. One choose a

discretization, x , which is a crucial decision. One then evaluates the derivative at 0x using the

ODE (equation (7.1), (7.2) or (7.3)), which also was given in the problem statement. The Euler
method in equation (7.5) can then be used directly to estimate the value of the unknown function at

Ordinary Differential Equations - 106

xxx  01 . This process can be

repeated moving further down the x-axis
for as long as interest remains.

Before we introduce specific
examples, two points of discussion are
necessary. First, the choice of
discretization or step-size is crucial. It is
true that the smaller the step-size the more
accurate the solution. However, we must
balance the desire for accuracy with the
need for computational efficiency. If our
choice of step-size is so small that we need
an intractable number of steps, then that
doesn’t help us. If the step size is too big,
the method will fail. In fact, for the
simple methods presented in this book, the
only reason a numerical routine for
solving an ODE will fail is because the
step-size was too large. The reason can
be seen in Figure 7.1. In the top figure, it
is clear that as the step-size increases, the
error increases. The error is quantified in
the middle figure. For some functions it is
possible that the error leads to values of
the function that are not permitted, such as
negative values of y(x) in functions that
require a square root.

The second point of interest is the
determination of when to stop the Euler
iterations. The final value of x is simply
chosen by the user. Frequently, the
stopping point is determined when one has
reached a steady state. For example in the
bottom part of Figure 7.1, the function
clearly goes to zero. Continuing to solve
the ODE out to large values of x typically
serves no useful purpose. If one doesn’t
know how long it will take to reach a
steady state, then one may have to guess
the final value. If it is too short, then one
can simply extend the Euler procedure
using the final point of the previous
process as the initial condition for the

Figure 7.1 Application of Euler method to y’(x)=-y with
initial condition y(x=0)=1. Top: solution up to x=1.
Middle: error up to x=1. Bottom: solution up to x=20.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(
x

)

x

analytical solution

Euler dx = 0.01

Euler dx=0.1

Euler dx = 0.5

initial condition

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

ti
ve

 e
rr

o
r

in
 y

(x
)

x

Euler dx = 0.01

Euler dx=0.1

Euler dx = 0.5

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20

f(
x

)

x

analytical solution

Euler dx = 0.01

initial condition

Ordinary Differential Equations - 107

continuation.
A MATLAB code which implements the Euler method for a single first-order ODE is provided

later in this chapter.

7.4. Classical Fourth-Order Runge-Kutta Method

The obvious solution to inaccuracy of the Euler method is to increase the order of the method.
There are numerous flavors of ODE solvers of all orders. Here we simply present the Classical
Fourth-Order Runge-Kutta (RK4) Method, which is a tried and true solution technique. The RK4
method proceeds as does the Euler method by starting at the initial condition and following an
estimate of the average slope over the interval, y , out to the next discretization point.

    yxxyxy ii 1 (7.6)

In the Euler method, the estimate of the average slope was)(ixyy  , simply the value of

the slope at the beginning of the interval. The RK4 method uses a higher order approximation for
the average slope over the interval, namely

 4321 22
6

1
kkkky  (7.7)

where

 

 34

23

12

1

)(,'

2
)(,

2
'

2
)(,

2
'

)(,'

xkxyxxyk

k
x

xy
x

xyk

k
x

xy
x

xyk

xyxyk

ii

ii

ii

ii









 












 








 (7.8)

Without a rigorous derivation, we can see that the Runge-Kutta method improves the quality of the
estimate of the slope over the interval by evaluating the slope at the beginning, middle (twice) and
end of the interval. The RK4 method is a fourth-order method, so the error decreases as the step-
size to the fourth power.
 In Figure 7.2, we present an application of the RK4 method. In the left figure we show that
even for coarse discretization, the RK4 method can be very accurate. In the right figure we
quantify the relative error. Note that the error is now shown on a log axis

Ordinary Differential Equations - 108

A MATLAB code which implements the classical fourth-order Runge-Kutta method for a
single first-order ODE is provided later in this chapter.

7.5. Application to Systems of Ordinary Differential Equations

The extension of the Euler or Runge-Kutta method to systems of ODEs is very straightforward
for an initial value problem. Let’s suppose that we have n ODEs, each of which can be written in
the form of equation (7.2) as

),,...,,,(
)(

...

),,...,,,(
)(

),,...,,,(
)(

1321

13212
2

13211
1

nnn
n

nn

nn

yyyyyxf
dx

xdy

yyyyyxf
dx

xdy

yyyyyxf
dx

xdy













 (7.9)

with n initial conditions:

n to1 jfor)(0,0  jj yxxy (7.10)

The fact that all of the conditions are given at the same value of x is what makes this problem

an IVP. Note carefully, that there are n ODE’s, thus n functions, jf , and n unknown functions, jy ,

Figure 7.2. Application of RK4 method to y’(x)=-y with initial condition y(x=0)=1. Left: solution
up to x=1. Right: error up to x=1.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(
x

)

x

analytical solution

RK4 dx = 0.1

RK4 dx=0.5

Euler dx = 0.1

initial condition

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.2 0.4 0.6 0.8 1

re
la

ti
ve

 e
rr

o
r

in
 y

(x
)

x

RK4 dx = 0.1

RK4 dx=0.5

Euler dx = 0.1

Ordinary Differential Equations - 109

but there is only one independent variable x. This is what makes this system a system of ODEs
rather than PDEs. The techniques in this chapter will not solve PDEs.

The Euler method for a system of of ODEs can be written as

 )(),(),...(),(),(,*)()(13211 ininiiiijijij xyxyxyxyxyxfxxyxy   for j = 1 to n (7.11)

There is no difference between this equation and the equation for the single system ODE using
Euler’s method (equation (7.5)). In this case, remember that the subscript j attached to the y and
the f denotes different functions. The subscript i attached to the x variable denotes steps (or
iterations). The Euler algorithm for a system of ODEs simply requires one to evaluate all jf at

iteration i from the ODEs in the problem statement (equation 7.9), then compute all jy at iteration

i+1 from equation (7.11) and repeat the process.
The extension of RK4 to systems of ODE’s is just as simple as the extension of Euler’s

method. However, because RK4 has a little more sophistication, the extension looks more
complicated, when it is really not. The RK4 equation for a system of equations is given by

      hkkkkxyxy jjjjijij 



  ,4,3,2,11 22
6

1
 for j = 1 to n (7.12)

where

  

  mimijj

mimijj

mimijj

imijj

xkxyxxfk

k
x

xy
x

xfk

k
x

xy
x

xfk

xyxfk

,3,4

,2,3

,1,2

,1

)(,

2
)(,

2

2
)(,

2

)(,


















 





















 








 for j = 1 to n (7.13)

In equation (7.13), the braces in  )(im xy represent the set of all my from m = 1 to n., all of which

are evaluated at ix .

The multi-ODE RK4 algorithm requires that one first evaluate all jk ,1 . With jk ,1 in hand, one

can compute the arguments required for jk ,2 . Once all of the jk ,2 are known, one can next

compute the arguments required for jk ,3 . Once all of the jk ,3 are known, one can next compute the

arguments required for jk ,4 . Once all the jk ,1 , jk ,2 , jk ,3 and jk ,4 are known, one can use the RK4

method (equation (7.12) to evaluate the value of the unknown functions at the next step,  1ij xy .

MATLAB codes which implement the Euler method and the classical fourth-order Runge-
Kutta method for a system of first-order ODEs are provided later in this chapter.

Ordinary Differential Equations - 110

7.6. Higher-Order ODEs

Regardless of whether one is pursuing an analytical or numerical solution to a higher than first
order ODE, there is a simple trick to converting an nth-order ODE to a system of n first-order
ODEs. You make a substitution that transforms the nth-order differential equation into n first-
order differential equations. Consider an nth-order ODE of the form









 



1

1

2

2)()(
,

)(
),(,

)(
n

n

n

n

dx

xyd

dx

xyd

dx

xdy
xyxf

dx

xyd
 (7.14)

with the following n initial conditions:

)1(
01

1

02

2

000

000

)(
,

)(
,

)(
,)(








 n

xx
n

n

xxxx

y
dx

xyd
y

dx

xyd
y

dx

xdy
yxxy  (7.15)

The conversion is a three step process. The first step is defining n new variables, which always
have the following form:

1

1

2

2

3

2

1

)(
)(

)(
)(

)(
)(

)()(













n

n

n dx

xyd
xy

dx

xyd
xy

dx

xdy
xy

xyxy



 (7.16)

The second step is writing one first-order ODE for each of these n variables. The first n-1 ODEs
have a trivial form. The last ODE is simply the original higher-order ODE, equation (7.14), with
the new variables, equation (7.16) substituted in.

Ordinary Differential Equations - 111

 )()(),(),(,
)(

)(
)(

)(
)(

)(
)(

1321

1

3
2

2
1

xyxyxyxyxf
dx

xdy

xy
dx

xdy

xy
dx

xdy

xy
dx

xdy

n
n

n
n















 (7.16)

The third and final step of the conversion process is to rewrite the initial conditions, equation
(7.15), in terms of the new variables,

)1(
00003002001)(,)(,)(,)( n

n yxyyxyyxyyxy  (7.17)

After the conversion equations (7.16) and (7.17) have constitute a system of n first-order ODEs
with n initial conditions. This IVP can be solved using the methods of the previous section.

7.7. Boundary Value Problems

When one invokes Fick’s law of diffusion in a material balance, or Fourier’s law of heat
conduction in an energy balance, or Newton’s law of viscosity in a momentum balance, one can
end up with a steady-state model that is a second order ODE, where the independent variable is
position. What distinguishes these problems from other higher-order ODEs is that the conditions
are not given at the same point. From a mathematical point of view, we can write this equation as









dx

xdy
xyxf

dx

xyd)(
),(,

)(
2

2

 (7.18)

with the following 2 boundary conditions:

00)(yxy  and ff yxy )((7.19)

Instead of being given the value of the function and its derivative at a single point, x0, we now
have a constraint on the function at two points, x0 and xf. For example, we know the temperature
at either side of a metal rod,where our thermocouples are attached, but we know nothing about the

Ordinary Differential Equations - 112

derivative of the temperature. The boundary conditions in equation (7.19) define what is called the
Boundary Value Problem (BVP).

As presented, the Euler or RK4 only work for IVPs, not BVPs. The solution lies in creating a
numerical method that combines our ability to numerically solve nonlinear algebraic equations

with ODEs. If we had been given an initial value of the first derivative, 0

0

)(
y

dx

xdy

xx




, we

would have an IVP and we could solve the problem easily, using the techniques in Section 7.6
(breaking up the second-order ODE into two first-order ODEs) and Section 7.5 (solving a system
of first-order ODEs in an IVP). Therefore, we play to our strengths. We will guess a value of 0y .

We will solve the system of ODEs from x0 to xf. We will compare the calculated value of  fxy

with the boundary condition, fy . If they match within a tolerance, we made a good guess.

Probably, they don’t match and we must make a new guess for 0y and iterate again. What should

guide our guess for 0y ? Why, I have a just the thing! We should use the Newton-Raphson

method with numerical derivatives for solving a single nonlinear algebraic equation. The
unknown is 0y . The algebraic equation is

  0)(0  ff yxyyg (7.20)

In other words, we must choose the correct initial condition on the derivative to satisfy the given
boundary condition on the function. We understand that since)(fxy is arrived at via the solution

of the set of ODEs, that changing the value of 0y will change the value of)(fxy . Every

evaluation of the function given in equation (7.20) requires a solution of the system of ODEs.
A MATLAB code which implements the solution of a BVP for a system of 2 ODEs using the

Newton-Raphson method and the classical fourth-order Runge-Kutta method is provided later in
this chapter.

7.8. Subroutine Codes

In this section, we provide routines for implementing the various numerical ODE solver
methods described above. Note that these codes correspond to the theory and notation exactly as
laid out in this book. These codes do not contain extensive error checking, which would
complicate the coding and defeat their purpose as learning tools. That said, these codes work and
can be used to solve problems.

As before, on the course website, two entirely equivalent versions of this code are provided
and are titled code.m and code_short.m. The short version is presented here. The longer version,
containing instructions and serving more as a learning tool, is not presented here. The numerical
mechanics of the two versions of the code are identical.

Ordinary Differential Equations - 113

Code 7.1. Euler Method – 1 ODE (euler1_short)

function [x,y]=euler1_short(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
y = zeros(n+1,1);
y(1) = yo;
for i = 1:1:n
 dydx = funkeval(x(i),y(i));
 y(i+1) = y(i) + dx*dydx;
end
close all;
iplot = 1;
if (iplot == 1)
 plot (x,y,'k-o'), xlabel('x'), ylabel ('y');
end
fid = fopen('euler1_out.txt','w');
fprintf(fid,'x y \n');
fprintf(fid,'%23.15e %23.15e \n', [x,y]');
fclose(fid);

function dydx = funkeval(x,y);
dydx = -1.0*y;

An example of using euler1_short is given below.

» [x,y]=euler1_short(10,0,2,1);

This program generates outputs in three forms. First, the x and y vectors are stored in memory and
can be directly accessed. Second, the program generates a plot of y vs. x. Third, the program
generates an output file, euler1_out.txt, that contains x and y vectors in tabulated form.

Code 7.2. Fourth-Order Runge-Kutta Method – 1 ODE (rk41_short)

function [x,y]=rk41_short(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
y = zeros(n+1,1);
y(1) = yo;
for i = 1:1:n
 x1 = x(i);
 y1 = y(i);
 k1 = funkeval(x1,y1);
 x2 = x(i) + 0.5*dx;

Ordinary Differential Equations - 114

 y2 = y(i) + 0.5*dx*k1;
 k2 = funkeval(x2,y2);
 x3 = x(i) + 0.5*dx;
 y3 = y(i) + 0.5*dx*k2;
 k3 = funkeval(x3,y3);
 x4 = x(i) + dx;
 y4 = y(i) + dx*k3;
 k4 = funkeval(x4,y4);
 dydx = 1.0/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4);
 y(i+1) = y(i) + dx*dydx;
end
close all;
iplot = 1;
if (iplot == 1)
 plot (x,y,'k-o'), xlabel('x'), ylabel ('y');
end
fid = fopen('rk41_out.txt','w');
fprintf(fid,'x y \n');
fprintf(fid,'%23.15e %23.15e \n', [x,y]');
fclose(fid);

function dydx = funkeval(x,y);
dydx = -1.0*y

An example of using rk41_short is given below.

» [x,y]=rk41_short(10,0,2,1);

This command generates outputs in three forms. First, the x and y vectors are stored in memory
and can be directly accessed. Second, the program generates a plot of y vs. x. Third, the program
generates an output file, rk41_out.txt, that contains x and y vectors in tabulated form.

Code 7.3. Euler Method – n ODEs (eulern_short)

function [x,y]=eulern(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
m=max(size(yo));
y = zeros(n+1,m);
y(1,1:m) = yo(1:m);
dydx = zeros(m,1);
for i = 1:1:n
 dydx = funkeval(x(i),y(i,1:m));
 y(i+1,1:m) = y(i,1:m) + dx*dydx(1:m);
end
close all;
iplot = 1;
if (iplot == 1)

Ordinary Differential Equations - 115

 for i = 1:1:m
 color_index = get_plot_color(i);
 plot (x(:),y(:,i),color_index);
 hold on;
 end
 hold off;
 xlabel('x');
 ylabel ('y');
 legend (int2str([1:m]'));
end
fid = fopen('eulern_out.txt','w');
fprintf(fid,'x y(1) ... y(m) \n');
for i = 1:1:n+1
 fprintf(fid,'%23.15e ', x(i));
 for j = 1:1:m
 fprintf(fid,'%23.15e ', y(i,j));
 end
 fprintf(fid,' \n');
end
fclose(fid);

function dydx = funkeval(x,y);
dydx(1) = -1.0*y(1) - 2.0*y(2) - 0.5*y(3);
dydx(2) = -0.1*y(1) - 4.0*y(2) - 0.5*y(3);
dydx(3) = -0.5*y(1) - 0.4*y(2) - 0.2*y(3);

An example of using eulern_short is given below.

» [x,y]=eulern(100,0,10,[1,0,2]);

Note that the fourth input argument, yo, is now a vector. This program generates outputs in three
forms. First, the x vector and y matrix are stored in memory and can be directly accessed.
Second, the program generates a plot of y vs. x. Third, the program generates an output file,
eulern_out.txt, that contains x and y in tabulated form.

Also note that this code calls an ancillary function for plotting, get_plot_color, which is
reproduced below. The function assigns a different color to each function so that the curves are
distinguishable on the graph. This function can be included at the bottom of the file
eulern_short.m.

function color_index = get_plot_color(i);
if (i == 1)
 color_index = 'k-';
elseif (i == 2)
 color_index = 'r-';
elseif (i == 3)
 color_index = 'b-';
elseif (i == 4)
 color_index = 'g-';
elseif (i == 5)

Ordinary Differential Equations - 116

 color_index = 'm-';
elseif (i == 6)
 color_index = 'k:';
elseif (i == 7)
 color_index = 'r:';
elseif (i == 8)
 color_index = 'b:';
elseif (i == 9)
 color_index = 'g:';
elseif (i == 10)
 color_index = 'm:';
else
 color_index = 'k-';
end

Code 7.4. Classical Fourth-Order Runge-Kutta Method – n ODEs (rk4n_short)

function [x,y]=rk4n_short(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
m=max(size(yo));
y = zeros(n+1,m);
y(1,1:m) = yo(1:m);
dydx = zeros(1,m);
ytemp = zeros(1,m);
k1 = zeros(1,m);
k2 = zeros(1,m);
k3 = zeros(1,m);
k4 = zeros(1,m);
for i = 1:1:n
 x1 = x(i);
 ytemp(1:m) = y(i,1:m);
 k1(1:m) = funkeval(x1,ytemp);
 x2 = x(i) + 0.5*dx;
 ytemp(1:m) = y(i,1:m) + 0.5*dx*k1(1:m);
 k2(1:m) = funkeval(x2,ytemp);
 x3 = x(i) + 0.5*dx;
 ytemp(1:m) = y(i,1:m) + 0.5*dx*k2(1:m);
 k3(1:m) = funkeval(x3,ytemp);
 x4 = x(i) + dx;
 ytemp(1:m) = y(i,1:m) + dx*k3(1:m);
 k4(1:m) = funkeval(x4,ytemp);
 dydx(1:m) = 1.0/6.0*(k1(1:m) + 2.0*k2(1:m) + 2.0*k3(1:m) + k4(1:m));
 y(i+1,1:m) = y(i,1:m) + dx*dydx(1:m);
end
close all;
iplot = 1;
if (iplot == 1)
 for i = 1:1:m

Ordinary Differential Equations - 117

 color_index = get_plot_color(i);
 plot (x(:),y(:,i),color_index);
 hold on;
 end
 hold off;
 xlabel('x');
 ylabel ('y');
 legend (int2str([1:m]'));
end
fid = fopen('rk4n_out.txt','w');
fprintf(fid,'x y(1) ... y(m) \n');
for i = 1:1:n+1
 fprintf(fid,'%23.15e ', x(i));
 for j = 1:1:m
 fprintf(fid,'%23.15e ', y(i,j));
 end
 fprintf(fid,' \n');
end
fclose(fid);

function dydx = funkeval(x,y);
dydx(1) = -1.0*y(1) - 2.0*y(2) - 0.5*y(3);
dydx(2) = -0.1*y(1) - 4.0*y(2) - 0.5*y(3);
dydx(3) = -0.5*y(1) - 0.4*y(2) - 0.2*y(3);

An example of using rk4n_short is given below.

» [x,y]=rk4n(100,0,10,[1,0,2]);

Note that the fourth input argument, yo, is now a vector. This program generates outputs in three
forms. First, the x vector and y matrix are stored in memory and can be directly accessed.
Second, the program generates a plot of y vs. x. Third, the program generates an output file,
eulern_out.txt, that contains x and y in tabulated form.

Also note that this code calls an ancillary function for plotting, get_plot_color, which is
reproduced above. The function assigns a different color to each function so that the curves are
distinguishable on the graph. This function can be included at the bottom of the file rk4n_short.m.

Code 7.5. Newton-Raphson/Runge-Kutta Method – 2 ODEs BVP (nrnd1 & rk4n)

No new codes were used to solve the BVP problem. Instead the input files for the Newton-

Raphson with numerical derivatives (nrnd1.m) and the classical fourth-order Runge-Kutta method
for a system of ODEs (rk4n.m) were modified.

In the file rk4n.m, we entered the ODEs

function dydx = funkeval(x,y);
dydx(1) = y(2);
dydx(2) = -1.0*y(1) - 0.5*y(2);

Ordinary Differential Equations - 118

In the file nrnd1.m, the input function was specified as

function f = funkeval(x)
xo = 0;
yo_1 = 1;
yo_2 = x;
xf = 2.0;
yf = 1.0;
n = 100;
[x,y]=rk4n(n,xo,xf,[yo_1,yo_2]);
yf_calc = y(n+1,1);
f = yf_calc-yf;

In this input file, we call the Runge-Kutta routine. We provide the given boundary conditions.

We allow the initial condition for the second function to vary with each iteration, since it is the
unknown in the Newton-Raphson procedure.

An example of using solving this BVP is given below.

» [x0,err] = nrnd1(0.1)
icount = 1 xold = 1.000000e-001 f = -1.012145e+000 df = 5.850002e-001 xnew =
1.830161e+000 err = 1.000000e+002

icount = 2 xold = 1.830161e+000 f = -2.167155e-013 df = 5.850002e-001 xnew =
1.830161e+000 err = 2.023704e-013

x0 = 1.8302
err = 2.0237e-013

The problem was solved in one iteration because the ODEs were linear. It took a second iteration
to identify convergence. The initial value of the derivative required to solve the boundary
condition is 1.8302. The rk4n.m program generates a plot of y vs. x and generates an output file,
rk4n_out.txt, that contains x and y in tabulated form. However, be warned that this plot and table
of data correspond to the last call of the Runge-Kutta routine by the Newton-Raphson code, which
would have been to evaluate the numerical derivative. Therefore, this plot does not correspond
exactly to the solution. To generate the solution, run the Runge-Kutta code with the appropriate
initial condition.

» [x,y]=rk4n(100,0,2,[1,1.8302]);

The resulting plot is shown in Figure 7.3. It demonstrates that the final value of y is indeed the
specified value of 1.

Ordinary Differential Equations - 119

7.9. Problems

Problems are located on course website.

Figure 7.3. Solution to boundary value problem.

dx

xdy
xy

dx

xyd)(

2

1
)(

)(
2

2

 subject to the

boundary conditions 1)0(y and 1)2(y . The
two curves correspond to y (black) and the first
derivative (red).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

1
2

