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Chapter 7.  Solution of Ordinary Differential 
Equations 

7.1.  Introduction 

The dynamic behavior of many relevant systems and materials can be described with ordinary 
differential equations (ODEs).  In this chapter, we provide an introduction to the techniques for 
numerical solution of ODEs.  We begin with a single, first-order ODE initial value problem.  We 
then extend the process to high-order ODEs, systems of ODEs and boundary value problems.  The 
techniques described in this chapter work for both linear and nonlinear ODEs.  However, we point 
out that for linear ODEs and some non-linear ODEs there may exist more elegant analytical 
solutions.  In this book, we do not investigate the analytical solutions but limit ourselves to 
numerical methods that provide valid solutions. 

 

7.2.  Initial Value Problems 

Regardless of whether one intends to solve an ordinary differential equation (ODE) with 
analytical or numerical techniques, the problem must first be properly posed.  Let us initially limit 
ourselves to a single, first-order ODE, involving a single independent variable x and a single 
dependent variable  xy .  Differential equations that involve more than one independent variable 
are called partial differential equations (PDEs) and are not considered in this book.  Differential 
equations that involve more than one dependent variable constitute systems of ODEs and 
addressed later in this chapter.  The solution to an ODE is a function,  xy .  The most general 
formulation of this ODE is  
 
   0)(),(,  xyxyxf           (7.1) 
 
where we have invoked the shorthand notation, dxdyxy  )( , for the derivative of y with respect 
to x.  Often, it is possible through algebraic manipulation of equation (7.1) to isolate the derivative 
on the LHS, 
 
  )(,)( xyxfxy            (7.2) 
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This is perhaps the most familiar form of an ODE, but it is not the most general.   

ODEs are frequently categorized as linear and nonlinear ODEs.  It is important to remember 
that the linearity of the ODE is defined by the linearity of y only (and specifically not of x).  The 
unknown y must be operated on exclusively by linear operators in order for the ODE to be 
considered linear.  (Recall that the differential operator is a linear operator.)  The general form of a 
linear first order ODE is  
 
 0)()()()()(  xcxyxbxyxa          (7.3) 
 
The coefficients, )(xa , )(xb  and )(xc  can be nonlinear functions of x. 

Regardless of whether one is solving an ODE of the form given in (7.1), (7.2) or (7.3), the 
problem is not properly posed and does not have a unique solution until an initial condition is 
supplied.  The initial condition provides a value of the function at one point.   
 
 00 )( yxxy             (7.4) 

 
The initial value problem (IVP) is the combination of the ODE and the initial condition. 

 

7.3.  Euler Method 

It is instructive to begin our study of numerical techniques for solving ODEs with a first order 
method.  In practice, we will never use a first-order method to solve an ODE, due to its low 
accuracy.  Nevertheless, the first-order method plays an important role as an instructional tool.  

The Euler method relies on a Taylor series truncated after the linear term. 
 

     2
1 hOh

dx

df
xfxf

ix
ii          (3.2) 

 
which can be rewritten in the nomenclature of ODEs as  
 

     iii xyxxyxy 1          (7.5) 

 
where the discretization is given by ii xxx  1 .  Equation (7.5) is the Euler method.  One 

begins at the initial condition    00 ,, yxyx   as given in the problem statement.  One choose a 

discretization, x , which is a crucial decision.  One then evaluates the derivative at 0x  using the 

ODE (equation (7.1), (7.2) or (7.3)), which also was given in the problem statement.  The Euler 
method in equation (7.5) can then be used directly to estimate the value of the unknown function at 
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xxx  01 .  This process can be 

repeated moving further down the x-axis 
for as long as interest remains.   

Before we introduce specific 
examples, two points of discussion are 
necessary.  First, the choice of 
discretization or step-size is crucial.  It is 
true that the smaller the step-size the more 
accurate the solution.  However, we must 
balance the desire for accuracy with the 
need for computational efficiency.  If our 
choice of step-size is so small that we need 
an intractable number of steps, then that 
doesn’t help us.  If the step size is too big, 
the method will fail.  In fact, for the 
simple methods presented in this book, the 
only reason a numerical routine for 
solving an ODE will fail is because the 
step-size was too large.  The reason can 
be seen in Figure 7.1.  In the top figure, it 
is clear that as the step-size increases, the 
error increases.  The error is quantified in 
the middle figure.  For some functions it is 
possible that the error leads to values of 
the function that are not permitted, such as 
negative values of y(x) in functions that 
require a square root. 

The second point of interest is the 
determination of when to stop the Euler 
iterations.  The final value of x is simply 
chosen by the user.  Frequently, the 
stopping point is determined when one has 
reached a steady state.  For example in the 
bottom part of Figure 7.1, the function 
clearly goes to zero.  Continuing to solve 
the ODE out to large values of x typically 
serves no useful purpose.  If one doesn’t 
know how long it will take to reach a 
steady state, then one may have to guess 
the final value.  If it is too short, then one 
can simply extend the Euler procedure 
using the final point of the previous 
process as the initial condition for the 

 

 

 
Figure 7.1  Application of Euler method to y’(x)=-y with 
initial condition y(x=0)=1.  Top:  solution up to x=1. 
Middle:  error up to x=1.  Bottom:  solution up to x=20. 
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continuation. 
A MATLAB code which implements the Euler method for a single first-order ODE is provided 

later in this chapter. 

 

7.4.  Classical Fourth-Order Runge-Kutta Method 

The obvious solution to inaccuracy of the Euler method is to increase the order of the method.  
There are numerous flavors of ODE solvers of all orders.  Here we simply present the Classical 
Fourth-Order Runge-Kutta (RK4) Method, which is a tried and true solution technique.  The RK4 
method proceeds as does the Euler method by starting at the initial condition and following an 
estimate of the average slope over the interval, y , out to the next discretization point.   

 
    yxxyxy ii 1          (7.6) 

 
In the Euler method, the estimate of the average slope was )( ixyy  , simply the value of 

the slope at the beginning of the interval.  The RK4 method uses a higher order approximation for 
the average slope over the interval, namely  
 

 4321 22
6

1
kkkky          (7.7) 
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        (7.8) 

 
Without a rigorous derivation, we can see that the Runge-Kutta method improves the quality of the 
estimate of the slope over the interval by evaluating the slope at the beginning, middle (twice) and 
end of the interval.  The RK4 method is a fourth-order method, so the error decreases as the step-
size to the fourth power.   
 In Figure 7.2, we present an application of the RK4 method.  In the left figure we show that 
even for coarse discretization, the RK4 method can be very accurate.  In the right figure we 
quantify the relative error.  Note that the error is now shown on a log axis  
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A MATLAB code which implements the classical fourth-order Runge-Kutta method for a 
single first-order ODE is provided later in this chapter. 

 

7.5.  Application to Systems of Ordinary Differential Equations 

The extension of the Euler or Runge-Kutta method to systems of ODEs is very straightforward 
for an initial value problem.  Let’s suppose that we have n ODEs, each of which can be written in 
the form of equation (7.2) as  
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       (7.9) 

 
with n initial conditions: 
 

n  to1  jfor   )( 0,0  jj yxxy         (7.10) 

 
The fact that all of the conditions are given at the same value of x is what makes this problem 

an IVP.  Note carefully, that there are n ODE’s, thus n functions, jf , and n unknown functions, jy , 

  
 
Figure 7.2.  Application of RK4 method to y’(x)=-y with initial condition y(x=0)=1.  Left:  solution 
up to x=1. Right:  error up to x=1. 
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but there is only one independent variable x.  This is what makes this system a system of ODEs 
rather than PDEs.  The techniques in this chapter will not solve PDEs.   

The Euler method for a system of of ODEs can be written as 
 

 )(),(),...(),(),(,*)()( 13211 ininiiiijijij xyxyxyxyxyxfxxyxy    for j = 1 to n (7.11) 

 
There is no difference between this equation and the equation for the single system ODE using 
Euler’s method (equation (7.5)).  In this case, remember that the subscript j attached to the y and 
the f denotes different functions.  The subscript i attached to the x variable denotes steps (or 
iterations).  The Euler algorithm for a system of ODEs simply requires one to evaluate all jf  at 

iteration i from the ODEs in the problem statement (equation 7.9), then compute all jy at iteration 

i+1 from equation (7.11) and repeat the process.   
The extension of RK4 to systems of ODE’s is just as simple as the extension of Euler’s 

method.  However, because RK4 has a little more sophistication, the extension looks more 
complicated, when it is really not.  The RK4 equation for a system of equations is given by  
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  for j = 1 to n    (7.13) 

 
In equation (7.13), the braces in  )( im xy  represent the set of all my  from m = 1 to n., all of which 

are evaluated at ix .   

The multi-ODE RK4 algorithm requires that one first evaluate all jk ,1 .  With jk ,1  in hand, one 

can compute the arguments required for jk ,2 .  Once all of the jk ,2  are known, one can next 

compute the arguments required for jk ,3 .  Once all of the jk ,3  are known, one can next compute the 

arguments required for jk ,4 .  Once all the jk ,1 , jk ,2 , jk ,3  and jk ,4  are known, one can use the RK4 

method (equation (7.12) to evaluate the value of the unknown functions at the next step,  1ij xy .   

MATLAB codes which implement the Euler method and the classical fourth-order Runge-
Kutta method for a system of first-order ODEs are provided later in this chapter. 
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7.6.  Higher-Order ODEs 

Regardless of whether one is pursuing an analytical or numerical solution to a higher than first 
order ODE, there is a simple trick to converting an nth-order ODE to a system of n first-order 
ODEs.  You make a substitution that transforms the nth-order differential equation into n first-
order differential equations.  Consider an  nth-order ODE of the form 
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with the following n initial conditions: 
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The conversion is a three step process.  The first step is defining n new variables, which always 
have the following form: 
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The second step is writing one first-order ODE for each of these n variables.  The first n-1 ODEs 
have a trivial form.  The last ODE is simply the original higher-order ODE, equation (7.14), with 
the new variables, equation (7.16) substituted in. 
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The third and final step of the conversion process is to rewrite the initial conditions, equation 
(7.15), in terms of the new variables,  
 

)1(
00003002001 )(,)(,)(,)(  n

n yxyyxyyxyyxy      (7.17) 

 
After the conversion equations (7.16) and (7.17) have constitute a system of n first-order ODEs 
with n initial conditions.  This IVP can be solved using the methods of the previous section.   

 

7.7.  Boundary Value Problems 

When one invokes Fick’s law of diffusion in a material balance, or Fourier’s law of heat 
conduction in an energy balance, or Newton’s law of viscosity in a momentum balance, one can 
end up with a steady-state model that is a second order ODE, where the independent variable is 
position.  What distinguishes these problems from other higher-order ODEs is that the conditions 
are not given at the same point.  From a mathematical point of view, we can write this equation as  
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with the following 2 boundary conditions: 

 

00 )( yxy   and  ff yxy )(        (7.19) 

 
Instead of being given the value of the function and its derivative at a single point, x0, we now 
have a constraint on the function at two points, x0 and xf.  For example, we know the temperature 
at either side of a metal rod,where our thermocouples are attached, but we know nothing about the 
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derivative of the temperature.  The boundary conditions in equation (7.19) define what is called the 
Boundary Value Problem (BVP).   

As presented, the Euler or RK4 only work for IVPs, not BVPs.  The solution lies in creating a 
numerical method that combines our ability to numerically solve nonlinear algebraic equations 

with ODEs.  If we had been given an initial value of the first derivative, 0

0

)(
y

dx

xdy

xx




, we 

would have an IVP and we could solve the problem easily, using the techniques in Section 7.6 
(breaking up the second-order ODE into two first-order ODEs) and Section 7.5 (solving a system 
of first-order ODEs in an IVP).  Therefore, we play to our strengths.  We will guess a value of 0y .  

We will solve the system of ODEs from x0 to xf.  We will compare the calculated value of  fxy  

with the boundary condition, fy .  If they match within a tolerance, we made a good guess.  

Probably, they don’t match and we must make a new guess for 0y  and iterate again.  What should 

guide our guess for 0y ?  Why, I have a just the thing!  We should use the Newton-Raphson 

method with numerical derivatives for solving a single nonlinear algebraic equation.  The 
unknown is 0y .  The algebraic equation is 

 
  0)(0  ff yxyyg          (7.20) 

 
In other words, we must choose the correct initial condition on the derivative to satisfy the given 
boundary condition on the function.  We understand that since )( fxy  is arrived at via the solution 

of the set of ODEs, that changing the value of 0y  will change the value of )( fxy .  Every 

evaluation of the function given in equation (7.20) requires a solution of the system of ODEs.   
A MATLAB code which implements the solution of a BVP for a system of 2 ODEs using the 

Newton-Raphson method and the classical fourth-order Runge-Kutta method is provided later in 
this chapter. 
 

7.8.  Subroutine Codes 

In this section, we provide routines for implementing the various numerical ODE solver 
methods described above.  Note that these codes correspond to the theory and notation exactly as 
laid out in this book.  These codes do not contain extensive error checking, which would 
complicate the coding and defeat their purpose as learning tools.  That said, these codes work and 
can be used to solve problems. 

As before, on the course website, two entirely equivalent versions of this code are provided 
and are titled code.m and code_short.m.  The short version is presented here.  The longer version, 
containing instructions and serving more as a learning tool, is not presented here.  The numerical 
mechanics of the two versions of the code are identical. 
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Code 7.1.  Euler Method – 1 ODE (euler1_short) 
 

function [x,y]=euler1_short(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
y = zeros(n+1,1); 
y(1) = yo; 
for i =  1:1:n 
   dydx = funkeval(x(i),y(i)); 
      y(i+1) = y(i) + dx*dydx; 
end 
close all; 
iplot = 1; 
if (iplot == 1) 
   plot (x,y,'k-o'), xlabel( 'x' ), ylabel ( 'y' ); 
end 
fid = fopen('euler1_out.txt','w'); 
fprintf(fid,'x                y \n'); 
fprintf(fid,'%23.15e %23.15e   \n', [x,y]'); 
fclose(fid); 
 
function dydx = funkeval(x,y); 
dydx = -1.0*y; 

 
An example of using euler1_short is given below. 
 
» [x,y]=euler1_short(10,0,2,1); 
 
This program generates outputs in three forms.  First, the x and y vectors are stored in memory and 
can be directly accessed.  Second, the program generates a plot of y vs. x. Third, the program 
generates an output file, euler1_out.txt, that contains x and y vectors in tabulated form. 

 
Code 7.2.  Fourth-Order Runge-Kutta Method – 1 ODE (rk41_short) 

 
function [x,y]=rk41_short(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
y = zeros(n+1,1); 
y(1) = yo; 
for i =  1:1:n 
   x1 = x(i); 
   y1 = y(i); 
   k1 = funkeval(x1,y1); 
   x2 = x(i) + 0.5*dx; 
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   y2 = y(i) + 0.5*dx*k1; 
   k2 = funkeval(x2,y2); 
   x3 = x(i) + 0.5*dx; 
   y3 = y(i) + 0.5*dx*k2; 
   k3 = funkeval(x3,y3); 
   x4 = x(i) + dx; 
   y4 = y(i) + dx*k3; 
   k4 = funkeval(x4,y4); 
   dydx = 1.0/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4); 
   y(i+1) = y(i) + dx*dydx; 
end 
close all; 
iplot = 1; 
if (iplot == 1) 
   plot (x,y,'k-o'), xlabel( 'x' ), ylabel ( 'y' ); 
end 
fid = fopen('rk41_out.txt','w'); 
fprintf(fid,'x                y \n'); 
fprintf(fid,'%23.15e %23.15e   \n', [x,y]'); 
fclose(fid); 
 
function dydx = funkeval(x,y); 
dydx = -1.0*y 

 
An example of using rk41_short is given below. 
 
» [x,y]=rk41_short(10,0,2,1); 
 
This command generates outputs in three forms.  First, the x and y vectors are stored in memory 
and can be directly accessed.  Second, the program generates a plot of y vs. x. Third, the program 
generates an output file, rk41_out.txt, that contains x and y vectors in tabulated form. 

 
Code 7.3.  Euler Method – n ODEs (eulern_short) 

 
function [x,y]=eulern(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
m=max(size(yo)); 
y = zeros(n+1,m); 
y(1,1:m) = yo(1:m); 
dydx = zeros(m,1); 
for i =  1:1:n 
   dydx = funkeval(x(i),y(i,1:m)); 
      y(i+1,1:m) = y(i,1:m) + dx*dydx(1:m); 
end 
close all; 
iplot = 1; 
if (iplot == 1) 
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   for i = 1:1:m 
      color_index = get_plot_color(i); 
      plot (x(:),y(:,i),color_index);  
      hold on; 
   end 
   hold off; 
   xlabel( 'x' );  
   ylabel ( 'y' ); 
   legend (int2str([1:m]')); 
end 
fid = fopen('eulern_out.txt','w'); 
fprintf(fid,'x  y(1) ... y(m) \n'); 
for i = 1:1:n+1 
   fprintf(fid,'%23.15e ', x(i)); 
   for j = 1:1:m 
      fprintf(fid,'%23.15e ', y(i,j)); 
   end 
   fprintf(fid,' \n'); 
end 
fclose(fid); 
 
function dydx = funkeval(x,y); 
dydx(1) = -1.0*y(1) - 2.0*y(2) - 0.5*y(3); 
dydx(2) = -0.1*y(1) - 4.0*y(2) - 0.5*y(3); 
dydx(3) = -0.5*y(1) - 0.4*y(2) - 0.2*y(3); 

 
An example of using eulern_short is given below. 
 
» [x,y]=eulern(100,0,10,[1,0,2]); 
 
Note that the fourth input argument, yo, is now a vector.  This program generates outputs in three 
forms.  First, the x vector and y matrix are stored in memory and can be directly accessed.  
Second, the program generates a plot of y vs. x. Third, the program generates an output file, 
eulern_out.txt, that contains x and y in tabulated form. 
 
Also note that this code calls an ancillary function for plotting, get_plot_color, which is 
reproduced below.  The function assigns a different color to each function so that the curves are 
distinguishable on the graph.  This function can be included at the bottom of the file 
eulern_short.m. 

 
function color_index = get_plot_color(i); 
if (i == 1)  
   color_index = 'k-'; 
elseif (i == 2) 
   color_index = 'r-'; 
elseif (i == 3) 
   color_index = 'b-'; 
elseif (i == 4) 
   color_index = 'g-'; 
elseif (i == 5) 
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   color_index = 'm-'; 
elseif (i == 6)  
   color_index = 'k:'; 
elseif (i == 7) 
   color_index = 'r:'; 
elseif (i == 8) 
   color_index = 'b:'; 
elseif (i == 9) 
   color_index = 'g:'; 
elseif (i == 10) 
   color_index = 'm:'; 
else 
   color_index = 'k-'; 
end 

 
Code 7.4.  Classical Fourth-Order Runge-Kutta Method – n ODEs (rk4n_short) 

 
function [x,y]=rk4n_short(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
m=max(size(yo)); 
y = zeros(n+1,m); 
y(1,1:m) = yo(1:m); 
dydx = zeros(1,m); 
ytemp = zeros(1,m); 
k1 = zeros(1,m); 
k2 = zeros(1,m); 
k3 = zeros(1,m); 
k4 = zeros(1,m); 
for i =  1:1:n 
   x1 = x(i); 
   ytemp(1:m) = y(i,1:m); 
   k1(1:m) = funkeval(x1,ytemp); 
   x2 = x(i) + 0.5*dx; 
   ytemp(1:m) = y(i,1:m) + 0.5*dx*k1(1:m); 
   k2(1:m) = funkeval(x2,ytemp); 
   x3 = x(i) + 0.5*dx; 
   ytemp(1:m) = y(i,1:m) + 0.5*dx*k2(1:m); 
   k3(1:m) = funkeval(x3,ytemp); 
   x4 = x(i) + dx; 
   ytemp(1:m) = y(i,1:m) + dx*k3(1:m); 
   k4(1:m) = funkeval(x4,ytemp); 
   dydx(1:m) = 1.0/6.0*(k1(1:m) + 2.0*k2(1:m) + 2.0*k3(1:m) + k4(1:m)); 
   y(i+1,1:m) = y(i,1:m) + dx*dydx(1:m); 
end 
close all; 
iplot = 1; 
if (iplot == 1) 
   for i = 1:1:m 
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      color_index = get_plot_color(i); 
      plot (x(:),y(:,i),color_index);  
      hold on; 
   end 
   hold off; 
   xlabel( 'x' );  
   ylabel ( 'y' ); 
   legend (int2str([1:m]')); 
end 
fid = fopen('rk4n_out.txt','w'); 
fprintf(fid,'x  y(1) ... y(m) \n'); 
for i = 1:1:n+1 
   fprintf(fid,'%23.15e ', x(i)); 
   for j = 1:1:m 
      fprintf(fid,'%23.15e ', y(i,j)); 
   end 
   fprintf(fid,' \n'); 
end 
fclose(fid); 
 
function dydx = funkeval(x,y); 
dydx(1) = -1.0*y(1) - 2.0*y(2) - 0.5*y(3); 
dydx(2) = -0.1*y(1) - 4.0*y(2) - 0.5*y(3); 
dydx(3) = -0.5*y(1) - 0.4*y(2) - 0.2*y(3); 
 
An example of using rk4n_short is given below. 
 
» [x,y]=rk4n(100,0,10,[1,0,2]); 
 
Note that the fourth input argument, yo, is now a vector.  This program generates outputs in three 
forms.  First, the x vector and y matrix are stored in memory and can be directly accessed.  
Second, the program generates a plot of y vs. x. Third, the program generates an output file, 
eulern_out.txt, that contains x and y in tabulated form. 
 
Also note that this code calls an ancillary function for plotting, get_plot_color, which is 
reproduced above.  The function assigns a different color to each function so that the curves are 
distinguishable on the graph.  This function can be included at the bottom of the file rk4n_short.m. 

 
Code 7.5.  Newton-Raphson/Runge-Kutta Method – 2 ODEs BVP (nrnd1 & rk4n) 

 
No new codes were used to solve the BVP problem.  Instead the input files for the Newton-

Raphson with numerical derivatives (nrnd1.m) and the classical fourth-order Runge-Kutta method 
for a system of ODEs (rk4n.m) were modified. 

 
In the file rk4n.m, we entered the ODEs 
 

function dydx = funkeval(x,y); 
dydx(1) = y(2); 
dydx(2) = -1.0*y(1) - 0.5*y(2); 
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In the file nrnd1.m, the input function was specified as 
 

function f = funkeval(x) 
xo = 0; 
yo_1 = 1; 
yo_2 = x; 
xf = 2.0; 
yf = 1.0; 
n = 100; 
[x,y]=rk4n(n,xo,xf,[yo_1,yo_2]); 
yf_calc = y(n+1,1); 
f = yf_calc-yf; 

 
In this input file, we call the Runge-Kutta routine.  We provide the given boundary conditions.  

We allow the initial condition for the second function to vary with each iteration, since it is the 
unknown in the Newton-Raphson procedure.   

An example of using solving this BVP is given below. 
 
» [x0,err] = nrnd1(0.1) 
icount = 1 xold = 1.000000e-001 f = -1.012145e+000 df = 5.850002e-001 xnew = 
1.830161e+000  err = 1.000000e+002  
 
icount = 2 xold = 1.830161e+000 f = -2.167155e-013 df = 5.850002e-001 xnew = 
1.830161e+000  err = 2.023704e-013  
 
x0 =    1.8302 
err =  2.0237e-013 
 
 
The problem was solved in one iteration because the ODEs were linear.  It took a second iteration 
to identify convergence.  The initial value of the derivative required to solve the boundary 
condition is 1.8302.  The rk4n.m program generates a plot of y vs. x and generates an output file, 
rk4n_out.txt, that contains x and y in tabulated form.  However, be warned that this plot and table 
of data correspond to the last call of the Runge-Kutta routine by the Newton-Raphson code, which 
would have been to evaluate the numerical derivative.  Therefore, this plot does not correspond 
exactly to the solution.  To generate the solution, run the Runge-Kutta code with the appropriate 
initial condition. 
 
 
» [x,y]=rk4n(100,0,2,[1,1.8302]); 
 
The resulting plot is shown in Figure 7.3.  It demonstrates that the final value of y is indeed the 
specified value of 1. 
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7.9.  Problems 

Problems are located on course website. 
 
 

 
Figure 7.3.  Solution to boundary value problem. 
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