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Chapter 5.  Solution of a System of 
Nonlinear Algebraic Equations 

 

5.1.  Introduction 

Not only is life nonlinear, but its variegated phenomena are typically coupled to each other.  
The dynamic evolution of a system or a material cannot be described by independent solutions of a 
material balance, a momentum balance and an energy balance because each equation depends 
upon the variables solved for in the other equations.  Thus we end up with systems of nonlinear 
equations to describe interesting phenomena.  Fear not!  Just as was the case in the solution of 
single nonlinear algebraic equations, today there exist reliable tools to methodically solve systems 
of nonlinear algebraic equations.   

As illustrated in the previous chapter, the challenge in solving a single nonlinear algebraic 
equation is finding a reasonable initial guess.  If you think mucking around in one-dimensional 
space, looking for an initial guess that will allow the method to converge, is painful, then you can 
imagine that wandering in n-dimensional space looking for an n-dimensional starting point is 
significantly more difficult.  Nevertheless, it can be done.  What is required is access to the 
appropriate numerical tool coupled with the understanding of the physical system that is provided 
by the other courses in the undergraduate curriculum. 

 

5.2.  Multivariate Newton-Raphson Method 

Not surprisingly, the Multivariate Newton-Raphson method is a direct extension of the single 
variable Newton-Raphson method.  Where the single variable Newton-Raphson method solved 

0)( xf , the multivariate version will solve a system of n equations of the form 
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        (5.1) 

 
We will adopt the short-hand notation for equation (5.1) 

 
0)( xf            (5.2) 

 
Note that this short hand notation, which was used for linear algebra, does not here imply anything 
about the linearity of any of the equations in )(xf . 

The basis of the single variable Newton-Raphson method lay in the fact that we approximate 
the derivative of )(xf  numerically using a forward finite difference formula based on a truncated 
Taylor series, 
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Although they were not presented in Chapter 3, multivariate Taylor series also exist.  The idea 
behind the a multivariate Taylor series lies in the definition of the total derivate of a multivariate 
function.  For a function of two variable we can write,  
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where 
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 is called the partial derivative of the function, f, with respect to variable, x1.  The 

subscript outside the parentheses in a partial derivative indicates variables that were treated as 
constants during the differentiation.  For a function of n variables, we have 
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The multivariate Taylor series expansion, truncated after the first derivative is thus 
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Let it be clear that the i subscript on the variable x indicates a different independent variable.  

The superscript (k) on the x is not an exponent.  The parentheses are included to make clear it is a 
notation that does not signify a mathematical operation.  Instead, the superscript (k) indicates a 
different value of x, which we shall soon see can be associated with the k and k+1 iterations of the 
Newton-Raphson method.  The subscript that now appears outside the parentheses, imx  , indicates 

that all variables except mx  are held constant in the differentiation.  The final subscript )(kx  of the 

partial derivative indicates the value of x  where the derivative is evaluated. 
 
If n=1, then equation (5.5) simplifies to  
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Equation (5.6) can be rearranged for  1

1
kx  
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which is precisely the Newton-Raphson method provided in equation (4.11) once we set 

   01
1 kxf .  Similarly for the multivariate case, in which we have n equation and n unknowns, 

we write equation (5.5) for every function  
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where all that has been done is to add a subscript j to f., identifying each equation from j = 1 to n.  
Equation (5.8) is a system of nonlinear algebraic equations.  The n unknowns are the next iteration 

of x,  1
1

kx .  Following the Newton-Raphson procedure, we set   0)1( k
j xf  for all j.  Again, this 

choice is based on the fact that we intend for our next estimate to be a better approximation of the 
root, at which the functions are zero.  By convention, we express equation (5.8) in matrix notation 
as  
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)()()( kkk RxJ           (5.9) 

 

where )(kR  is called the residual vector at the kth iteration and is defined as 
 

 )()( kk xfR           (5.10) 

 
In other words, the residual is simply a vector of the values of the functions evaluated at the 

current guess.  The  Jacobian matrix at the kth iteration, 
)(kJ , defined as 
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Thus the Jacobian matrix is an nxn matrix of all the possible pairwise combinations of partial first 

derivatives between n unknown variables, xi, and n functions, fj.  The difference vector, )(kx , is 
defined as 

 
)()1()( kkk xxx            (5.12) 

 
The difference vector can be rearranged for the value of x  at the new iteration, 
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         (5.13) 

 
The algorithm for solving a system of nonlinear algebraic equations via the multivariate 

Newton-Raphson method follows analogously from the single variable version.   The steps are as 
follows: 

1. Make an initial guess for x . 

2. Calculate the Jacobian and the Residual at the current value of x . 

3. Solve equation (5.9) for )(kx . 

4. Calculate 
)1( kx  from equation (5.13). 

5. If the solution has not converged, loop back to step 2. 
 
The multivariate Newton-Raphson Method suffers from the same short-comings as the single-

variable Newton-Raphson Method.  Specifically, as with all methods for solving nonlinear 
algebraic equations, you need a good initial guess.  Second, the method does provide fast 
(quadratic) convergence until you are close to the solution.  Third, if the determinant of the 
Jacobian is zero, the method fails.  This last constraint is the multi-dimensional analogue of the 
fact that the single variable Newton-Raphson method diverged when the derivative was zero. 
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The determination of convergence of a system that has multiple variables requires a tolerance.  

One could use a tolerance on each variable.  That is the relative error on xi must be less than toli.  
Alternatively, one can use something like the root mean square (RMS) error,  
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to provide a single error for the entire system.  In this case, even with an RMS relative error on 

x of 10-m, you are not guaranteed that every variable has m good significant digits.  You are only 
guaranteed that the RMS error is less than the acceptable tolerance.    

 
Let’s work two examples. 
 

Example 5.1.  Multivariate Newton-Raphson Method   
 
Consider the system of two nonlinear algebraic equations.   
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The first equation is that of a circle with 
radius 2 centered at the origin.  The second 
equation is that of a parabola.  In Figure 
5.1.  We plot the solution to the two 
equations independently.  Since there are 
two variables in each equation, there are 
an infinite number of solutions for the 
equations treated independently.  The 
solution to the system of nonlinear 
algebraic equations corresponds to ordered 
pairs of ),( 21 xx  that satisfy both 
equations.  In Figure 5.1., this corresponds 
to the intersection between the two curves.   

Any solution technique finds only one 
root at a time.  From the plot we can 
estimate that one of the roots is near 

)2,1(),( 21 xx . 
In order to use the multivariate 

Newton-Raphson method, we must first 

 
Figure 5.1.  Plot of fj(x1,x2) = 0 for j = 1 and 2. 
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determine the functional form of the n2 partial derivatives analytically.  For this small system, we 
have 
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The residual is composed simply of the functions,  
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We now follow the algorithm outlined above. 

 
Step One.  Make an initial guess.  )2,1(),( 21 xx  
Step Two.  Using that initial guess, calculate the residual and the Jacobian. 
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Step Three.  Solve equation (5.9) for )(kx . 
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Step 4.  Calculate 
)1( kx  from equation (5.13). 
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Step 5.  If the solution has not converged, loop back to step 2. 
 

Further iterations yield 
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So one of the two roots is located at )7913.1,8895.0(),( 21 xx .  (The other is located at 

)7913.1,8895.0(),( 21 xx  by symmetry.  From an examination of the final value of x  both 
solutions have converged to an absolute error on x of less than 10-8. 

 
Example 5.2.  Multivariate Newton-Raphson Method:  Linear Systems   

 
Linear systems are a subset of non-linear systems.  The multivariate Newton-Raphson solve 

linear systems exactly in one iteration, just as was the case in the single-variable problem. 
Consider the system of linear equations: 
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The solutions of the two independent 

equations is plotted in Figure 5.2.  The 
solution of the system of equations is the 
intersection of the two lines.  For linear 
equations, the Jacobian is a constant matrix,  
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The residual is composed simply of the 
functions,  
 

 




















13

45

21

21

2

1

xx

xx

f

f
R  

 
We now follow the algorithm outlined above. 

 
Step One.  Make an initial guess.  

)2,2(),( 21 xx  
Step Two.  Using that initial guess, calculate the residual and the Jacobian. 
 

 
Figure 5.2.  Plot of fj(x1,x2) = 0 for j = 1 and 2. 
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Step Three.  Solve equation (5.9) for )(kx . 
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Step 4.  Calculate 
)1( kx  from equation (5.13). 
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A second iteration will show that this is the exact solution. 

 

5.3.  Multivariate Newton-Raphson Method with Numerical Derivatives 

There is a pretty obvious drawback to the Multivariate Newton-Raphson method, namely that 
one must provide the analytical form of nxn partial derivatives.  If n is small, it can be sometimes 
be done.  If n is large, this process is simply not practical.  Therefore, just as was the case for the 
single variable Newton-Raphson method, we turn to numerical methods to provide estimates of the 
partial derivatives.  The second-order centered-finite difference formula for the first derivative was 
derived in Chapter 3,  
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This can be directly extended to partial derivatives as follows,  
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Of note, only the value of ix  changes when the differentiation is with respect to ix .  

Furthermore, the value of discretization, ih , may be different for each variable, ix .  Each iteration 

of a multivariate Newton-Raphson method with analytical derivatives requires n function 
evaluations and n2 derivative evaluations.  Each iteration of a multivariate Newton-Raphson 
method with numerical derivatives requires n+2n2 function evaluations.  So there is more 
computational effort in the numerical scheme, but potentially a much reduced effort in developing 
the code since only one function must be entered. 

A MATLAB code which implements the multivariate Newton-Raphson method with 
numerical derivatives is provided later in this chapter. 
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5.4.  Subroutine Codes 

In this section, we provide a routine for implementing the multivariate Newton-Raphson 
method with numerical derivatives.  Note that these codes correspond to the theory and notation 
exactly as laid out in this book.  These codes do not contain extensive error checking, which would 
complicate the coding and defeat their purpose as learning tools.  That said, these codes work and 
can be used to solve problems. 

As before, on the course website, two entirely equivalent versions of this code are provided 
and are titled code.m and code_short.m.  The short version is presented here.  The longer version, 
containing instructions and serving more as a learning tool, is not presented here.  The numerical 
mechanics of the two versions of the code are identical. 

 
Code 5.1.  Multivariate Newton-Raphson with Numerical derivatives (nrndn_short) 

 
function [x,err,f] = nrndn(x0,tol,iprint) 
% 
% inputs: 
% x0 = initial guess of x, column vector of length n 
% tol = RMS tolerance on relative error on x, scalar 
% iprint = value of 1 requests iteration information 
% f(x) entered in the function "funkeval" at the bottom of this file 
% 
% outputs: 
%  
% x = converged solution, column vector of length n 
% f = RMS value of f, scalar 
% err = RMS value of relative error on x, scalar 
% 
maxit = 1000; 
n = max(size(x0)); 
Residual = zeros(n,1);  
Jacobian = zeros(n,n); 
InvJ = zeros(n,n); 
dx = zeros(n,1); 
x = zeros(n,1); 
xold = zeros(n,1); 
xeval = zeros(n,1); 
xp = zeros(2); 
fp = zeros(n,n,2); 
dxcon = zeros(n,1); 
dxcon(1:n) = 0.01; 
x = x0; 
err = 100.0; 
iter = 0; 
while ( err > tol )  
   for j = 1:1:n 
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      dx(j) = min(dxcon(j)*x(j),dxcon(j)); 
      i2dx(j) = 1.0/(2.0*dx(j)); 
   end 
   Residual = funkeval(x); 
   for j = 1:1:n 
      for i = 1:1:n 
         xeval(i) = x(i); 
      end 
      xp(1) = x(j) - dx(j); 
    xp(2) = x(j) + dx(j); 
      for k = 1:1:2 
         xeval(j) = xp(k); 
         fp(:,j,k) = funkeval(xeval); 
      end 
   end 
   for i = 1:1:n 
      for j = 1:1:n 
         Jacobian(i,j) = i2dx(j)*( fp(i,j,2) - fp(i,j,1) ); 
      end 
   end 
   xold = x; 
   invJ = inv(Jacobian); 
   deltax = -invJ*Residual; 
   for j = 1:1:n 
      x(j) = xold(j) + deltax(j); 
   end 
   iter = iter +1; 
   err = sqrt( sum(deltax.^2) /n  ) ; 
   f = sqrt(sum(Residual.*Residual)/n); 
   if (iprint == 1) 
      fprintf (1,'iter = %4i, err = %9.2e f = %9.2e \n ', iter, err, f); 
   end 
   if ( iter > maxit) 
      Residual 
      error ('maximum number of iterations exceeded'); 
   end 
end 
 
function f = funkeval(x) 
n = max(size(x)); 
f = zeros(n,1); 
f(1) = x(1)^2 + x(2)^2 - 4; 
f(2) = x(1)^2 - x(2) + 1; 

 
An example of using nrndn_short is given below. 
 
» [x,err,f] = NRNDN_short([2,2],1.0e-6,1) 
iter =    1, err = 5.83e-001 f = 3.54e+000  
 iter =    2, err = 1.91e-001 f = 6.60e-001  
 iter =    3, err = 2.78e-002 f = 7.31e-002  
 iter =    4, err = 6.13e-004 f = 1.54e-003  
 iter =    5, err = 2.99e-007 f = 7.52e-007  
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x =    0.8895    1.7913 
err =  2.9893e-007 
f =  7.5211e-007 
 

The root is at )7913.1,8895.0(),( 21 xx  and the error is less than the tolerance of 10-6. 
 

5.5.  Problems 

 
Problems are located on course website. 

 


