
Systems of Nonlinear Algebraic Equations - 75

Chapter 5. Solution of a System of
Nonlinear Algebraic Equations

5.1. Introduction

Not only is life nonlinear, but its variegated phenomena are typically coupled to each other.
The dynamic evolution of a system or a material cannot be described by independent solutions of a
material balance, a momentum balance and an energy balance because each equation depends
upon the variables solved for in the other equations. Thus we end up with systems of nonlinear
equations to describe interesting phenomena. Fear not! Just as was the case in the solution of
single nonlinear algebraic equations, today there exist reliable tools to methodically solve systems
of nonlinear algebraic equations.

As illustrated in the previous chapter, the challenge in solving a single nonlinear algebraic
equation is finding a reasonable initial guess. If you think mucking around in one-dimensional
space, looking for an initial guess that will allow the method to converge, is painful, then you can
imagine that wandering in n-dimensional space looking for an n-dimensional starting point is
significantly more difficult. Nevertheless, it can be done. What is required is access to the
appropriate numerical tool coupled with the understanding of the physical system that is provided
by the other courses in the undergraduate curriculum.

5.2. Multivariate Newton-Raphson Method

Not surprisingly, the Multivariate Newton-Raphson method is a direct extension of the single
variable Newton-Raphson method. Where the single variable Newton-Raphson method solved

0)(xf , the multivariate version will solve a system of n equations of the form

Systems of Nonlinear Algebraic Equations - 76

 
 
 

 
  0,,...,,

0,,...,,

...

0,,...,,

0,,...,,

0,,...,,

1321

13211

13213

13212

13211


















nnn

nnn

nn

nn

nn

xxxxxf

xxxxxf

xxxxxf

xxxxxf

xxxxxf

 (5.1)

We will adopt the short-hand notation for equation (5.1)

0)(xf (5.2)

Note that this short hand notation, which was used for linear algebra, does not here imply anything
about the linearity of any of the equations in)(xf .

The basis of the single variable Newton-Raphson method lay in the fact that we approximate
the derivative of)(xf numerically using a forward finite difference formula based on a truncated
Taylor series,

21

21
1

)()(
)(

1
xx

xfxf

dx

df
xf

x 


 (4.8)

Although they were not presented in Chapter 3, multivariate Taylor series also exist. The idea
behind the a multivariate Taylor series lies in the definition of the total derivate of a multivariate
function. For a function of two variable we can write,

  , 2
2

1
1

21

12

dx
x

f
dx

x

f
xxdf

xx






















 (5.3)

where
2

1 x
x

f











 is called the partial derivative of the function, f, with respect to variable, x1. The

subscript outside the parentheses in a partial derivative indicates variables that were treated as
constants during the differentiation. For a function of n variables, we have

 
1

















n

i
i

xi

dx
x

f
xdf

im

 (5.4)

The multivariate Taylor series expansion, truncated after the first derivative is thus

Systems of Nonlinear Algebraic Equations - 77

        
1

1)1()(

)(




 













n

i

k
i

k
i

xxi

kk xx
x

f
xfxf

kim

 (5.5)

Let it be clear that the i subscript on the variable x indicates a different independent variable.

The superscript (k) on the x is not an exponent. The parentheses are included to make clear it is a
notation that does not signify a mathematical operation. Instead, the superscript (k) indicates a
different value of x, which we shall soon see can be associated with the k and k+1 iterations of the
Newton-Raphson method. The subscript that now appears outside the parentheses, imx  , indicates

that all variables except mx are held constant in the differentiation. The final subscript)(kx of the

partial derivative indicates the value of x where the derivative is evaluated.

If n=1, then equation (5.5) simplifies to

          1
11

1

1
11

)(

  kk

x

kk xx
dx

df
xfxf

k

 (5.6)

Equation (5.6) can be rearranged for  1

1
kx

   
     

 kx

kk
kk

dx

df

xfxf
xx

1
1

1
11

1
1

1


 

 (5.7)

which is precisely the Newton-Raphson method provided in equation (4.11) once we set

   01
1 kxf . Similarly for the multivariate case, in which we have n equation and n unknowns,

we write equation (5.5) for every function

        
1

1)1()(

)(




 













n

i

k
i

k
i

xxi

k
j

k
j xx

x

f
xfxf

kim

 (5.8)

where all that has been done is to add a subscript j to f., identifying each equation from j = 1 to n.
Equation (5.8) is a system of nonlinear algebraic equations. The n unknowns are the next iteration

of x,  1
1

kx . Following the Newton-Raphson procedure, we set   0)1(k
j xf for all j. Again, this

choice is based on the fact that we intend for our next estimate to be a better approximation of the
root, at which the functions are zero. By convention, we express equation (5.8) in matrix notation
as

Systems of Nonlinear Algebraic Equations - 78

)()()(kkk RxJ  (5.9)

where)(kR is called the residual vector at the kth iteration and is defined as

 )()(kk xfR  (5.10)

In other words, the residual is simply a vector of the values of the functions evaluated at the

current guess. The Jacobian matrix at the kth iteration,
)(kJ , defined as

)(

)(
,

kim

j

xx
i

k
ij x

f
J


















 (5.11)

Thus the Jacobian matrix is an nxn matrix of all the possible pairwise combinations of partial first

derivatives between n unknown variables, xi, and n functions, fj. The difference vector,)(kx , is
defined as

)()1()(kkk xxx   (5.12)

The difference vector can be rearranged for the value of x at the new iteration,

)()()1(kkk xxx 
 (5.13)

The algorithm for solving a system of nonlinear algebraic equations via the multivariate

Newton-Raphson method follows analogously from the single variable version. The steps are as
follows:

1. Make an initial guess for x .

2. Calculate the Jacobian and the Residual at the current value of x .

3. Solve equation (5.9) for)(kx .

4. Calculate
)1(kx from equation (5.13).

5. If the solution has not converged, loop back to step 2.

The multivariate Newton-Raphson Method suffers from the same short-comings as the single-

variable Newton-Raphson Method. Specifically, as with all methods for solving nonlinear
algebraic equations, you need a good initial guess. Second, the method does provide fast
(quadratic) convergence until you are close to the solution. Third, if the determinant of the
Jacobian is zero, the method fails. This last constraint is the multi-dimensional analogue of the
fact that the single variable Newton-Raphson method diverged when the derivative was zero.

Systems of Nonlinear Algebraic Equations - 79

The determination of convergence of a system that has multiple variables requires a tolerance.

One could use a tolerance on each variable. That is the relative error on xi must be less than toli.
Alternatively, one can use something like the root mean square (RMS) error,

2

1
)1(

)1()(
)(1













 


n

i
k

i

k
i

k
ik

RMS x

xx

n
err (5.14)

to provide a single error for the entire system. In this case, even with an RMS relative error on

x of 10-m, you are not guaranteed that every variable has m good significant digits. You are only
guaranteed that the RMS error is less than the acceptable tolerance.

Let’s work two examples.

Example 5.1. Multivariate Newton-Raphson Method

Consider the system of two nonlinear algebraic equations.

   
    01),(

04),(

2
2

1212

2
2

2
1211





xxxxf

xxxxf

The first equation is that of a circle with
radius 2 centered at the origin. The second
equation is that of a parabola. In Figure
5.1. We plot the solution to the two
equations independently. Since there are
two variables in each equation, there are
an infinite number of solutions for the
equations treated independently. The
solution to the system of nonlinear
algebraic equations corresponds to ordered
pairs of),(21 xx that satisfy both
equations. In Figure 5.1., this corresponds
to the intersection between the two curves.

Any solution technique finds only one
root at a time. From the plot we can
estimate that one of the roots is near

)2,1(),(21 xx .
In order to use the multivariate

Newton-Raphson method, we must first

Figure 5.1. Plot of fj(x1,x2) = 0 for j = 1 and 2.

Systems of Nonlinear Algebraic Equations - 80

determine the functional form of the n2 partial derivatives analytically. For this small system, we
have

12

2 2

2

2
221

1

2
12

2
2

1
211

1

1
11

















































x

f
Jx

x

f
J

x
x

f
Jx

x

f
J

,,

,,

The residual is composed simply of the functions,

   
    






















1

4

2
2

1

2
2

2
1

2

1

xx

xx

f

f
R

We now follow the algorithm outlined above.

Step One. Make an initial guess.)2,1(),(21 xx
Step Two. Using that initial guess, calculate the residual and the Jacobian.












12

42)1(J and 









0

1)1(R

Step Three. Solve equation (5.9) for)(kx . 











2.0

1.0)1(x

Step 4. Calculate
)1(kx from equation (5.13). 










8.1

9.0)2(x

Step 5. If the solution has not converged, loop back to step 2.

Further iterations yield

 x J R x

1








2

1
 








12

42
 








0

1
 











2.0

1.0

2








8.1

9.0
 








18.1

6.38.1
 








01.0

05.0
 








00870

01040

.-

.-

Systems of Nonlinear Algebraic Equations - 81

3









79131

88960

.

.
 








0000177921

5826377921

. -.

. .
 











310790

318350

e.

e.
 








4-0.1650e-

4-0.6991e-

4








79131

88950

.

.
 








0000177911

5826377911

. -.

. .
 








8-0.4887e

8-0.5159e
 








8-0.0059e-

8-0.2780e-

So one of the two roots is located at)7913.1,8895.0(),(21 xx . (The other is located at

)7913.1,8895.0(),(21 xx by symmetry. From an examination of the final value of x both
solutions have converged to an absolute error on x of less than 10-8.

Example 5.2. Multivariate Newton-Raphson Method: Linear Systems

Linear systems are a subset of non-linear systems. The multivariate Newton-Raphson solve

linear systems exactly in one iteration, just as was the case in the single-variable problem.
Consider the system of linear equations:

   
    013),(

045),(

21212

21211




xxxxf

xxxxf

The solutions of the two independent

equations is plotted in Figure 5.2. The
solution of the system of equations is the
intersection of the two lines. For linear
equations, the Jacobian is a constant matrix,












31

15)(kJ

The residual is composed simply of the
functions,

 




















13

45

21

21

2

1

xx

xx

f

f
R

We now follow the algorithm outlined above.

Step One. Make an initial guess.

)2,2(),(21 xx
Step Two. Using that initial guess, calculate the residual and the Jacobian.

Figure 5.2. Plot of fj(x1,x2) = 0 for j = 1 and 2.

Systems of Nonlinear Algebraic Equations - 82












31

15)1(J and 










3

8)1(R

Step Three. Solve equation (5.9) for)(kx . 









43751

31251)1(

.-

.-
x

Step 4. Calculate
)1(kx from equation (5.13). 










56250

68750)2(

.

.
x

A second iteration will show that this is the exact solution.

5.3. Multivariate Newton-Raphson Method with Numerical Derivatives

There is a pretty obvious drawback to the Multivariate Newton-Raphson method, namely that
one must provide the analytical form of nxn partial derivatives. If n is small, it can be sometimes
be done. If n is large, this process is simply not practical. Therefore, just as was the case for the
single variable Newton-Raphson method, we turn to numerical methods to provide estimates of the
partial derivatives. The second-order centered-finite difference formula for the first derivative was
derived in Chapter 3,

     211

2
hO

h

xfxf

dx

df ii

xi




  (3.7)

This can be directly extended to partial derivatives as follows,

     22121

2

,,,,,,
hO

h

xhxxxfxhxxxf

dx

df

i

niijniij

xxi

j

im
i






















 (5.15)

Of note, only the value of ix changes when the differentiation is with respect to ix .

Furthermore, the value of discretization, ih , may be different for each variable, ix . Each iteration

of a multivariate Newton-Raphson method with analytical derivatives requires n function
evaluations and n2 derivative evaluations. Each iteration of a multivariate Newton-Raphson
method with numerical derivatives requires n+2n2 function evaluations. So there is more
computational effort in the numerical scheme, but potentially a much reduced effort in developing
the code since only one function must be entered.

A MATLAB code which implements the multivariate Newton-Raphson method with
numerical derivatives is provided later in this chapter.

Systems of Nonlinear Algebraic Equations - 83

5.4. Subroutine Codes

In this section, we provide a routine for implementing the multivariate Newton-Raphson
method with numerical derivatives. Note that these codes correspond to the theory and notation
exactly as laid out in this book. These codes do not contain extensive error checking, which would
complicate the coding and defeat their purpose as learning tools. That said, these codes work and
can be used to solve problems.

As before, on the course website, two entirely equivalent versions of this code are provided
and are titled code.m and code_short.m. The short version is presented here. The longer version,
containing instructions and serving more as a learning tool, is not presented here. The numerical
mechanics of the two versions of the code are identical.

Code 5.1. Multivariate Newton-Raphson with Numerical derivatives (nrndn_short)

function [x,err,f] = nrndn(x0,tol,iprint)
%
% inputs:
% x0 = initial guess of x, column vector of length n
% tol = RMS tolerance on relative error on x, scalar
% iprint = value of 1 requests iteration information
% f(x) entered in the function "funkeval" at the bottom of this file
%
% outputs:
%
% x = converged solution, column vector of length n
% f = RMS value of f, scalar
% err = RMS value of relative error on x, scalar
%
maxit = 1000;
n = max(size(x0));
Residual = zeros(n,1);
Jacobian = zeros(n,n);
InvJ = zeros(n,n);
dx = zeros(n,1);
x = zeros(n,1);
xold = zeros(n,1);
xeval = zeros(n,1);
xp = zeros(2);
fp = zeros(n,n,2);
dxcon = zeros(n,1);
dxcon(1:n) = 0.01;
x = x0;
err = 100.0;
iter = 0;
while (err > tol)
 for j = 1:1:n

Systems of Nonlinear Algebraic Equations - 84

 dx(j) = min(dxcon(j)*x(j),dxcon(j));
 i2dx(j) = 1.0/(2.0*dx(j));
 end
 Residual = funkeval(x);
 for j = 1:1:n
 for i = 1:1:n
 xeval(i) = x(i);
 end
 xp(1) = x(j) - dx(j);
 xp(2) = x(j) + dx(j);
 for k = 1:1:2
 xeval(j) = xp(k);
 fp(:,j,k) = funkeval(xeval);
 end
 end
 for i = 1:1:n
 for j = 1:1:n
 Jacobian(i,j) = i2dx(j)*(fp(i,j,2) - fp(i,j,1));
 end
 end
 xold = x;
 invJ = inv(Jacobian);
 deltax = -invJ*Residual;
 for j = 1:1:n
 x(j) = xold(j) + deltax(j);
 end
 iter = iter +1;
 err = sqrt(sum(deltax.^2) /n) ;
 f = sqrt(sum(Residual.*Residual)/n);
 if (iprint == 1)
 fprintf (1,'iter = %4i, err = %9.2e f = %9.2e \n ', iter, err, f);
 end
 if (iter > maxit)
 Residual
 error ('maximum number of iterations exceeded');
 end
end

function f = funkeval(x)
n = max(size(x));
f = zeros(n,1);
f(1) = x(1)^2 + x(2)^2 - 4;
f(2) = x(1)^2 - x(2) + 1;

An example of using nrndn_short is given below.

» [x,err,f] = NRNDN_short([2,2],1.0e-6,1)
iter = 1, err = 5.83e-001 f = 3.54e+000
 iter = 2, err = 1.91e-001 f = 6.60e-001
 iter = 3, err = 2.78e-002 f = 7.31e-002
 iter = 4, err = 6.13e-004 f = 1.54e-003
 iter = 5, err = 2.99e-007 f = 7.52e-007

Systems of Nonlinear Algebraic Equations - 85

x = 0.8895 1.7913
err = 2.9893e-007
f = 7.5211e-007

The root is at)7913.1,8895.0(),(21 xx and the error is less than the tolerance of 10-6.

5.5. Problems

Problems are located on course website.

