
Single Nonlinear Algebraic Equation - 56

Chapter 4. Solution of a Single Nonlinear
Algebraic Equation

4.1. Introduction

Life, my friends, is nonlinear. As such, in our roles as problem-solvers, we will be called upon
time and again to tackle nonlinear problems. As luck would have it, life hasn’t changed much in
its nonlinearity from what it was for previous generations. Consequently, the mathematicians and
computer scientists that have gone before us have left us with a plethora of tools for subduing all
manner of nonlinear beasts. Therefore as we embrace what is undoubtedly a daunting challenge,
we do so with the knowledge that, armed with the appropriate tools, the solution of nonlinear
algebraic equations too is a task we can methodically add to our repertoire.

The solution of nonlinear algebraic equations is frequently called root-finding, since our goal
in this chapter is to find the value of x such that   0xf no matter how pernicious the function

may appear. The roots of an equation are those values of x that satisfy   0xf .
There are a myriad of way to find roots.The organization of this chapter is to provide a general

understanding of the approach to solving nonlinear algebraic equations. We then examine two
intuitive approaches that we shall find are deeply flawed. We then examine other approaches that
offer some improvements.

4.2. Iterative Solutions and Convergence

Our goal is to find the value of x that satisfies the following equation.

0)(xf (4.1)

where f(x) is some nonlinear algebraic equation.
All root-finding techniques are iterative, meaning we make a guess and we keep updating our

guess based on the value of f(x). We stop updating our guess when we meet some specified

Single Nonlinear Algebraic Equation - 57

convergence criterion. The convergence criteria can be on x or on f(x). One example of a
convergence criteria is the absolute value of the function in question, f(x).

)(, iif xferr  (4.2)

Since f(x) goes to zero at the root, the absolute value of f(x) is an indication of how close we

are to the root, at least in the neighborhood of the root. The problem with this error is that it has
units of f(x). If the function is an energy balance, the units of the equation might be kJ/mole or it
might be J/mole, which would make the value of f(x) one thousand times larger. If one possesses
sufficient familiarity with the problem that one has an absolute measure of tolerance, then one can
proceed with this convergence criterion.

Alternatively we can specify a convergence criteria on x itself. In this case, there are two types
of convergence criteria, absolute and relative. The absolute error is given by

1,  iiix xxerr (4.3)

Again, this error has units of x. If we want a relative error, which is dimensionless, then we use:

i

ii
ix x

xx
err 1

,


 (4.4)

This gives us a percent error based on our current value of x. The advantage of this error is

that if we pick a tolerance of 10-n, then our answer will always have n good significant digits. For
example, if we use this relative error on x and set our acceptable tolerance to 10-6, then our answer
will always have 6 good significant digits. For this reason, the relative error on x is the preferred
error to use. However, this error has one drawback that the others do not have. Namely, this error
will diverge if the root is located at zero.

Regardless of what choice of error we use, we have to specify a tolerance. The tolerance tells
us the maximum allowable error. We stop the iterations when the error is less than the tolerance.

4.3. Successive Approximations

A primitive technique to solve for the roots of f(x) is called successive approximation. In
successive approximation, we rearrange the equation so that we isolate x on left-hand side. So for
the example f(x) given below

0)exp()( xxxf (4.5.a)

Single Nonlinear Algebraic Equation - 58

we rearrange as

)exp(xx  (4.5.b)

We then make an initial guess for x, plug it into the right hand side and see if it equals our

guess. If it does not, we take the new value of the right-hand side of the equation and use that for
x. We continue until our guess gives us the same answer.

Example 4.1. Successive Approximations

Let’s find the root to the nonlinear algebraic equation given in equation (4.5.b) using
successive approximations. We will use an initial guess of 0.5. We will use a relative error on x
as the criterion for convergence and we will set our tolerance at 10-6.

iteration x exp(-x) relative error

1 0.5000000 0.6065307 -
2 0.6065307 0.5452392 1.1241E-01
3 0.5452392 0.5797031 5.9451E-02
4 0.5797031 0.5600646 3.5065E-02
5 0.5600646 0.5711721 1.9447E-02
6 0.5711721 0.5648629 1.1169E-02
7 0.5648629 0.5684380 6.2893E-03
8 0.5684380 0.5664095 3.5815E-03
9 0.5664095 0.5675596 2.0265E-03
10 0.5675596 0.5669072 1.1508E-03
11 0.5669072 0.5672772 6.5221E-04
12 0.5672772 0.5670674 3.7005E-04
13 0.5670674 0.5671864 2.0982E-04
14 0.5671864 0.5671189 1.1902E-04
15 0.5671189 0.5671571 6.7494E-05
16 0.5671571 0.5671354 3.8280E-05
17 0.5671354 0.5671477 2.1710E-05
18 0.5671477 0.5671408 1.2313E-05
19 0.5671408 0.5671447 6.9830E-06
20 0.5671447 0.5671425 3.9604E-06
21 0.5671425 0.5671438 2.2461E-06
22 0.5671438 0.5671430 1.2739E-06
23 0.5671430 0.5671434 7.2246E-07

In this example it took 23 iterations, or evaluations of the function in order to converge (obtain an
error less than our specified tolerance). So, we now have converged to a final answer of x =
0.567143.

Example 4.2. Successive Approximations

Now let’s try to solve an analogous problem. Equation (4.6) has the same root as equation
(4.5).

Single Nonlinear Algebraic Equation - 59

0)ln()( xxxf (4.6.a)

We rearrange the function so as to isolate x on the left-hand side as

)ln(xx  (4.6.b)

We perform the iterative successive approximation procedure as before. We use the same

initial guess of 0.5.

iteration x -ln(x) relative error
1 0.5000000 0.6931472 -
2 0.6931472 0.3665129 8.9119E-01
3 0.3665129 1.0037220 6.3485E-01
4 1.0037220 -0.0037146 2.7121E+02
5 -0.0037146 Does Not Exist

By iteration 5, we see that we are trying to take the natural log of a negative number, which does
not exist. The program crashes. Taken together, these two examples illustrate several key points
about successive approximations, which are summarized in the table below.

Successive Approximation

Advantages  simple to understand and use
Disadvantages  no guarantee of convergence

 very slow convergence
 need a good initial guess for convergence

My advice is to never use successive approximations. As a root-finding method it is

completely unreliable. The only reason it is presented here is to try to convince you that you
should not use it, no matter how simple it looks.

A MATLAB code which implements successive approximation is provided later in this
chapter.

4.4. Bisection Method of Rootfinding

Another method for finding roots is called the bisection method. In the bisection method we
still want to find the root to 0)(xf . We do so by finding a value of x, namely x , where the

function is positive, 0)(xf , and a second value of x, namely x , where the function is
negative, 0)(xf . These two values of x are called brackets. If we have brackets and our

Single Nonlinear Algebraic Equation - 60

function is continuous, then we know that at least one value of x for which 0)(xf lies
somewhere between the two brackets.

In the bisection method, we initiate the procedure by finding the brackets. The bisection
method does not provide brackets. Rather it requires them as inputs. Perhaps, we plot the function
and visually identify points where the function is positive and negative. After we have the
brackets, we then find the value of x midway between the brackets.

2
 

xx
xmid (4.7)

At each iteration, we evaluate the function at the current midpoint. If 0)(midxf , then we

replace x with midx , namely midxx  . The other possibility is that 0)(midxf , in which case

midxx  . With our new brackets, we find the new midpoint and continue the iterative procedure

until we have reached the desired tolerance.

Example 4.3. Bisection Method
Let’s solve the problem that the successive approximations problem could not solve.

0)ln()( xxxf (4.6.a)

We will take as our brackets,

 1.0x where 0203.2)(xf

 0.1x where 00.1)(xf

How did we find these brackets? It was either by trial and error or we plotted f(x) vs x to

obtain some idea where the function was positive and negative.
We will again use a relative error on x as the criterion for convergence and we will set our

tolerance at 10-6.

x x)(xf)(xf error

1 5.500000E-01 1.000000E+00 -4.783700E-02 1.000000E+00 4.500000E-01
2 5.500000E-01 7.750000E-01 -4.783700E-02 5.201078E-01 2.903226E-01
3 5.500000E-01 6.625000E-01 -4.783700E-02 2.507653E-01 1.698113E-01
4 5.500000E-01 6.062500E-01 -4.783700E-02 1.057872E-01 9.278351E-02
5 5.500000E-01 5.781250E-01 -4.783700E-02 3.015983E-02 4.864865E-02
6 5.640625E-01 5.781250E-01 -8.527718E-03 3.015983E-02 2.432432E-02
7 5.640625E-01 5.710938E-01 -8.527718E-03 1.089185E-02 1.231190E-02
8 5.640625E-01 5.675781E-01 -8.527718E-03 1.201251E-03 6.194081E-03
9 5.658203E-01 5.675781E-01 -3.658408E-03 1.201251E-03 3.097041E-03
10 5.666992E-01 5.675781E-01 -1.227376E-03 1.201251E-03 1.548520E-03
11 5.671387E-01 5.675781E-01 -1.276207E-05 1.201251E-03 7.742602E-04

Single Nonlinear Algebraic Equation - 61

12 5.671387E-01 5.673584E-01 -1.276207E-05 5.943195E-04 3.872800E-04
13 5.671387E-01 5.672485E-01 -1.276207E-05 2.907975E-04 1.936775E-04
14 5.671387E-01 5.671936E-01 -1.276207E-05 1.390224E-04 9.684813E-05
15 5.671387E-01 5.671661E-01 -1.276207E-05 6.313133E-05 4.842641E-05
16 5.671387E-01 5.671524E-01 -1.276207E-05 2.518492E-05 2.421379E-05
17 5.671387E-01 5.671455E-01 -1.276207E-05 6.211497E-06 1.210704E-05
18 5.671421E-01 5.671455E-01 -3.275270E-06 6.211497E-06 6.053521E-06
19 5.671421E-01 5.671438E-01 -3.275270E-06 1.468118E-06 3.026770E-06
20 5.671430E-01 5.671438E-01 -9.035750E-07 1.468118E-06 1.513385E-06
21 5.671430E-01 5.671434E-01 -9.035750E-07 2.822717E-07 7.566930E-07

After 21 iterations, we have converged to a final answer of x = 0.567143. The bisection

method converged even for the form of the equation where successive approximations would not.
In fact, the bisection method is guaranteed to converge, if you can first find brackets. However,
the bisection method was still pretty slow; it took a lot of iterations.

This example illustrates several key points about the bisection method:

Bisection Method
Advantages  simple to understand and use

 guaranteed convergence, if you can find brackets
Disadvantages  must first find brackets (i.e., you need a good initial guess of where the

solution is)
 very slow convergence

A MATLAB code which implements the bisection method is provided later in this chapter.

4.5. Single Variable Newton-Raphson

One of the most useful root-finding techniques is called the Newton-Raphson method. Like all
the methods in this chapter, the Newton-Raphson technique allows you to find solutions to a
general non-linear algebraic equation, 0)(xf .

The advantage of the Newton-Raphson method lies in the fact that we include information
about the derivative in the iterative procedure. We can approximate the derivative of)(xf at a

point 1x numerically through a finite difference formula,

21

21
1

)()(
)(

1
xx

xfxf

dx

df
xf

x 


 (4.8)

Single Nonlinear Algebraic Equation - 62

In the Newton-Raphson procedure, we make an initial guess of the root, say 1x . Since we are

looking for a root to)(xf , let’s say that we want 2x to be a solution to 0)(xf . Let’s rearrange

the equation to solve for 2x .

)(

)()(

1

21
12 xf

xfxf
xx




 (4.9)

Now, if 2x is a solution to 0)(xf , then 0)(2 xf and the equation becomes:

)(

)(

1

1
12 xf

xf
xx


 (4.10)

This is the Newton-Raphson Method. Based on the value of the function,)(1xf , and its

derivative,)(1xf  , at 1x we estimate the root to be at 2x . Of course, this is just an estimate. The

root will not actually be at 2x (unless the problem is linear). Therefore, we can implement the
Newton-Raphson Method as an iterative procedure

)(

)(
 1

i

i
ii xf

xf
xx


 (4.11)

until the difference between 1ix and ix is small enough to satisfy us.

The Newton-Raphson method requires you to calculate the first derivative of the equation,
)(xf  . Sometimes this may be problematic. Additionally, we see from the equation above that

when the derivative is zero, the Newton-Raphson method fails, because we divide by the
derivative. This is a
weakness of the method.

However because we
go to the trouble to give
the Newton-Raphson
method the extra
information about the
function contained in the
derivative, it will converge
must faster than the
previous methods. We
will see this demonstrated
in the following example.

Finally, as with any
root-finding method, the

Figure 4.1. Graphical illustration of the Newton-Raphson method.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

f(
x

)

x

f(x)

Newton Raphson

initial guess

first iteration

second iteration

third iteration

converged solution

Single Nonlinear Algebraic Equation - 63

Newton-Raphson method requires a good initial guess of the root.
In Figure 4.1., a graphical illustration of the Newton-Raphson method is provided to find the

root of)sin()(xxf  at x=. from an initial guess of x=2. One follows the slope at x=2 until one
reaches, 0)(xf , which specifies the new iterated value of x. The new iteration begins at the
point))(,(xfx and this procedure continues until the solution converges within an acceptable
tolerance.

Example. 4.4. The Newton-Raphson Method

Let’s again solve the problem that the successive approximations problem could not solve.

0)ln()( xxxf (4.6.a)

The derivative is

x
xf

1
1)( (4.12)

We will use the same initial guess of 0.5. We will again use a relative error on x as the

criterion for convergence and we will set our tolerance at 10-6. At each iteration we must evaluate
both the function and its derivative.

 xold f(xold) f’(xold) xnew error
1 5.000000E-01 -1.931472E-01 3.000000E+00 5.643824E-01 -
2 5.643824E-01 -7.640861E-03 2.771848E+00 5.671390E-01 4.860527E-03
3 5.671390E-01 -1.188933E-05 2.763236E+00 5.671433E-01 7.586591E-06
4 5.671433E-01 -2.877842E-11 2.763223E+00 5.671433E-01 1.836358E-11

We see in this example that the Newton-Raphson method converged to a root with 11 good

significant figures in only four iterations. We observe that for the last three iterations, the error
dropped quadratically. By that we mean

 2
1 ii errerr  or 1

2
1 

i

i

err

err
 (4.13)

Quadratic convergence is a rule of thumb for the Newton-Raphson method. The ratio ought to

be on the order of 1. In this example, we have

   32.0
109.4

106.7
23

6

2
2

3 









err

err
 and   32.0

106.7

1083.1
26

11

2
3

4 









err

err

Single Nonlinear Algebraic Equation - 64

We only obtain quadratic convergence near the root. How near do we have to be? The answer to
this question depends upon the equation we are solving. It is worth noting that just because the
Newton-Raphson method converges to a root from an initial guess, it may not converge to the
same root (or converge at all) from all initial guesses closer to the root.
 This example illustrates several key points about successive approximations:

Newton-Raphson Method
Advantages  simple to understand and use

 quadratic (fast) convergence, near the root
Disadvantages  have to calculate analytical form of derivative

 blows up when derivative is zero.
 need a good initial guess for convergence

A MATLAB code which implements the Newton-Raphson method is provided later in this

chapter.

4.6. Newton-Raphson with Numerical Derivatives

For whatever reason, people don’t like to take derivatives. Therefore, they don’t want to use
the Newton-Raphson method, since it requires both the function and its derivative. However, we
can avoid analytical differentiation of the function through the use of numerical differentiation.
For example, we might choose to approximate the derivative at ix using the second-order centered

finite difference formula, as provided in equation (3.7)

   

h

hxfhxf
xf ii

i 2
)(


 (3.7)

where h is some small number. Generally I define h according to a rule of thumb

)01.0,01.0min(ixh  (4.14)

This is just a rule of thumb that I made up that seems to work 95% of the time. More

sophisticated rules for estimated the increment size certainly exist. Using this rule of thumb, we
execute the Newton-Raphson algorithm in precisely the same way, except we never to have to
evaluate the derivative analytically.

Example 4.5. Newton-Raphson with Numerical Derivatives

Let’s again solve the problem that the successive approximations problem could not solve.

Single Nonlinear Algebraic Equation - 65

0)ln()( xxxf (4.6.a)

We will use an initial guess of 0.5. We will use a relative error on x as the criterion for

convergence and we will set our tolerance at 10-6.

 xold f(xold) f’(xold) xnew error
1 5.000000E-01 -1.931472E-01 3.000067E+00 5.643810E-01 1.000000E+02
2 5.643810E-01 -7.644827E-03 2.771912E+00 5.671389E-01 4.862939E-03
3 5.671389E-01 -1.206407E-05 2.763295E+00 5.671433E-01 7.697929E-06
4 5.671433E-01 -2.862443E-10 2.763282E+00 5.671433E-01 1.826496E-10

So we converged to 0.5671433 in only four iterations, just as it did in the rigorous Newton-

Raphson method. This example illustrates several key points about successive approximations:

Newton-Raphson with Numerical Derivatives
Advantages  simple to understand and use

 quadratic (fast) convergence, near the root
Disadvantages  blows up when derivative is zero.

 need a good initial guess for convergence

A MATLAB code which implements the Newton-Raphson method with numerical derivatives

is provided later in this chapter.

4.7. Solution in MATLAB

MATLAB has an intrinsic function to find the root of a single nonlinear algebraic equation.
The routine is called fzero.m. You can access help on it by typing help fzero at the MATLAB
command line prompt. You can also access the fzero.m file itself and examine the code line by
line. The routine uses a procedure that is classified as a “search and interpolation” technique. The
first part of the algorithm requires an initial guess. From this guess, the code searches until it finds
two brackets, just as in the bisection case. The function is positive at one bracket and negative at
the other. Once the brackets have been obtained, rather than testing the midpoint, as in the
bisection method, this routine performs a linear interpolation between the two brackets.

 



 


 xx

xfxf

xf
xxnew)()(

)(
 (4.15)

Single Nonlinear Algebraic Equation - 66

One of the brackets is replaced with newx , based on the sign of)(newxf . This procedure is

iterated until convergence to the desired tolerance. The actual MATLAB code is a little more
sophisticated but we now understand the gist behind a “search and interpolate” method.

The simplest syntax for using the fzero.m code is to type at the command line prompt:

>> x = fzero('f(x)',x0,tol,trace)

where f(x) is the function we want the roots of, x0 is the initial guess, and tol is the relative
tolerance on x., and a non-zero value of trace requests iteration information.

Example. 4.6. fzero.m

Let’s again solve the problem that the successive approximations problem could not solve.

0)ln()( xxxf (4.6.a)

The command at the MATLAB prompt is

» x = fzero('x+log(x)',0.5,1.e-6,1)

The code output is given below.

 Func evals x f(x) Procedure
 1 0.5 -0.193147 initial
 2 0.485858 -0.235981 search
 3 0.514142 -0.151113 search
 4 0.48 -0.253969 search
 5 0.52 -0.133926 search
 6 0.471716 -0.279663 search
 7 0.528284 -0.109836 search
 8 0.46 -0.316529 search
 9 0.54 -0.0761861 search
 10 0.443431 -0.369781 search
 11 0.556569 -0.0293964 search
 12 0.42 -0.447501 search
 13 0.58 0.0352728 search

 Looking for a zero in the interval [0.42, 0.58]

 14 0.56831 0.00322159 interpolation
 15 0.567143 8.92955e-008 interpolation
 16 0.567141 -5.43716e-006 interpolation

x = 0.56714332272548

MATLAB’s fzero.m (search and interpolate)

Advantages  comes with MATLAB
 slow convergence

Single Nonlinear Algebraic Equation - 67

Disadvantages  has to find brackets before it can begin converging
 need a good initial guess for convergence
 somewhat difficult to use for more complex problems.

4.8. Existence and Uniqueness of Solutions

When dealing with linear algebraic equations, we could determine how many roots were
possible. There were only three choices. Either there was 0, 1, or an infinite number of solutions.
When dealing with nonlinear equations, we have no such theory. A nonlinear equation can have
0, 1, 2… up through an infinite number of roots. There is no sure way to tell except by plotting it
out. In Figure 4.2., four examples of nonlinear equations with 0, 1, 2 and an infinite number of
roots are plotted.

It is important to remember that when you use any of the numerical root-finding techniques
described above, you will only find one root at a time. Which root you locate depends upon your
choice of method and the initial guess.

Single Nonlinear Algebraic Equation - 68

Figure 4.2. Examples of nonlinear equations with zero (top left), one (top right), two (bottom left)
and infinite (bottom right) real roots.

Example. 4.7. van der Waals equation of state

When one is interested in finding the several roots of an equation, one must provide multiple
different guesses to find each root. To illustrate this problem, we examine the van der Waals
equation of state (EOS), which relates pressure, p, to molar volume, V, and temperature, T, via

2V

a

bV

RT
p 


 (4.16)

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1

0

1

2

3

4

x

y

y=(x-2)2 + 1
y=0

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1

0

1

2

3

4

x

y

y=(x-2)2

y=0

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1

0

1

2

3

4

x

y

y=(x-2)2 - 1
y=0

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

3

4

x

y

y=sin(x)
y=0

Single Nonlinear Algebraic Equation - 69

where R is the gas constant and a and b are species-dependent van der Waals constants. In truth
the van der Waals EOS is a cubic equation of state and can be expressed as a cubic polynomial,
which can be exploited to reveal the roots through numerical polynomial solvers. (Interestingly,
some software solve for the roots of polynomials by constructing a matrix whose characteristic
equation corresponds to the polynomial and then using a routine intended to determine eigenvalues
in order to determine the roots of the polynomial.) Here, however, we will not take advantage of
this fact but will deal with the EOS in the form presented in equation (4.16).

At temperature below the critical temperature, the van der Waals EOS predicts vapor-liquid
equilibrium. Our task is to find the molar volumes corresponding to the liquid phase, the vapor
phase and a third intermediate molar volume that is useful for identifying the vapor pressure at a
given temperature. Thus our task is to find all three roots corresponding to a given temperature
and pressure.

We rearrange the equation into the familiar form corresponding to 0)(xf

  0
2




 p
V

a

bV

RT
Vf (4.17)

We accept that we are more
likely to find relevant roots if
we provide initial guesses
close to those roots.
Therefore it is to our
advantage to plot the
equation to get a general idea
of where the roots lie. For
our purposes, let us define a
state at T=98 K and
p=101325 Pa. The van der
Waals constants for argon
are a=0.1381 m6/mol2 and
b=3.184x10-5 m3/mol. The
gas constant is R=8.314
J/mol/K. The plot is shown
in Figure 4.3. Note that the
since the three roots occur at
different orders of
magnitude, the x-axis is
plotted on a logarithmic scale. If it were plotted on a linear scale, you wouldn’t be able to see the
roots. Note also that no values of x are plotted below b. It requires some knowledge of the
thermodynamics to realize that the molar volume cannot be less that the van der Waals parameter
b. There may be additional mathematical roots that lie below b but they are of no interest to us.

Figure 4.3. van der Waals equation of state (equation (4.17))
plotted showing roots. Note that the x-axis is logarithmic.

-1.2E+07

-1.0E+07

-8.0E+06

-6.0E+06

-4.0E+06

-2.0E+06

0.0E+00

2.0E+06

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

f(
x

)

x

f(x)

liquid root

intermediate root

vapor root

Single Nonlinear Algebraic Equation - 70

We require good initial guesses in order to find each root. Perhaps the ideal gas law provides

an initial guess for the vapor root. The ideal gas law, RTpV  , provides an initial guess of
310041.8  xV m3/mol. If we put this in the Newton-Raphson method, we converge in a few

iterations to 310901.7  xVvapor m3/mol. So our vapor guess was pretty good and we have found a

root. Presumably it is the vapor root, which must have the largest molar volume.
Knowing that the van der Waals parameter b provides a lower limit for the molar volume

suggests that we guess something a little larger than b as an initial guess for the liquid root. If we
make a guess of 1.1b (51050.3 x m3/mol), we converge in nine iterations to 51025.4  xVliquid

m3/mol.
The intermediate root must lie between these other two roots. Some initial guesses between

them will lead to the vapor root and some will lead to the liquid root. There is a range of initial
guesses that will lead to the intermediate root. This range is generally defined by the values of x,
where the slope points toward the intermediate root. Looking at Figure 4.3 suggests this range
may be fairly narrow. If one investigates a range of initial guesses, one finds that initial guesses of

43 109.1109   xVx lead to an intermediate root of 4
int 1029.1  xV er m3/mol. Guesses outside

that range lead to other roots including unphysical roots less than b or else the procedure diverges
entirely.

This example illustrates a key point in the solution of nonlinear algebraic equations. Finding
an initial guess is often the most important and most difficult part of the problem. As shown
in this example, the good initial guesses came from our understanding of the physical system—that
the constant b provided a lower asymptote for the liquid molar volume and that the ideal gas law
provided a good estimate of the vapor molar volume.

People who do not rely on numerical methods to solve problems have in the past voiced the
criticism that “numerical methods” deprive the student of developing the capability to make
reasonable back of the envelope calculations. This example offers the contrary point of view. The
ability to solve this problem required reasonable estimates of the roots to initiate the iterative
procedure.

4.9. Rootfinding Subroutines

In this section, we provide short routines for implementing four of these root-finding
techniques in MATLAB. Note that these codes correspond to the theory and notation exactly as
laid out in this book. These codes do not contain extensive error checking, which would
complicate the coding and defeat their purpose as learning tools. That said, these codes work and
can be used to solve problems.

As before, on the course website, two entirely equivalent versions of this code are provided
and are titled code.m and code_short.m. The short version is presented here. The longer version,

Single Nonlinear Algebraic Equation - 71

containing instructions and serving more as a learning tool, is not presented here. The numerical
mechanics of the two versions of the code are identical.

Code 4.1. Successive Approximation (succapp_short)

function [x0,err] = succapp_short(x0);
maxit = 100;
tol = 1.0e-6;
err = 100.0;
icount = 0;
xold = x0;
while (err > tol & icount <= maxit)
 icount = icount + 1;
 xnew = funkeval(xold);
 if (icount > 1)
 err = abs((xnew - xold)/xnew);
 end
 fprintf(1,'i = %i xnew = %e xold = %e err = %e \n',icount, xnew, xold, err);
 xold = xnew;
end
x0 = xnew;
if (icount >= maxit)
 fprintf(1,'Sorry. You did not converge in %i iterations.\n',maxit);
 fprintf(1,'The final value of x was %e \n', x0);
end

function x = funkeval(x0)
x = exp(-x0);

An example of using succapp_short is given below.

» [x0,err] = succapp_short(0.5)
i = 1 xnew = 6.065307e-001 xold = 5.000000e-001 err = 1.000000e+002
…
i = 23 xnew = 5.671434e-001 xold = 5.671430e-001 err = 7.224647e-007

x0 = 0.5671
err = 7.2246e-007

The root is at 0.5671 and the error is less than the tolerance of 10-6..

Code 4.2. Bisection (bisect_short)

function [x0,err] = bisect(xn,xp);
maxit = 100;
tol = 1.0e-6;
err = 100.0;
icount = 0;
fn = funkeval(xn);
fp = funkeval(xp);

Single Nonlinear Algebraic Equation - 72

while (err > tol & icount <= maxit)
 icount = icount + 1;
 xmid = (xn + xp)/2;
 fmid = funkeval(xmid);
 if (fmid > 0)
 fp = fmid;
 xp = xmid;
 else
 fn = fmid;
 xn = xmid;
 end
 err = abs((xp - xn)/xp);
 fprintf(1,'i = %i xn = %e xp = %e fn = %e fp = %e err = %e \n',icount, xn,
xp, fn, fp, err);
end
x0 = xmid;
if (icount >= maxit)
 fprintf(1,'Sorry. You did not converge in %i iterations.\n',maxit);
 fprintf(1,'The final value of x was %e \n', x0);
end

function f = funkeval(x)
f = x + log(x);

An example of using bisect_short is given below.

» [x0,err] = bisect_short(0.1,1.0)
i = 1 xn = 5.500000e-001 xp = 1.000000e+000 fn = -4.783700e-002 fp =
1.000000e+000 err = 4.500000e-001
…
i = 21 xn = 5.671430e-001 xp = 5.671434e-001 fn = -9.035750e-007 fp =
2.822717e-007 err = 7.566930e-007

x0 = 0.5671
err = 7.5669e-007

The root is at 0.5671 and the error is less than the tolerance of 10-6..

Code 4.3. Newton-Raphson (newraph1_short)

function [x0,err] = newraph1_short(x0);
maxit = 100;
tol = 1.0e-6;
err = 100.0;
icount = 0;
xold =x0;
while (err > tol & icount <= maxit)
 icount = icount + 1;
 f = funkeval(xold);
 df = dfunkeval(xold);

Single Nonlinear Algebraic Equation - 73

 xnew = xold - f/df;
 if (icount > 1)
 err = abs((xnew - xold)/xnew);
 end
 fprintf(1,'icount = %i xold = %e f = %e df = %e xnew = %e err = %e
\n',icount, xold, f, df, xnew, err);
 xold = xnew;
end
x0 = xnew;
if (icount >= maxit)
 % you ran out of iterations
 fprintf(1,'Sorry. You did not converge in %i iterations.\n',maxit);
 fprintf(1,'The final value of x was %e \n', x0);
end

function f = funkeval(x)
f = x + log(x);

function df = dfunkeval(x)
df = 1 + 1/x;

An example of using newraph1_short is given below.

» [x0,err] = newraph1_short(0.5)
icount = 1 xold = 5.000000e-001 f = -1.931472e-001 df = 3.000000e+000 xnew =
5.643824e-001 err = 1.000000e+002
…
icount = 4 xold = 5.671433e-001 f = -2.877842e-011 df = 2.763223e+000 xnew =
5.671433e-001 err = 1.836358e-011

x0 = 0.5671
err = 1.8364e-011

The root is at 0.5671 and the error is less than the tolerance of 10-6.

Code 4.4. Newton-Raphson with Numerical derivatives (newraph_short)

function [x0,err] = nrnd1(x0);
maxit = 100;
tol = 1.0e-6;
err = 100.0;
icount = 0;
xold =x0;
while (err > tol & icount <= maxit)
 icount = icount + 1;
 f = funkeval(xold);
 h = min(0.01*xold,0.01);
 df = dfunkeval(xold,h);
 xnew = xold - f/df;
 if (icount > 1)
 err = abs((xnew - xold)/xnew);

Single Nonlinear Algebraic Equation - 74

 end
 fprintf(1,'icount = %i xold = %e f = %e df = %e xnew = %e err = %e
\n',icount, xold, f, df, xnew, err);
 xold = xnew;
end
x0 = xnew;
if (icount >= maxit)
 fprintf(1,'Sorry. You did not converge in %i iterations.\n',maxit);
 fprintf(1,'The final value of x was %e \n', x0);
end

function f = funkeval(x)
f = x + log(x);

function df = dfunkeval(x,h)
fp = funkeval(x+h);
fn = funkeval(x-h);
df = (fp - fn)/(2*h);

An example of using nrnd1_short is given below.

» [x0,err] = nrnd1_short(0.5)
icount = 1 xold = 5.000000e-001 f = -1.931472e-001 df = 3.000067e+000 xnew =
5.643810e-001 err = 1.000000e+002
…
icount = 4 xold = 5.671433e-001 f = -2.862443e-010 df = 2.763282e+000 xnew =
5.671433e-001 err = 1.826496e-010

x0 = 0.5671
err = 1.8265e-010

The root is at 0.5671 and the error is less than the tolerance of 10-6.

4.10. Problems

Problems are located on course website.

