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Chapter 2.  Regression 

 

2.1.  Introduction 

Regression is a term describing the fitting of a particular function to a set of data through 
optimization of the parameters or constant coefficients that appear in the function.  From this point 
of view regression is a kind of optimization, which is the subject of Chapter 8.  However, many 
common forms of regression involve the solution of a linear set of algebraic equations.  Thus, just 
as we separate our discussion of the solution of linear (Chapter 1) and nonlinear (Chapter 4) 
algebraic equations, so too do we separate our discussion of linear and nonlinear optimization.  We 
shall call this linear optimization by the term regression and place it directly after the chapter on 
linear algebra because from one point of view, it is simply an application of linear algebra.   

 

2.2.  Single Variable Linear Regression 

Imagine that we have a set of n data points  ii yx ,  for i = 1 to n.  Perhaps, we have a theory 

that tells us that y should be a linear function of x.  We know that the equation of a line is given by  
 

01ˆ bxby            (2.1) 

 
where 1b  is the slope and 0b  is the y-intercept of the line.  The hat on ŷ reminds us that this value 

of y comes from the model and not from data.  We would like to know what the best values of the 
constant coefficients, 1b  and 0b .  If we substitute our data points into this equation, it will not in 

general be satisfied due to noise in the data.  Therefore, we create the equality by introducing the 
error in the ith data point, ie , such that  

 

iii ebxby  01           (2.2) 
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The best-fit model will minimize the error.  In particular we wish to minimize the Sum of the 

Square of Errors, SSE, defined as 
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In order to minimize the function SSE  with respect to 1b  and 0b , we take the partial differential 

of SSE  with respect to 1b  and 0b  and set them equal to zero.  (We remember from differential 

calculus that the derivative of a function is zero at a minimum or maximum.) 
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We then solve these two equations for 1b  and 0b .  Notice that equations (2.4.a) and (2.4.b) are 

linear in the unknown variables, 1b  and 0b .  We have already seen in Chapter 1, the solution to a 

set of two linear algebraic equations.  In this case, we have 
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where x  and y  are the average values of the set of x  and y  respectively. 

We note that one requires two points at a minimum to perform a single-variable linear 
regression.  Since there are two parameters, we need two data points.  One can see from equation 
(2.5) that if the two data points have the same value of x, the slope is infinite.  Therefore, this 
method requires at least two data points at different values of the independent variable, x. 

 

2.3.  The Variance of the Regression Coefficients 



Regression - 34 
 
From a statistical point of view, the regression coefficients in equation (2.5) are mean values of 

the slope and intercept.  Whenever a mean is calculated, a variance can also be calculated.  Here 
provided without derivation is the variance of the regression coefficients.  The variance of the 
slope is  
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The variance of the y-intercept is  
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where 2  is the model error variance.  An unbiased estimate of 2  is 2s  where 
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Frequently, one would like a convenient metric to express the goodness of the fit.  The measure 

of fit, MOF, provides a way to determine if the best-fit model is a good model.  A common 
definition of the MOF is 
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MOF  1          (2.8) 

 
where the sum of the squares of the errors, SSE ,  was defined in equation (2.3), and where the 
Sum of the Squares of the Regression, SSR , is based on the variance of the model predictions and 
the average values of y. 
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The Sum of the Squares of the Total variance, SST , is 
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An analysis of equation (2.10) makes it clear that there are two sources of variance, that 

captured by the regression, SSR, and that outside the regression, SSE.  This MOF is the fraction of 
variance captured by the regression.  It is bounded between 0 and 1.  A value of MOF of 1 means 
the model fits the data perfectly.  The farther the value of the MOF is below 1, the worse the fit of 
the model.  

We note in passing that a more rigorous method for evaluating the goodness of the fit is to use 
the f-distribution.  We can define a variable, f , by 
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f

s

SSR
            (2.11) 

 
For a given level of confidence,  , and for a given number of data points, n, one can determine 
whether the regression models the data to within that level of confidence by direct comparison 
with the appropriate critical value of the f  statistic  

 
)2,1(f f  n           (2.12) 

 
where ),(f 21 vv  is defined as the lower limit in the following constraint 
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In equation (2.13), the gamma function,  z , is a standard integral  

 

  



0

1 dtetz tz           (2.14.a) 

 
For positive integers, the expression simplifies to   

 
   !1 nn           (2.14.b) 

 
In MATLAB, the gamma function can be accessed with the gamma(z) command.  In MATLAB, 
the cumulative integral of the f distribution can be accessed with the fcdf(f,v1,v2) 
command.  For a given value of f , this function will return 1 .  Values of the integral in 
equation (2.13) as a function of  , v1 and v2 are routinely available in tables of critical f values” 
[Walpole et al. 1998]. 
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2.4.  Multivariate Linear Regression 

Above, we learned how to perform a regression for y when it is a linear function of a single 
variable x.  In this section, we extend the capability to performing a regression for y when it is a 
linear function of an arbitrary number, m, of variables.  In this case, our model has the general 
form 
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Note that there are now two subscripts.  The subscript j differentiates the different independent 

variables and runs from 1 to m.  Perhaps one variable is temperature and another concentration.  
The subscript i designates the individual data points,  imiii yxxx ,,2,1, ,  , and runs from 1 to n.  The 

error for each data point is again defined by the equation 
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The method for finding the best-fit parameters for this system is exactly analogous to what we 

did for the single-variable linear regression.  We define, the Sum of the Squares of the Error, SSE , 
exactly as we did before in equation (25.6) 
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We take the partial derivatives of SSE  with respect to each of the parameters in  b  and set them 
equal to zero.  This gives 1m  independent, linear algebraic equations of the form: 
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We have introduced a new set of constants, 1,0 ix  in this equation to allow for compact 

expression of the equations.  This set of equations can be written in matrix form as  
 

gbA             (2.19) 
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where the j,k element of the matrix A  is defined as  
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where the j element of the column vector of constants, g , is defined as  
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The solution vector, b , contains the regression parameters, 
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The presence of the k-1 and j-1 subscripts is due to the fact that in our model, we numbered our 
regression parameters starting from 0 rather than 1, but the numbering of rows and columns in the 
matrix begins at 1. 

To determine the variances of the parameters in multivariate linear regression, we use 
analogous equations as for the single-variable case.  The variances of each parameter are defined 
as  
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          (2.23) 

 
where 1

1,1


 jjA  is the diagonal element of the inverse of A  (which is not the inverse of the 

corresponding element of A ).  The covariances are 
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where, as in the single-variable case, an unbiased estimate of 2  is given by 2s , which is defined 
as 
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The measure of fit for the multiple regression case is defined in exactly the same way as the 

single-variable regression case, given in equation (2.8). 

 

2.5.  Polynomial Regression 

 
One might think that in a chapter on linear regression, that polynomial regression would be 

outside the scope of the discussion.  However, the defining characteristic of this chapter is that the 
parameters in the regression be linear.  The tools in this chapter can be used even if the 
independent variables can have any sort of nonlinear functionality so long as the regression 
coefficients appear in a linear form.  In a polynomial, the coefficients appear in a linear manner,  
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We see that the form of the model in a polynomial regression is very similar to the form of our 

previous multivariate linear regression in equation (2.15).   
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In fact we can perform polynomial regression using the tools from multivariate linear regression if  
 

j
iij xx ,            (2.27) 

 
The rest of the procedure for polynomial regression is then exactly the same as multivariate 

linear regression. 

 

2.6  Linearization of Equations 

Frequently we attempt to fit experimental data with a nonlinear theory.  Often the 
parameterization of this data can be accomplished with linear regression because the theory is 
linear in the parameters and nonlinear in the independent variables.  Consider a general expression 
for the rate of a process,  
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in which the rate, r, is a function of the temperature, T, and two constants, the activation energy, 
Ea, and the pre-exponential factor, k.  (kB is Boltzmann’s constant.)  Many physical processes obey 
this functional form including chemical reactions and diffusion. 

Frequently, one has rates as a function of temperature and one wishes to determine the 
activation barrier for the process and the rate constant, k.  In its current form, this equation is 
nonlinear in the parameters.  However, taking the natural log of both sides of the equation yields 
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Lo and behold, now the equation is linear of the form 

 

01ˆ bxby            (2.1) 

 

where  ry lnˆ  , 
T

x
1

 ,  kb ln0   and 
B

a

k

E
b 1 .  This transformation is so common that it is 

given its own name, the Arrhenius form of the rate equation.  A single variable linear regression 
can be performed on this data, yielding 0b  and 1b .  The rate constant and activation energy can be 

directly obtained from  0exp bk   and 1bkE Ba  . 

 

2.7.  Confidence Intervals 

Sometimes, in addition to the mean and standard deviation of the regression coefficients, one 
would also like to know the uncertainty in the regression as a function of the independent 
variables.  It is probably not surprising that the uncertainty is typically smaller in the middle of the 
region where data was extracted and larger at the ends.  Such a feat can be accomplished through 
the use of confidence intervals.  First, we provide formulae for confidence intervals on the 
regression coefficients, then we provide confidence intervals as a function of the independent 
variable. 

Typically one is interested in a 90% (or 95% or 99% or in general CI%) confidence interval, 
which provides a lower bound and upper bound to a range within which you are CI% confident 
that the true result lies.  Typically, this confidence, CI, is related to a parameter,  through the 
expression, )21(100 CI .  Thus a confidence interval of 90% corresponds to   = 5%.  Under 
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the assumption that the observations (data points) are normally and independently distributed, a 
confidence interval on the slope, 1b , is given by 

 

  21)ˆˆ( 2
2,

2
2,   bnbn tbbtbP       (2.30.a) 

 
This mathematical equation states that the probability that the slope lies between the lower and 
upper limit is CI.  The confidence interval on the intercept, 0b , is given by 

  

  21)ˆˆ( 2
2,

2
2,   anan taataP       (2.30.b) 

 
The variances that appear in equation (2.30) are the same as those already computed for the slope 
and intercept via equation (2.6).  The number of data points is n.  The critical t-statistic, vt , , is 

defined as the lower limit in the following constraint 
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Values of this integral as a function of   and v are routinely available in tables of critical t 

values” [Walpole et al. 1998]. 
The confidence interval at any arbitrary value of the independent variable can be obtained as 

follows.  Under the same assumption that the observations are normally and independently 
distributed, a )21(100 CI  confidence interval on the regression at a point, ox , is given by 
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where oo xbbxy 10)(ˆ   and where 
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where 2  is the model error variance, as estimated in equation (2.7)  This allows you to evaluate 
the confidence interval at every value of x, giving upper and lower confidence limits that are 
functions of x. 
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Figure 2.1.  Single variable linear regression for 
Example 2.1. 
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More on confidence intervals is available in the literature.[Montgomery & Runger, 1999]. 

 

2.8.  Regression Subroutines 

Note that in order to present short codes, the versions of the codes given below makes three 
sacrifices.  First, these codes contain no comments or instructions for use.  Second these codes 
contain no error checking.  For example it does not check that the user has provided sufficient data 
points.  Third, these codes take advantage of the most succinct MATLAB commands, such as 
implicit for-loops, which shortens the code but may make the code difficult to understand.  

Therefore, on the course website, two entirely equivalent versions of this code are provided 
and are titled code.m and code_short.m.  The short version is presented here.  The longer version, 
containing instructions and serving more as a learning tool, is not presented here. 

 
Code 2.1.  Single Variable Linear Regression (linreg1_short) 

The single variable regression described in Section 2.2., can be accomplished using the 
following MATLAB code.   

 
function [b,bsd,MOF] = linreg1_short(x,y); 
n = max(size(x)); 
b = zeros(2,1); 
bsd = zeros(2,1); 
yhat = zeros(n,1); 
xsum = sum(x); 
xavg = xsum/n; 
ysum = sum(y); 
yavg = ysum/n; 
x2sum = sum(x.*x); 
x2avg = x2sum/n; 
xvarsum = sum((x-xavg).*(x-xavg)); 
yvarsum = sum((y-yavg).*(y-yavg)); 
xycovarsum = sum((x-xavg).*(y-yavg)); 
b(2) = xycovarsum/xvarsum; 
b(1) = yavg - b(2)*xavg; 
yhat = b(1) + b(2)*x; 
SSR = sum((yhat - yavg).^2); 
SSE = sum((y - yhat).^2); 
SST = SSR + SSE; 
MOF = SSR/SST; 
sigma = SSE/(n-2); 
bsd(2) = sigma/xvarsum; 
bsd(1) = x2avg*sigma/xvarsum; 
bsd(1:2) = sqrt(bsd(1:2)); 
figure(1); 
plot(x,y,'ro'), xlabel( 'x' ), ylabel ( 'y' );          
hold on; 
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plot(x,yhat,'k-'); 
hold off; 

 
An example of using linreg1_short is given below. 
 
» [b,bsd,MOF] = linreg1_short([1; 2; 3; 4.5], [4; 5.1; 6; 7.3]) 
 
b = 
   3.14672897196262 
   0.93457943925234 
 
bsd = 
   0.10993530680867 
   0.03756962849017 
 
MOF = 
 
   0.99677841217186 
 
In this example the mean value of the intercept is 3.147 with a standard deviation of 0.110.  The 
mean value of the slope is 0.934 with a standard deviation of 0.038.  The measure of fit is very 
good at 0.997.   
 
Code 2.2.  Multiariate Linear Regression (linregn_short) 

The multivariate linear regression described in Section 2.4., can be accomplished using the 
following MATLAB code.   

 
function [b,bsd,MOF] = linregn_short(m,x,y); 
n = max(size(y)); 
mp1 = m + 1; 
b = zeros(mp1,1); 
bsd = zeros(mp1,1); 
yhat = zeros(n,1); 
g = zeros(mp1,1); 
a = zeros(mp1,mp1); 
xp1 = ones(n,mp1); 
xp1(1:n,2:mp1) = x(1:n,1:m); 
gvec = [xp1]'*y; 
Amat = [xp1]'*xp1; 
detA = det(Amat); 
Amatinv = inv(Amat); 
b = Amatinv*gvec; 
dof = n - m; 
yhat = xp1*b; 
yavg = sum(y)/n; 
SSR = sum((yhat - yavg).^2); 
SSE = sum((y - yhat).^2); 
SST = SSR + SSE; 
MOF = SSR/SST; 
s2 = SSE/dof; 
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for j = 1:m 
   bsd(j) =sqrt(Amatinv(j,j)*s2); 
end 

 
An example of using linregn_short is given below. 
 

» [b,bsd,MOF] = linregn_short(2,[1 0; 2 5; 3 10; 4 20],[1.9; 13; 24; 45]) 
 
b = 
   0.79999999999995 
   1.11666666666656 
   1.98666666666671 
 
bsd = 
   0.08660254037844 
   0.06972166887784 
                  0 
 
MOF = 
   0.99999835603242 
 

In this example the mean value of the intercept is 0.80 with a standard deviation of 0.087.  The 
mean value of the coefficient for variable 1 is 1.117 with a standard deviation of 0.070.  The mean 
value of the coefficient for variable 2 is 1.987 with a standard deviation of 0.0.  The measure of fit 
is essentially perfect at 1.0.   

 
Code 2.3.  Multiariate Linear Regression (polyreg_short) 

The polynomial regression described in Section 2.5., can be accomplished using the following 
MATLAB code.   

 
function [b,bsd,MOF] = polyreg(m,x,y); 
n = max(size(y)); 
mp1 = m + 1; 
b = zeros(mp1,1); 
bsd = zeros(mp1,1); 
yhat = zeros(n,1); 
g = zeros(mp1,1); 
a = zeros(mp1,mp1); 
xp1 = ones(n,mp1); 
for i = 2:1:mp1 
   xp1(1:n,i) = x(1:n).^(i-1); 
end 
gvec = [xp1]'*y; 
Amat = [xp1]'*xp1; 
detA = det(Amat); 
Amatinv = inv(Amat); 
b = Amatinv*gvec; 
dof = n - m; 
yhat = xp1*b; 
yavg = sum(y)/n; 
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Figure 2.2.  Polynomial regression of order 2 for 
Example 2.3. 
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SSE = 0.0; 
SSR = 0.0; 
for i = 1:n 
   SSR = SSR + (yhat(i) - yavg)^2; 
   SSE = SSE + (y(i) - yhat(i))^2; 
end 
SST = SSR + SSE; 
MOF = SSR/SST; 
% 
s2 = SSE/(dof); 
for j = 1:m 
   bsd(j) =sqrt(Amatinv(j,j)*s2); 
end 
figure(1); 
plot(x,y,'ro'), xlabel( 'x' ), ylabel ( 'y' );          
hold on; 
plot(x,yhat,'k-'); 
hold off; 

 
An example of using polyreg_short is given below. 
 

» [b,bsd,MOF] = polyreg(2,[1; 2; 3; 4],[4; 11; 22; 36]) 
 
b = 
   0.24999999999977 
   1.94999999999982 
   1.74999999999997 
 
 
bsd = 
   0.44017042154147 
   0.40155946010522 
                  0 
 
MOF = 
   0.99991449337324 
 

In this example the mean value of the 
intercept is 0.25 with a standard deviation of 
0.44.  The mean value of the linear 
coefficient is 1.95 with a standard deviation 
of 0.040.  The mean value of the quadratic 
coefficient is 1.75 with a standard deviation 
of 0.0.  The measure of fit is essentially 
perfect at 1.0.   

 
Code 2.4.  Single Variable Linear Regression with Confidence Intervals (linreg1ci_short) 

The single variable regression described in Section 2.2. with confidence intervals described in 
Section 2.7., can be accomplished using the following MATLAB code.   
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function [b,bsd,bcilo,bcihi,MOF] = linreg1ci(x,y,CI); 
n = max(size(x)); 
b = zeros(2,1); 
bsd = zeros(2,1); 
bcilo = zeros(2,1); 
bcihi = zeros(2,1); 
yhat = zeros(n,1); 
xsum = sum(x); 
xavg = xsum/n; 
ysum = sum(y); 
yavg = ysum/n; 
x2sum = sum(x.*x); 
x2avg = x2sum/n; 
xvarsum = sum((x-xavg).*(x-xavg)); 
yvarsum = sum((y-yavg).*(y-yavg)); 
xycovarsum = sum((x-xavg).*(y-yavg)); 
b(2) = xycovarsum/xvarsum; 
b(1) = yavg - b(2)*xavg; 
yhat = b(1) + b(2)*x; 
SSR = sum((yhat - yavg).^2); 
SSE = sum((y - yhat).^2); 
SST = SSR + SSE; 
MOF = SSR/SST; 
sigma = SSE/(n-2); 
bsd(2) = sigma/xvarsum; 
bsd(1) = x2avg*sigma/xvarsum; 
bsd(1:2) = sqrt(bsd(1:2)); 
v = n-2; 
alpha = (1 - CI/100)/2; 
%  need critical value of t statistic here! 
cipalpha = CI/100.0 + alpha; 
talpha = icdf('t',cipalpha,v); 
bcilo(1) = b(1) - talpha*bsd(1); 
bcihi(1) = b(1) + talpha*bsd(1); 
bcilo(2) = b(2) - talpha*bsd(2); 
bcihi(2) = b(2) + talpha*bsd(2); 
xmin = min(x); 
xmax = max(x); 
nx = 20; 
dx = (xmax - xmin)/nx; 
xci = zeros(nx,1); 
ycilo = zeros(nx,1); 
ycihi = zeros(nx,1); 
for i = 1:1:nx+1 
  xci(i) = xmin + (i-1)*dx; 
end 
for i = 1:1:nx+1 
   thing = 1/n + (xci(i) - xavg)^2/(x2sum - xsum*xsum/n); 
   sig = sqrt(thing*sigma); 
   ycilo(i) = b(1) + b(2)*xci(i) - talpha*sig; 
   ycihi(i) = b(1) + b(2)*xci(i) + talpha*sig;      
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Figure 2.3.  Single variable linear regression with 
95% confidence intervals for Example 2.4.   
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end 
figure(1); 
plot(x,y,'ro'), xlabel( 'x' ), ylabel ( 'y' );          
hold on; 
plot(x,yhat,'k-'); 
hold on; 
plot(xci,ycilo,'g--'); 
hold on; 
plot(xci,ycihi,'g--'); 
hold off; 

 
An example of using linregci_short is given below. 
 

» [b,bsd,bcilo,bcihi,MOF] = 
linreg1ci_short([1;2;3;4;5;6],[4.2;5.1;6.1;6.7;8.2;8.9],95) 

 
b = 
   3.19333333333333 
   0.95428571428571 
 
bsd = 
   0.18429617295288 
   0.04732288856688 
 
bcilo = 
   2.16164335714309 
   0.68937218408834 
 
bcihi = 
   4.22502330952358 
   1.21919924448308 
 
MOF = 
   0.99025920227246 
 
In this example, the mean value of the 

slope is 0.954.  There is a 95% probability that 
the true slope lies between 0.689 and 1.219.  
The mean value of the intercept is 03.193.  
There is a 95% probability that the true slope 
lies between 2.161 and 4.225. 

 

2.9.  Problems 

Problems are located on course website. 
 


