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Chapter 1.  Linear Algebra 

 

1.1.  Introduction 

The solution of algebraic equations pervades science and engineering.  Thermodynamics is an 
area rife with examples because of the ubiquitous presence of equilibrium constraints.  
Thermodynamic constraints are typically algebraic equations.  For example, in the two-phase 
equilibrium of a binary system, there are three algebraic constraints defining the equilibrium state:  
thermal equilibrium, or equality of temperatures in the two phases, III TT  ; mechanical 
equilibrium, or equality of pressures in the two phases, III pp  ; and chemical equilibrium, or 

equality of chemical potentials of component i, in the two phases, II
i

I
i   .  Under most 

circumstances, these constraints are algebraic equations because there are no differential or 
integral operators in the equations. 

In the discussion of algebraic equations, it is natural to divide the topic into the solution of 
linear and nonlinear equations.  The mathematical framework for the methodical solution of linear 
algebraic equations is well-established.  There are rigorous techniques for the determination of the 
existence and uniqueness of solutions.  There are established procedures for Eigenanalysis.  The 
discussion of the solution of non-linear algebraic equations is postponed because it is not as 
straight-forward and requires most of the tools that we develop in our solution of linear algebraic 
equations.  
 

1.2.  Linearity 

We have already hinted at the importance of being able to distinguish whether an equation is 
linear or nonlinear since the solution technique that we adopt is different for linear and nonlinear 
equations.  We begin with a discussion of linear operators.  In mathematics, an operator is a 
symbol or function representing a mathematical operation.  Operators that are familiar to 
undergraduates include exponents, logarithms, differentiation and integration.  We can investigate 
the linearity of each of these operators by applying the following test of linearity 
 
      ybLxaLbyaxL          (1.1) 
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where  xL  is a linear operator, operating on the variable x , y  is another variable, and a  and b  
are constants. 

We can directly check the four operators listed above for linearity.  The differential operator, 

     tx
dt

d
txL  , can be substituted into equation (1.1) to yield 

 

           ty
dt

d
btx

dt

d
atbytax

dt

d
        (1.2) 

 
The differential operator is indeed linear because we know from differential calculus that a 
constant can be pulled out of the differential and that the differential of a sum is the sum of the 

differentials.  Similarly, the integral operator,       
t

to

tdtxtxL , can be substituted into equation 

(1.1) to yield 
 

            
t

t

t

t

t

t ooo

tdtybtdtxatdtbytax       (1.3) 

 
The integral operator is indeed linear because we know from integral calculus that a constant can 
be pulled out of the integral and that the integral of a sum is the sum of the integrals. 

The exponential operator,   nxxL  , can be substituted into equation (1.1) to yield 
 

   nnn byaxbyax           (1.4) 
 
Equation (1.4) is not generally true.  It is true for 1n .  However, it is not true for any other 
integer (positive, negative or zero).  We can demonstrate directly that equation (1.4) is not true for  

2n  through algebraic manipulation. 
 

   2222222 2 byaxybabxyxabyax        (1.5) 
 
Equation (1.4) is also not true for fractional exponents, such as 21n . 
 

   ybxabyaxbyax  2
1

       (1.6) 

 
Similarly, the logarithm operator, the inverse operator of the exponential operator is not linear. 
 
      ybxabyax nnn logloglog         (1.7) 
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Without demonstration, we also state that all trigonometric functions are nonlinear.  
In the solution of algebraic equations, the first step is therefore to determine if the equation is 

linear.  An equation is linear if it does not contain any nonlinear operations.  If we consider only 
one equation with one variable, the linear equation has the form, 

 
 bax             (1.8.a) 
 
which we will choose to rewrite in the more general form of a function as 
 
   baxxf            (1.8.b) 
 
Examples of nonlinear algebraic equations include 
 
   baxxf  2           (1.9.a) 
 
     bxaxf  sin          (1.9.b) 
 
     bxxaxf  exp          (1.9.c) 
 
If there is a single nonlinear term in the equation, the entire equation is nonlinear.   

In the consideration of systems of equations, if a single equation in the system is nonlinear, 
then the entire system must be treated as nonlinear. 
 

1.3.  Matrix Notation 

 A system of n algebraic equations containing m unknown variables has the form general form 
 

   i

m

j
jjii bxaxf  

1
,  for i =1 to n       (1.10) 

 
For example, a system with n = 2 algebraic equation and m = 2 variables has the form 
 

 
 
  222,211,2212

122,111,1211

,

,

bxaxaxxf

bxaxaxxf




        (1.11) 

 
It is conventional to adopt a short-hand notation, known as matrix notation, and express equation 
(1.10) as  
 
 bxA             (1.12) 
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where the matrix of constant coefficients, A , is  

 

 





















mnnn

m

m

aaa

aaa

aaa

A

,2,1,

,22,21,2

,11,11,1









        (1.13) 

 
The two lines underline in the notation A  indicate that the A  matrix is a two-dimensional matrix.  

We refer to A  as an nxm matrix because it contains n rows (equations) and m columns (variables).  

The vectors x  and b  are  
 

 





















mx

x

x

x

2

1

 and  





















nb

b

b

b

2

1

        (1.14) 

 
The single underline in the notation x  and b  indicates that x  and b  are vectors, or one-

dimensional matrices.  We refer to x  and b  as “column vectors” of size mx1 and nx1 
respectively. 

The crucial thing to remember about matrix notation is that it is a convention to simplify the 
notation.  It does not introduce any new mathematical rules.  It does not add or change the rules of 
algebra.  The solution to the set of equation can be obtained following the familiar rules of algebra, 
although such manipulations become cumbersome when the number of equations is large.  
Therefore we will shortly adopt a set of notations for matrix operations, which consist of a 
sequence of algebraic rules. 
 In equation (1.12), we present the first matrix operation, matrix multiplication, xA .  Matrices 

can only be multiplied if the inner indices match.  In this case A  is of size nxm and x  is of size 

mx1.  Since the last index of A  matches the first index of x , they can be multiplied.  If the indices 

do not match, there is not matrix multiplication.  For example, the matrix multiplication Ax  

cannot be performed because x  is of size mx1 and A  is of size nxm and the inner indices, 1 and n 

are not the same.   
 The matrix resulting from a valid matrix multiplication is of a size defined by the two outer 
indices of the factor matrices.  Thus xA  yields a matrix of size nx1, a column vector of length n.  

The ith element of an nxm matrix, A , and an mx1 column vector, x , is defined as  
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 


m

j
jji xa

1
,   for i =1 to n        (1.15) 

 
Similarly, the i,jth element of an nxm matrix, A , and an mxp column vector, B , is defined as 

   

 


m

k
jkki ba

1
,,   for i =1 to n and for j =1 to p      (1.16) 

 

1.4.  The Determinant and Inverse 

We now consider the solution of equation (1.10) or alternatively equation (1.12).  When n=1 
equation and m=1 variable, we have  
 
 111,1 bxa             (1.15) 

 
This of course has the general solution, 1,111 abx  .  This simple problem illustrates the issue of 

existence of a solution.  The solution only exists if 01,1 a . 

We can next consider a set of linear algebraic equations with n=2 equations and m=2 variables, 
we have  
 

 
222,211,2

122,111,1

bxaxa

bxaxa




         (1.16) 

 
Through a series of algebraic manipulations, we can arrive at the solution  
 

 
12212211

212122
1 aaaa

baba
x




   and  
12212211

211121
2 aaaa

baba
x




      (1.17) 

 
Note that both x1 and x2 have the same denominator.  This denominator is given a special name, 
the determinant,  Adet .   

 
   1221221122

det aaaaA
x

          (1.18) 

 
It is clear that a solution only exists if   0det A .  This is exactly parallel to the single equation 

case given above, where the determinant of the one equation case is simply   1111
det aA

x
 . 
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We can next consider a set of linear algebraic equations with n=3 equations and m=3 variables, 

we have  
 

 

333,322,311,3

233,222,211,2

133,122,111,1

bxaxaxa

bxaxaxa

bxaxaxa





        (1.19) 

 
Through a series of algebraic manipulations, we can arrive at the solution  
 

 

     
 

     
 

     
 

3

312212211212313211122313221
3

3

313212311213313311123313321
2

3

313222312213323312123323322
1

det

det

det

A

baaaabaaaabaaaa
x

A

baaaabaaaabaaaa
x

A

baaaabaaaabaaaa
x










   (1.20) 

 
where 
 
        22313221132133312312233233221133

det aaaaaaaaaaaaaaaA
x

   (1.21) 

 
Note that both x1, x2 and x3 have the same denominator.  It is clear that a solution only exists if 

  0det A .   

 There is no theoretical reason that we could not continue to solve systems of n linear algebraic 
equations with n variables for arbitrary n.  However, practically speaking it becomes very time 
consuming.  Note in all these cases that the determinant is strictly a function of A .  The 

determinant is not a function of x  and b .  At this point, we simply extrapolate the mathematical 

observation that a unique solution to bxA   exists only if the determinant of the matrix A  

exists.   
It turns out that the solution to the 2x2 problem given in equation (1.17) and the solution to the 

3x3 problem given in equation (1.20) and the solution for the general nxn problem can be 
expressed in matrix notation as  
Through a series of algebraic manipulations, we can arrive at the solution  
 
 bAx 1            (1.22) 

 
where 1A  is called the inverse matrix of A .  In addition to providing the solution to bxA   as 

given in equation (1.22), the inverse all has the additional property,  
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 IAAAA   11           (1.23) 

 
where I  is the identity matrix, defined as 

  

 





















100

010

001









I          (1.24) 

 
One can also derive equation (1.22) as follows 
 
 bxA          

 bAxAA 11         

 bAxI 1  

 bAx 1   

 
We can observe directly from the examples given above that for the small 1x1, 2x2 and 3x3 
systems, 
 

 
  11

11

1

11

1

det

1

aA
A

x

x
          (1.25.a) 

 

 
  













1121

1222

22

1

22
det

1

aa

aa

A
A

x

x
       (1.25.b) 

  

 
  






















122122111231321122313221

132123111331331123313321

132223121332331223323322

33

1

33
det

1

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

A
A

x

x
  (1.25.c) 

 
Clearly from equation (1.25), the inverse does not exist if the determinant is zero.  If the inverse of 
a matrix A  exists, A  is said to be non-singular.  If the inverse of the matrix A  does not exist, A  

is said to be singular. 
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1.5.  Elementary Row Operations 

There exists a methodical procedure for generating inverses analytically.  With the ubiquitous 
presence of computers, it is unlikely that any student will ever have any need to perform such a 
procedure.  It is not even perfectly clear that it is essential to include such a procedure in a modern 
textbook.  Nevertheless, since students may be called upon to generate inverses of small systems in 
an examination in which computers are not available, we present the procedure here.   

The procedure uses three elementary row operations.  The first elementary row operation is the 
multiplication of a row by a constant.   

 
1 rowc  1 row           (1.26) 

 
The second elementary row operation is switching the order of rows.  Clearly, the order that 

the equations are written should not influence the validity of the equations.   
 

 1 row 2 row           (1.27) 

 
The third elementary row operation is the replacement of an equation by the linear combination 

of that equation with other equations.  In other words, either equation in (1.28) can be replaced by  
 

row2b 1 rowa  2 row         (1.28) 

 
and the resulting system of equations will still yield the same result. 

These three elementary row operations provide the necessary tools to (i) determine the 
existence and unique of solutions, (ii) determine the inverse of A  if it exists and (iii) provide the 

solution to bxA  .   

For a 2x2 matrix, the procedure for finding the inverse is given below.  First, we create an 
augmented IA  matrix.  If A  is an nxn matrix and I  is an nxn identity matrix, then IA  is an 

nx(2n) matrix. defined as 
 

 

















100

00

001

,1,

,11,1









nnn

n

aa

aa

IA        (1.29) 

 
In general, one performs elementary row operations that convert the A  side of the augmented 

matrix to I .  At the same time, one performs the same elementary row operations to the I  side of 

the augmented matrix, which converts it to the inverse of A . 

We can illustrate the process for a 2x2 matrix. 
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









10

01

2221

1211

aa

aa
IA  

 
(1)  Put a one in the diagonal element of ROW 1. 

 

11

1
1

a

ROW
ROW   

 















10

011
11

2221

11

12
a

aa
a

a
 

 
(2) Put zeroes in all the entries of COLUMN 1 except ROW 1. 
 
 122 21ROWaROWROW   
 

 
















 1

01

0

1

11

21

11

11

1221
22

11

12

a
a

a

a
aaa

a
a

 

 
(3)  Put a one in the diagonal element of ROW 2. 

 

 

11

1221
22

2
2

a
aaa

ROW
ROW


  

 

























11

1221
22

11

1221
22

11

21

11

11

12

1

01

10

1

a
aaaa

aaa

a
a

a

a
a

 

 
(4) Put zeroes in all the entries of COLUMN 2 except ROW 2. 

 

211
11

12 ROW
a

a
ROWROW   
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





































































11

1221
22

11

1221
22

11

21

11

1221
22

11

12

11

1221
22

11

21

11

12

11

1

11

10

01

a
aaaa

aaa

a
a

a
aaaa

a

a
aaa

a
a

a

a
a

 

 
which can be simplified as: 

 



























12212211

11

12212211

21

12212211

12

12212211

22

10

01

aaaa

a

aaaa

a
aaaa

a

aaaa

a

 

 
Here we have converted the matrix on the left hand side to the identity matrix.  The matrix on 

the right hand side is now the inverse as can be seen through comparison of equation (1.25.b).   
We can learn several things about the inverse from this demonstration.  The most important 

thing is that if the determinant is zero, the inverse does not exist (because we divide by the 
determinant to obtain the inverse.)   

 
 
Never calculate an inverse until you have first 

shown that the determinant is not zero. 
 

 

1.6.  Rank and Row Echelon Form 

 To determine the existence and uniqueness of the solution to bxA  , we must create an 

augmented bA  matrix.  If A  is an nxn matrix and b  is an nx1 column vector, then bA  is an 

nx(n+1) matrix. defined as 
 

 

















nnn

n

n b

b

a

a

a

a

bA 








1

,

1,

1,

1,1

        (1.30) 
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In order to determine the existence and uniqueness of a solution to bxA  , we need to put the 

matrix A  and the augmented matrix bA  into row echelon form (ref) (or reduced row echelon 

form (rref)) using a sequence of elementary row operations.   
Row echelon form is also called upper triangular form, in which all elements below the 

diagonal are zero.  For an arbitrary 2x2 matrix A , we have 

 











2221

1211

22 aa

aa
A

x
        

 
We can put this matrix into row echelon form with one elementary row operation, namely  

 

122
11

21 ROW
a

a
ROWROW   

 
which yields 

 

 















12

11

21
22

1211

22 0 a
a

a
a

aa
Aref

x
       

 
Equation (1.32) is the row echelon form of A .  Reduced row echelon form simply requires 

dividing each row of the row echelon form by the diagonal element of that row,  
 

1
1

1
11

ROW
a

ROW   

2
1

2

12
11

21
22

ROW
a

a

a
a

ROW


  

 
which yields 
 

  













10

1
11

12

22
a

a
Arref

x
        

 
Equation (1.33) is the reduced row echelon form of A  because it is in row echelon form and it has 

ones in the diagonal elements. 
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Similarly, the augmented bA  matrix can be put into row echelon form or reduced row echelon 

form using precisely the same set of elementary row operations.  For a 2x2 example, we have for 
the row echelon form 

 

 









2

1

2,2

1,2

1,2

1,1

b

b

a

a

a

a
bA          

 

122
11

21 ROW
a

a
ROWROW   

 
























1
11

21
2

1

12
11

21
2,2

1,2
1,1

0 b
a

a
b

b

a
a

a
a

a
a

bAref       

 
For a 2x2 example, we have for the reduced row echelon form 

 

1
1

1
11

ROW
a

ROW   

2
1

2

12
11

21
22

ROW
a

a

a
a

ROW


  

 

  


















































A

baba
a

b

a
a

a
a

a
a

b
a

a
b

a
b

a
a

bArref

det
10

1

10

1
121211

1,1

1

1,1

1,2

12
11

21
2,2

1
11

21
2

1,1

1

1,1

1,2

  

 
In order to evaluate the existence and uniqueness of a solution, we also require the rank of a 

matrix.  The rank of a matrix A  is the number of non-zero rows in a matrix when it is put in row 

echelon form.  The rank of a matrix in row echelon form is the same as the rank of a matrix in 
reduced row echelon form.   

Consider the following upper triangular matrices. 
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
















33

2322

131211

00

0

u

uu

uuu

U          (1.31) 

 
The rank of this matrix is 3.  The determinant of this matrix is non-zero. 
 

If the determinant of an nxn matrix is zero, then the )(
n

Arank  is less than n. 

 


















000

0 2322

131211

uu

uuu

U          (1.32) 

 
Non-square matrices can also be put in row echelon form.  Consider the augmented nx(n+1) 

matrix of the form: 
 


















3

2

1

33

2322

131211

00

0

v

v

v

u

uu

uuu

U          (1.33) 

 
The rank of this matrix is still defined as the number of non-zero rows in the row echelon form of 
the matrix.  The rank of the matrix shown above is 3.   For augmented matrices, the non-zero 
element can appear on either matrix.  The rank of the following matrix is still three. 

 


















3

2

1

2322

131211

000

0

v

v

v

uu

uuu

U          (1.34) 

 
In an augmented matrix, both sides of a row must be zero for the row to be considered zero.  The 
rank of the following matrix is two. 

 


















0000

0 2

1

2322

131211

v

v

uu

uuu

U          (1.35) 

 
The rank provides the number of independent equations in the system.  For example, consider 

the 3x3 example given below.  The third equation is a linear combination of the first two 
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equations.  This matrix can be put in row echelon form using the following elementary row 
operations,  

 




















231322122111

232221

131211

kacakacakaca

aaa

aaa

A        (1.36) 

 
This matrix can be put in row echelon form using the following elementary row operations,  

 
2133 kROWcROWROWROW   

 

122
11

21 ROW
a

a
ROWROW   

which yields 
 

 




















000

0 13
11

21
2312

11

21
22

131211

a
a

a
aa

a

a
a

aaa

A        (1.37) 

 

1.7.  Existence and Uniqueness of a Solution 

The existence and uniqueness of a solution to bxA   can be determined with either the row 

echelon form or the reduced row echelon form of A  and bA  as follows.  In dealing with linear 

equations, we only have three choices for the number of solutions.  We either have 0, 1, or an 
infinite number of solutions.   

 

No Solutions: 

 nArank )(  and )()( bArankArank   

One Solution: 

 nbArankArank  )()(   

Infinite Solutions: 

 nbArankArank  )()(  
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When )()( ArankbArank  , your system is over-specified.  At least one of the equations is 

linearly dependent in the a matrix but is assigned to an inconsistent value of in the b  vector.  

There are no solutions to your problem.  When nArankbArank  )()( , you have a properly 

specified system with n equations and n unknown variables and you have one, unique solution.  

When nArankbArank  )()( , then you have less equations than unknowns.  You can pick 

)(Arankn   unknowns arbitrarily then solve for the rest.  Therefore you have an infinite number 

of solutions.  We will work one example of each case below.  
 

Example 1.1.  One Solution to bxA   

Let’s find 
 (a) the determinant of A  

 (b) the inverse of A  

 (c) the solution of 1bxA   

 (d) the solution of 2bxA   

 
where 

 


















111

121

312

A     


















1

1

1

1b       


















2

0

2

2b  

 
Solution: 

(a) The determinant of A  is (by equation 1.21)    1det A . 

(b) Because the determinant is non-zero, we know there will be an inverse.  Let’s find it. 
STEP ONE. Write down the initial matrix augmented by the identity matrix. 
 


















100

010

001

111

121

312

IA    

 
STEP TWO.  Using elementary row operations, convert A  into an identity matrix. 

 

(1)  Put a one in the diagonal element of ROW 1.  
2

11
1

11

ROW

a

ROW
ROW   
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















100

010

002/1

111

121

2/32/11

 

 
(2) Put zeroes in all the entries of COLUMN 1 except ROW 1. 
 

 
13133

12122

31

21

ROWROWROWaROWROW

ROWROWROWaROWROW




 

 

 






















102/1

012/1

002/1

2/12/10

2/12/30

2/32/11

 

 

(3) Put a 1 in the diagonal element of ROW 2.  
2/3

22
2

22

ROW

a

ROW
ROW   

 

 






















102/1

03/23/1

002/1

2/12/10

3/110

2/32/11

 

 
(4) Put zeroes in all the entries of COLUMN 2 except ROW 2. 
 

 
2*2/13233

2*2/11211

32

12

ROWROWROWaROWROW

ROWROWROWaROWROW




 

 

 
























13/13/1

03/23/1

03/13/2

3/100

3/110

3/501

 

 

 (5) Put a 1 in the diagonal element of ROW 3.  
3/1

33
3

33 


ROW

a

ROW
ROW  

 

 






















311

03/23/1

03/13/2

100

3/110

3/501

 



Linear Algebra - 17 
 
 
(6) Put zeroes in all the entries of COLUMN 3 except ROW 3. 
 

3*3/12322

3*3/51311

23

13

ROWROWROWaROWROW

ROWROWROWaROWROW




 

 






















311

110

521

100

010

001

 

 
We have the inverse. 
 























311

110

521
1A  

 
(c)  The solution to 1bxA   is 1

1bAx  . 

 


























































1

0

2

1

1

1

311

110

521

x  

 
(d)  The solution to 2bxA   is 2

1bAx  . 

 


























































4

2

8

2

0

2

311

110

521

x  

 
We see that we only need to calculate the inverse once to solve both 1bxA   and 2bxA  .  

That’s nice because finding the inverse is a lot harder than solving the equation once the inverse is 
known. 

 
Example 1.2.  No Solutions to bxA   
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
















433

121

312

A     


















1

1

1

1b        

 
In this case, when we compute the determinant, we find that   0det A .  The determinant is 

zero.  No inverse exists.  To determine if we have no solution or infinite solutions find the ranks of 
A  and bA .  In row echelon form, A becomes:   

 

  

















000

130

312

Aref   

 
By inspection of the row echelon form,   2Arank .  In row echelon form, bA |  becomes  

 

 

























2

1

1

000

130

312

bAref  

 
By inspection of the row echelon form,   3| bArank .  Since    ArankbArank | , there are 

no solutions to bxA  . 

 
Example 1.3.  Infinite Solutions to bxA   

 
Consider the same matrix, A , as was used in the previous example 1.2.  The determinant is 

zero and the rank is 2.  Now consider a different b vector. 
 


















2

1

1

2b  

 
In row echelon form, bA |  becomes:   
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






















0

1

1

000

130

312

bAref  

 
By inspection of the row echelon form,   2| bArank .  Since 

32)()(  nbArankArank , there are infinite solutions.   

We can find one example of the infinite solutions by following a standard procedure.  First, we 
arbitrarily select )(Arankn   variables.  In this case we can select one variable.  Let’s make 

03 x .  Then substitute that value into the row echelon form of  bA  and solve the resulting 

system of )(Arank  equations. 

 
























0

1

1

000

130

312

bAref  

 
When 03 x  

 
























0

1

1

000

030

012

bAref  

 

Now solve a new bxA   problem where A  and b  come from the non-zero parts of 




 bAref . 

 



























 1

1

30

12

2

1

x

x
 

 
This problem will always have an inverse.  The solution is given by  
 






















3
1

3
1

2

1

x

x
 

 
So one example of the infinite solutions is 
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


















0
3

1
3

1

x  

 

1.8.  Eigenanalysis 

Eigenanalysis involves the determination of eigenvalues and eigenvectors.  It is a part of linear 
algebra that is extremely important to scientists and engineers in a broad variety of applications.  
Here we first provide the mathematical framework for obtaining eigenvalues and eigenvectors.  
Then we provide an example.   

For an nxn square matrix, there are n eigenvalues, though they need not all be different.  If the 
determinant of the matrix is non-zero, all of the eigenvalues are non-zero.  If the determinant of the 
matrix is zero, at least one of the eigenvalues is zero. 

To calculate the eigenvalues,   , for an nxn matrix, one begins by subtracting the eigenvalue 
from all diagonal elements. 

 

































nnnn

n

n

aaa

aaa

aaa

IA

,2,1,

,22,21,2

,11,11,1









      (1.38) 

 
Second, the determinant of IA   is set to zero, 

 
  0det  IA            (1.39) 

 
Third you must solve this equation for  .  Equation (1.39) is called the characteristic equation 

and is a polynomial in   of order n.  Thus, this equation has n roots.  As with any polynomial 
equation, the roots may be complex.  The n roots of equation (1.39) are the n eigenvalues.  

Each eigenvalue has associated with it an eigenvector.  Thus, if there are n-eigenvectors, there 
are also n-eigenvalues.   The ith eigenvector, iw , for the matrix A , is obtained by solving  

 
  0 ii wIA            (1.40) 

 
for iw .  This equation defines the eigenvectors and can be solved n times for all n eigenvalues 

to yield n eigenvectors.  
For a 2x2 matrix, we have 
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
















2,21,2

2,11,1

2222 aa

aa
IA

xx
       (1.41) 

 
The determinant of IA   is set to zero, 

 
       0det)(det

222,21,1
2

1,22,12,21,12222


xxx
AaaaaaaIA   (1.42) 

 
For a 2x2 matrix, the characteristic equation is a quadratic polynomial.  The two roots of the 

equation are given by the quadratic formula, 
 

 
2

det4)()(
22

2
2,21,12,21,1 x

Aaaaa 
       (1.43) 

 
The eigenvectors are given by  
 

  0
2,21,2

2,11,1

2222












 i

i

i
ixix

w
aa

aa
wIA




       (1.44) 

 
This set of linear equations must be solved.  The first step in solving a system of linear 

equation is finding the determinant.  Because the eigenvalues are solutions to   0det  IA   

(from equation (1.42)), the determinant of the matrix in equation (1.44) is always zero.  Since the b 
vector in equation (1.44) is the zero vector, the rank of  IA   is equal to the rank of the 

augmented matrix   bIA | , which is less than n,  

 
      nbIArankIArank  |        (1.45) 

 
Consequently, there are always infinite solutions for each eigenvector.  Another way to think of 
this is that eigenvectors provide directions only, but not magnitude.   

For a 2x2 matrix, we can randomly set the second element of the eigenvector to an arbitrary 
variable, x.  Solving the first equation in equation (1.44) yields the eigenvectors, 

 

  0,1
1,1

2,1 










 xabitraryforntoifor

xa

xa
w

i
i 

     (1.46) 

 
Typically, eigenvectors are reported as normalized vectors, where the magnitude of the vector is 
one.  The magnitude of an arbitrary vector, x , of length n is defined as  
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 



n

i
ixx

1

2           (1.47) 

 
Therefore a normalized vector, x , is given by  
 

 x
x

x
1

           (1.48) 

 
By construction, the magnitude of this normalized vector is one.  The normalized eigenvectors 

for the 2x2 example is then  
 

     0,1
11

1,1

2,1

22
1,1

2
2,1














 xabitraryforntoifor

xa

xa

xaa
w

w
w

i
i

i
i

i 
 (1.49) 

 
Even the normalized eigenvectors still have two equivalent expressions, which involves 
multiplication by -1.  A normalized eigenvector multiplied by -1 is still a normalized eigenvector.  
For a common list of eigenvectors, we adopt the convention that the real component of the first 
element of each eigenvector should be positive. 

 
Example 1.4. 

Consider the 2x2 matrix, 









12

21
A .  The characteristic equation is given by 

 
      032411det 2   IA  

 
The eigenvalues are given by 11   and .32    From equation (1.46), the unnormalized 

eigenvectors are for x = 1,  
 

   





















2

2

111

12
1w     























2

2

131

12
2w  

 
The normalized eigenvectors are  
 

 


















2
1

2
1

22

11
11

1
1 ww

w
w  






















2
1

2
1

22

11
22

2
2 ww

w
w  
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If we follow the convention that the first element should be positive in our eigenvectors, then 

our normalized eigenvectors are  
 




















2
1

2
1

1w  


















2
1

2
1

2w  

 
Example 1.5.  Normal Mode Analysis 

 
Students frequently ask for an example of the physical meaning of eigenvalues and 

eigenvectors.  Such a meaning can be directly observed in the application of normal mode 
analysis.  Below we provide a normal mode analysis of a simple one-dimensional model of carbon 
dioxide in the ideal gas state. 

Consider a carbon dioxide molecule modeled as three particles connected by two springs, with 
the carbon atom in the middle, as shown in 
Figure 1.1.  The positions in the laboratory 
frame of reference are subscripted with an “0”.  
The positions as deviations from their 
equilibrium positions relative to the molecule 
center-of-mass contain only the essential 
information for this problem and do not have the 
“0” subscript. 

We model the interaction between molecules 
as Hookian springs.  For a Hookian spring, the 
potential energy, U , is  

 

 

2
0 )xx(

2

k
U 

  
 

and the force, F , is  
 

 )xx(kF 0   
 

where k  is the spring constant (units of kg/s2).  We can write Newton’s equations of motion for 
the three molecules: 

 
 
   
 2333

231222

1211

xxkFam

xxkxxkFam

xxkFam

O

C

O





 

 

Figure 1.1.  An idealized model of the 
carbon dioxide molecule.   

O C O

spring
(k)

spring
(k)

x0,1 x0,2 x0,3

x1 x3x2
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Knowing that the acceleration is the second derivative of the position, we can rewrite the above 

equations in matrix form as (first divide both side of all of the equations by the masses) 
 

xA
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
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Today, we are not interested in solving this systems of ordinary differential equations.  We are 

content to perform an eigenanalysis on the matrix A .  First we have 
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The characteristic equation for this matrix is  
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Rearranging this cubic polynomial for   yields 
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In this form, by inspection the roots to the characteristic equation are  
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The eigenvectors for each of these eigenvalues are given by 
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Since the equations are not linearly independent, we can remove 1,3w  as a variable and set it equal 

to 1.  Then our system becomes: 
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This 2x2 matrix has a non-zero determinant.  We can solve it uniquely to yield 
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and the eigenvector that corresponds to 01   is 
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To find the second eigenvector, the eigenvector that corresponds to
Om

k2   
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As before, we remove the third equation and remove 2,3w  as a variable and set it equal to 1.  Then 

our system becomes: 
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With this new matrix, we can calculate that the determinant is non-zero and the solution is  
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and the eigenvector that corresponds to 
Om

k2  is 
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To find the third eigenvector, the eigenvector that corresponds to 
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As before, we remove the third equation and remove 3,3w  as a variable and set it equal to 1.  Then 

our system becomes: 
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With this new matrix, we can calculate that the determinant is non-zero and the solution is  
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and the eigenvector that corresponds to 
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So we have the three eigenvalues and the three eigenvectors.  So what?  What good do they do 

us?  For a vibrating molecule, the square root of the absolute value of the eigenvalues from doing 
an eigenanalysis of Newton’s equations of motion, as we have done, are the normal frequencies.   
You see that the units of the eigenvalues are 1/sec2, so the square root has units of frequency (or 
inverse time).   

For carbon dioxide, the three normal frequencies are: 
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The frequency of zero is no frequency at all.  It is not a vibrational mode.  In fact, it is a 

translation of the molecule.  We can see this by examining the eigenvectors.  The eigenvector that 

corresponds to 01    or 011   is 
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This is a description of the normal vibration associated with frequency of zero.  It says that all 

atoms move the same amount in the x-direction.  See Figure 1.2.   
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The eigenvector that corresponds to 
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This eigenvector describes a vibration 

where both the oxygen move away from the 
carbon equally and the carbon does not 
move.  

The eigenvector that corresponds to 











C

O

O m

m

m

k
213  or 











C

O

O m

m

m

k
2133   is 

 





















1

2
1

2
C

O

m

m
w   

 
This eigenvector describes a vibration 

where both the oxygen move to the right and 
the carbon move more to the left, in such a 
way that there is no center of mass motion.  

The normal modes of motion provide a 
complete, independent set of vibrations from 
which any other vibration is a linear 
combination. 

 

  

 

 

 
Figure 1.2.  Normal modes of a one-dimensional 
model of carbon dioxide.  The top mode is a 
translational mode with 01  .  The middle mode is 

a vibrational mode with 
Om

k
2 .  The bottom 

mode is a vibrational mode with 
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1.9.  Summary of Logically Equivalent Statements 

At this point, we have identified the most common tasks required in the solution of a system of 
linear algebraic equations.  An example of the analytical method by which numerical values can be 
obtained by hand has been presented.  The value in presenting these hand calculations lies in 
developing an understanding of the general behavior of systems of linear equations.  It is unlikely 
that we will ever be called upon (outside of exams) to calculate eigenvalues or inverses by hand.  
Nevertheless, knowing what to expect from an analytical understanding better prepares us to make 
sense of the numerical tools and better understand why numerical tools fail.  For example, we can 
ask a program to compute the inverse of a matrix with a determinant of zero.  Depending on the 
software, a variety of cryptic messages may be provided when the code crashes.  Showing that the 
determinant is zero first, allows us to understand that not all of our equations were independent.  
Alternatively, some software will simply return some matrix without ever notifying the user that 
the inverse does not exist.  Again, the basic understanding provided above can go a long way in 
interpreting the results of mathematical software.   

To this end, we can identify summarize the logically equivalent statements about an nxn 
matrix, A .  If any one of these statements is true, all the others are true. 

 
 
 If and only if 0)det( A  

 
 then inverse exists 
 
 then A  is non-singular  

 
 then nArank )(  

 
 then there are no zero rows in the row 

echelon form of A  

 
 then bxA   has one, unique solution 

 
 
 all eigenvalues of A are non-zero 

 

 
 If and only if 0)det( A  

 
 then inverse does not exist 
 
 then A  is singular  

 
 then nArank )(  

 
 then there is at least one zero row in 

the row echelon form of A  

 
 then bxA   has either no solution or 

infinite solutions 
 
 at least one eigenvalue of A is zero 
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1.10.  Summary of MATLAB Commands 

In the table below, a summary of important linear algebra commands in MATLAB is given. 
Entering a matrix 
 
A=[a11,12;a21,a22] 
 
(commas separate elements in a row, semicolons separate rows) 
(easiest for direct data entry) 
 
A=[a11 a12 
a21  a22] 
 
(tabs separate elements in a row, returns separate rows)   
(useful for copying data from a table in Word or Excel) 
 
Entering a column vector 
 
b=[b1;b2;b3] 
 
(an nx1 vector) 

Entering a row vector 
 
b=[b1,b2,b3] 
 
(a 1xn vector) 
 

determinant of a matrix 
 
det(A) 
 
(scalar) 
 

rank of a matrix 
 
rank(A) 
 
(scalar) 

inverse of an nxn matrix 
 
inv(A) 
 
(nxn matrix) 
 

transpose of an nxm matrix or an nx1 vector 
 
A=A’ 
 
(mxn matrix or 1xn vector) 

solution of Ax=b 
 
x=A\b or x=inv(A)*b 
 
(nx1 vector) 

reduced row echelon form of an nxn matrix 
 
rref(A) 
 
(nxn matrix) 
 

eigenvalues and eigenvector of an nxn matrix 
 
[w,lambda]=eig(A) 
 
(w is an nxn matrix where each column is an eigenvector, 
lambda is a nxn matrix where each diagonal element is an eigenvalue, off-diagonals are zero).  
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1.11.  Problems 

Problems are located on course website. 
 
 


