
Random Variables and Probability Distributions- 26 
 

Chapter 2.  Random Variables and 
Probability Distributions 

 

2.1.  Introduction 

In the previous chapter, we introduced common topics of probability.  In this chapter, we 
translate those concepts into a mathematical framework.  We invoke algebra for discrete variables 
and calculus for continuous variables.  Every topic in this chapter is presented twice, once for 
discrete variables and again for continuous variables.  The analogy in the two cases should be 
apparent and should reinforce the common underlying concepts.  There is, in the second half of the 
chapter, another duplication of concepts in which we show that the same process of translation 
from the language of probability to that of mathematics can be performed not only when we have a 
single variable of interest, but also when we have two variables.  Again, high-lighting this analogy 
between single and joint probability distributions explicitly reveals the common underlying 
concepts. 

2.2.  Random Variables & Sample Spaces 

We begin with the introduction of a necessary vocabulary. 
 

Random variable 
A random variable is a function that associates a number, integer or real, with each element in 

a sample space.   
 

Discrete Sample Space 
If a sample space contains a finite number of possibilities or an unending sequences with as 

many elements as there are whole numbers, it is called a discrete sample space.   
 
Example 2.1.:  You flip two coins.  Y is a random variable that counts the number of heads.  The 
possible results and the value of the random variable associated with each result are given in the 
following table. 
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result y 
HH 2 
HT 1 
TH 1 
TT 0 

 
This sample space is discrete because there are a finite number of possible outcomes. 
 
Example 2.2.:  You subject a box containing N devices to a test.  Y is a random variable that counts 
the number of defective devices.  The value of the random variable ranges from 0 (no defects) to N 
(all defects).  This sample space is discrete because there are a finite number of possible outcomes. 
 
Continuous Sample Space 

If a sample space contains an infinite number of possibilities equal to the number of points on a 
line segment, it is called a continuous sample space.  

 
Example 2.3.:  You drive a car with five gallons of gas.  Y is a random variable that represents the 
distance traveled.  The possible results are infinite because even if the car averaged 20 miles per 
gallon, it could go 100.0 miles, 100.1, 100.01, 100.001, 100.0001 miles.  The sample space is as 
infinite as real numbers. 

2.3.  Discrete Probability Distribution Functions (PDFs) 

Probability distribution function (PDF) 
The function, f(x) is a probability distribution function of the discrete random variable x, if for 

each possible outcome a, the following three criteria are satisfied. 
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The PDF is always non-negative.  The PDF is normalized, meaning that the sum over all values of 
a discrete PDF is unity.  The PDF evaluated at outcome a provides the probability of the 
occurrence of outcome a.  
 
Example 2.4.:  Eight devices are shipped to a retail outlet, 3 of which are defective.  If a consumer 
purchases 2 computers, find the probability distribution for the number of defective devices bought 
by the consumer.   

 
In order to solve this problem, first define the random variable and the range of the random 

variable.  The random variable, x, is equal to the number of defective devices bought by the 



Random Variables and Probability Distributions- 28 
 

consumer.  The random variable, x, can take on values of 0, 1, and 2.  Those are the only number 
of defective devices the consumer can buy, given that they are only buying two devices.   

The next step is to determine the size of the sample space.  The number of ways that 2 can be 

taken from 8 without replacement is 28
2

8






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
.  We use the formula for combinations because the 

order of purchases does not matter.    This is the total number of combinations of devices that the 
consumer can buy.   

Third, the probability of a particular outcome is equal to the number of ways to get that 
outcome over the total number of ways: 
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In each of these cases, we obtained the numerator, the number of ways of getting outcome a, 

by using the combination rule and the generalized multiplication rule.   There are  







a

3
 ways of 

choosing a defective devices from 3 defective devices.  There are  







-a2

5
 ways of choosing (2-a) 

good devices from 5 good devices.  We use the generalized multiplication rule to get the number 
of ways of getting both of these outcomes in the numerator.  As a preview, we will come to 
discover that this probability distribution is called the hypergeometric distribution in Chapter 4. 

So we have the PDF, f(x), defined for all possible values of x.  We have solved the problem. 
Note:  If someone asked for the probability for getting 3 (or any number other than 0, 1, or 2) 

defective devices, then the probability is zero and f(3)= 0. 
 

Testing a discrete PDF for legitimacy 
If you are asked to determine if a given PDF is legitimate, you are required to verify the three 

criteria in equation (2.1).    Generally, the third criterion is given in the problem statement, so you 
only have to check the first two criteria.   
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The first criteria, 0)( xf , can most easily be verified by plotting f(x) and showing that it is 

never negative.  The second criteria,  
x

xf 1)( , can most easily be verified by direct summation 

of all f(x). 
 

Normalizing a discrete PDF  
Discrete PDF’s must satisfy  

x

xf 1)( .  Sometimes, you have the functional form of the 

PDF and you simply need to force it to satisfy this criterion.  In that case you need to normalize the 
PDF so that it sums to unity. 

If )(xf   is an unnormalized PDF, then it can be normalized by the multiplication of a 
constant, 
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where that constant is the inverse of the sum of the unnormalized PDF. 
 
Example 2.5.:  Find the value of c that normalizes the following PDF. 

 
 xPcxf 4)(   for x = 0, 1, 2, 3, & 4 

 
To normalize, we sum the PDF over all values and set it to unity. 
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We then solve for simplify and solve for the normalization constant, c. 
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So the normalized PDF is  
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 xPxf 465
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Discrete Cumulative Distribution Function (CDF) 

The discrete cumulative distribution function (CDF), F(x) of a discrete random variable X with 
the probability distribution, f(x), is given by 
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The CDF is the probability that x is less than or equal to a. 

 
Example 2.6.:  In the above example, regarding the consumer purchasing devices, we can obtain 
the cumulative distribution directly: 

 
F(0) = f(0) = 10/28,  
F(1) = f(0)+f(1)=25/28,  
F(2)=f(0)+f(1)+f(2)=1 
 

Note:  The cumulative distribution is always 
monotonically increasing, with x.  The final 
value of the cumulative distribution is always 
unity, since the PDF is normalized.   

 
Probability Histogram: 

A probability histogram is a graphical 
representation of the distribution of a discrete 
random variable. 

The histogram for the PDF and CDF for the 
Example 2.4. are given in Figure 2.1.   

The histogram of the PDF provides a visual 
representation of the probability distribution, its 
most likely outcome and the shape of the 
distribution.   

The histogram of the CDF provides a visual 
representation of the cumulative probability of 
an outcome.  We observe that the CDF is 
monotonically increasing and ends at one, as it 
must since the PDF is normalized and sums to 
unity.   

 
 

 

 

Figure 2.1.  The histogram of the PDF (top) and 
CDF (bottom) for Example 2.4. 
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2.4.  Continuous Probability Density Functions (PDFs) 

Probability distribution functions of discrete random variables are called probability density 
functions when applied to continuous variables.  Both have the same meaning and can be 
abbreviated commonly as PDF’s.  Probability density functions satisfy three criteria, which are 
analogous to those for discrete PDFs, namely 

 














b

a

dxxfbxaP

dxxf

xxf

)()(

1)(

R allfor       0)(

          (2.4) 

 
The probability of finding an exact point on a continuous random variable is zero,  
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Consequently, the probability that a random variable is “greater than” or “greater than or equal to” 
a number is the same in for continuous random variables.  The same is true of” less than” and “less 
than or equal to” signs for continuous random variables.  This equivalence is absolutely not true 
for discrete random variables. 

 
)()( bxaPbxaP   and )()( bxaPbxaP   

 
Also it is important to note that substitution of a value into the PDF gives a probability only for a 
discrete random variable, in order words )()( afaxP  for discrete PDFs only.  For a 
continuous random variable, )(af  by itself doesn’t provide a probability.  Only the integral of 

)(af  provides a probability from a continuous random variable. 
 
Example 2.7.:  A probability density function has the form 
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A plot of the probability density distribution is shown in Figure 2.2.  This plot is the 

continuous analog of the discrete histogram. 
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Figure 2.2.  A plot of the PDF (left) and CDF (right) for Example 2.7. 

 
The probability of finding an x between a and b is by (equation 2.4) 
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(a) Find )21(  xP  
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This result makes sense since the PDF is normalized and we have integrated over the entirety of 
the non-zero range of the random variable. 
 
(b) Find )x(P     

We cannot integrate over discontinuities in a function.  Therefore, we must break-up the 
integral over continuous parts. 
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Here we see that actually it is not practically necessary to integrate over the parts of the 

function where f(x)=0, because the integral over those ranges is also 0.  In general practice, we just 
need to perform the integration over those ranges where the PDF, f(x), is non-zero. 
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Again, it is not necessary to explicitly integrate over anything but the non-zero portions of the 
PDF, as all other portions contribute nothing to the integral. 
 
(d) Find )10(  xP  
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Testing a continuous PDF for legitimacy 

If you are asked to determine if a given PDF is legitimate, you are required to verify the three 
criteria in equation (2.4).    Generally, the third criterion is given in the problem statement, so you 
only have to check the first 2 criteria.   

The first criteria, 0)( xf , can most easily be verified by plotting f(x) and showing that it is 

never negative.  The second criteria, 1)( 




dxxf , can most easily be verified by direct integration 

of f(x). 
 

Normalizing a continuous PDF  

Continuous PDF’s must satisfy 1)( 




dxxf .  Sometimes, you have the functional form of the 

PDF and you simply need to force it to satisfy this criterion.  In that case you need to normalize the 
PDF so that it sums to unity. 

If )(xf   is an unnormalized PDF, then it can be normalized by the multiplication of a 
constant, 
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where that constant is the inverse of the sum of the unnormalized PDF. 
 
Example 2.8.:  Find the value of c that normalizes the PDF. 
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To normalize: 
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So the normalized PDF is  
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Continuous Cumulative distributions 

The cumulative distribution F(x) of a continuous random variable x with density function f(x) 
is  
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This function gives the probability that a randomly selected value of the variable x is less than 

a.  The implicit lower limit of cumulative distribution is negative infinity. 
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Example 2.9.:  Determine the cumulative distribution function for the PDF of Example 2.7. 
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A plot of the cumulative distribution function for the PDF of Example 2.7. is shown in Figure 2.2.  
The CDF is again monotonically increasing.  It begins at zero and ends at unity, since the PDF is 
normalized. 

2.5.  Relations between Inequalities 

In the above section we have defined a specific function for the probability that x is less than or 
equal to a, namely the cumulative distribution.  But what about when x is greater than a, or strictly 
less than a, etc.?  Here, we discuss those possibilities. 

Consider the fact that the probability of all outcomes must sum to one.  Then we can write 
(regardless of whether the PDF is discrete or continuous) 

 
 1a)P(xa)P(xa)(x P  

 
Using the union rule we can write: 

 
a)](xa)P[(x a)P(xa)(xa)](xa)P[(x a)(x   PP  

 
The intersection is zero, because x cannot equal a and be less than a, so 

 
a)P(xa)(xa)](xa)P[(x a)(x  PP   

 
Similarly 

 
a)P(xa)(xa)](xa)P[(x a)(x  PP   

 
Using these three rules, we can create a generalized method for obtaining any arbitrary 

probability.  On the other hand, we can use the rules to create way to obtain any probability from 
just the cumulative distribution function.  (This will be important later when we use PDF’s for 
which only the cumulative distribution function is given.)  Regardless of which method you use, 
you will obtain the same answer.  In Table 2.1, we summarize the expression of each probability in 
terms of the cumulative PDF. 

The continuous case has one important difference.  In the continuous case, the probability of a 
random variable x equaling a single value a is zero.  Why?  Because the probability is a ratio of the 
number of ways of getting a over the total number of ways in the sample space.  There is only one 
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way to get a, namely x=a.  But in the denominator, there is an infinite number of values of x, since 
x is continuous.  Therefore, the P(x=a)=0.  We can show this using the definition is we write,  
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One consequence of this is that  
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The probability of ax   is the same as ax  .  Likewise, the probability of ax   is the same 

as ax  .  This fact makes the continuous case easy to generate.  In Table 2.2, we summarize the 
expression of each probability in terms of the cumulative PDF. 
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Table 2.1.  Relations between inequalities for discrete random variables. 
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Table 2.2.  Relations between inequalities for continuous random variables. 
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Let’s close out this section with two more vocabulary words used to describe PDFs.  The 
definitions of symmetric and skewed distributions are provided below.  An example of each are 
plotted in Figure 2.3. 
 
Symmetric   

A probability density distribution is said to be symmetric if it can be folded along a vertical 
axis so that the two sides coincide. 
 
Skew 

A probability density distribution is said to be skewed if it is not symmetric.  
 

  
Figure 2.3.  Examples of symmetric and skewed PDFs. 

2.6.  Discrete Joint Probability Distribution Functions 

Thus far in this chapter, we have assumed that we have only one random variable.  In many 
practical applications there are more than one random variable.  The behavior of sets of random 
variables is described by Joint PDFs.  In this book, we explicitly extend the formalism to two 
random variables.  It can be extended to an arbitrary number of random variables.  We will present 
this extension twice, once for discrete random variables and once for continuous random variables. 

The function f(x,y) is a joint probability distribution or probability mass function of the discrete 
random variable X and Y if 
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This is just the two variable extension of equation (2.1).  The PDF is always positive.  The 

PDF is normalized, summing to unity, over all combinations of x and y.   The Joint PDF gives the 
intersection of the probability.   

The extension of the cumulative discrete probability distribution, equation (2.4), is that for any 
region A in the x-y plane,  
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That is to say, the probability that a result (x,y) is inside an arbitrary area, A, is equal to the 

sum of the probabilities for all of the discrete events inside A. 
 

Example 2.10.:  Consider the discrete Joint PDF, f(x,y), as given in the table below. 
 

 x 
 1 2 3 

y 
0 1/20 2/20 3/20 
1 4/20 1/20 2/20 
2 2/20 2/20 3/20 

 
Compute the probability that x is 1 and y is 2. 
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Compute the probability that x is less than or equal to 1 and y is less than or equal to 2. 
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2.7.  Continuous Joint Probability Density Functions 

The distribution of continuous variables can be extended in an exactly analogous manner as 
was done in the discrete case.  The function f(x,y) is a Joint Density Function of the continuous 
random variables, x and y, if  
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This is just the two variable extension of equation (2.4).  The PDF is always positive.  The 

PDF is normalized, integrating to unity, over all combinations of x and y.   The Joint PDF gives the 
intersection of the probability.  That third equation takes a specific form, depending on the shape 
of the Area A.  For a rectangle, it would look like: 
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Naturally, the cumulative distribution of the single variable case can also be extended to 2-

variables. 
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Example 2.11.:  Given the continuous Joint PDF, find )15.05.00(  yxP   
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At this point, we should point out two things.  First, we have presented four cases for discrete 

and continuous PDFs for one or two random variables.  There are really only two core equations, 
the requirements for the probability distribution and the definition of the cumulative probability 
distribution.  We have shown these 2 equations for 4 cases;  (i) discrete, one variable, (ii) 
continuous one variable, (iii)  discrete, two variable, and (iv) continuous 2 variable.  Re-examine 
these eight equations to make sure that you see the similarities.   
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In this text,  we are stopping at two variables.  However, discrete and continuous probability 

distributions can be functions of an arbitrary number of variables. 

2.8.  Marginal Distributions and Conditional Probabilities 

Marginal distributions give us the probability of obtaining one variable outcome regardless of 
the value of the other variable.  Marginal distributions are needed to calculate conditional 
probabilities.  The marginal distributions of x alone and of y alone are 

 
     ),()(   and   ),()(  

xy

yxfyhyxfxg       (2.11) 

 
for the discrete case and  

 

   ),()(    and   ),()( 








 dxyxfyhdyyxfxg       (2.12) 

 
for the continuous case. 

 
Example 2.12.:  The discrete joint density function is given by the following table. 

 
 x 
 1 2 3 

y 
0 1/20 2/20 3/20 
1 4/20 1/20 2/20 
2 2/20 2/20 3/20 

 
Compute the marginal distribution of x at all possible values of x: 
 
g(x=1) = f(1,0) + f(1,1) + f(1,2) = 7/20  
g(x=2) = f(2,0) + f(2,1) + f(2,2) = 5/20  
g(x=3) = f(3,0) + f(3,1) + f(3,2) = 8/20  

 
Compute the marginal distribution of y at all possible values of y: 

 
h(y=0) = f(1,0) + f(2,0) + f(3,0) = 6/20  
h(y=1) = f(1,1) + f(2,1) + f(3,1) = 7/20  
h(y=2) = f(1,2) + f(2,2) + f(3,2) = 7/20  
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We note that both marginal distributions are legitimate PDFs and satisfy the three requirements 

of equation (2.1), namely that they are non-negative, normalized and their evaluation yields 
probabilities. 

 
Example 2.13.:  The continuous joint density function is  
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Find g(x) and h(y) for this joint density function.   
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These marginal distributions themselves satisfy all the properties of a probability density 

distribution, namely the requirements in equation (2.4).  The physical meaning of the marginal 
distribution functions are that they give the individual effects of x and y separately. 

 
Conditional Probability 

We now relate the conditional probability to the marginal distributions defined above.  We do 
this first for the discrete case and then for the continuous case. 

Let x and y be two discrete random variables.  The conditional distribution of the random 
variable y=b, given that x=a, is 

 

 0    where
)(

),(
)(  g(a) 

axg

byaxf
axbyf 




      (2.13) 

 
Similarly, the conditional distribution of the random variable x=a, given that y=b, is  

 

   h(b) 
byh

byaxf
byaxf 0   where

)(
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)( 




      (2.14) 
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You should see that this conditional distribution is simply the application of the definition of 

the conditional probability, which we learned in Chapter 1, 
 

   
  0for             |    P(A)
AP

BAP
ABP 

       (1.38) 

 
Example 2.14.:  Given the discrete PDF in Example 2.12., calculate  

(a) )22(  xyf  

(b) )21(  yxf  

 

(a)  )22(  xyf .  Using the conditional probability definition: 
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We already have the denominator:  g(x=2) = 5/20.  The numerator is f(x=2,y=2) = 2/20.  

Therefore, the conditional probability is: 
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(b)  )21(  yxf  
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The numerator is the sum over all values of f(x,y) for which x=1, and 2y .  So 
 

20

7

20

2

20

4

20

1
)2,1()1,1()0,1()2,1(  fffyxf  

 
The denominator is the sum over all h(y) for 2y  
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Therefore,  
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A similar treatment can be done for the continuous case.  Let x and y be two continuous 

variables.  The conditional distribution of the random variable c<y<d, given that a<x<b, is 
 

   g(x)dx   where 

g(x)dx

dyf(x,y)dx

b)xadycP(
b

a
b

a

d

c

b

a 0 


 
    (2.15) 

 
Similarly, the conditional distribution of the random variable a<x<b, given that c<y<d, is  
 

   h(y)dy   where 
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Example 2.15.: Consider the continuous joint PDF in problem 2.13.  Calculate 

1)y0.5|0.5XP(0  . 
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We calculated the numerator in Example 2.11. and it had a numerical value of 11/40. 
 
The denominator is: 
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The conditional probability is then 
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2.9.  Statistical Independence 

In Chapter 1, we used the conditional probability rule to as a check for independence of two 
outcomes.  This same approach is repeated here for two random variables.  Let x and y be two 
random variables, discrete or continuous, with joint probability distribution f(x,y) and marginal 
distributions g(x) and h(y).  The random variables x and y are said to be statistically independent iff 
(if and only if) 

 
  )()(),( yhxgyxf  if and only if x and y are independent     (2.17) 

 
for all possible values of (x,y).  This should be compared with the rule for independence of 
probabilities: 

 
)()()( BPAPBAP   iff and A and B are independent events    (1.44) 

 
Example 2.16.:  In the continuous example given above, determine whether x and y are statistically 
independent random variables. 
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The product of marginal distributions is not equal to the joint probability density distribution.  

Therefore, the variables are not statistically independent. 
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2.10.  Problems 

Problem 2.1. 
Determine the value of c  so that the following functions can serve as a PDF of the discrete 

random variable X. 
  
  4)( 2  xcxf  where x = 0,1,2,3;  
 

Problem 2.2. 
A shipment of 7 computer monitors contains 2 defective monitors. A business makes a random 

purchase of 3 monitors. If x is the number of defective monitors purchased by the company, find 
the probability distribution of X. (This means you need three numbers, f(x=0),  f(x=1), and f(x=2) 
because the random variable, X = number of defective monitors purchased, has a range from 0 to 
2.  Also, find the cumulative PDF, F(x).  Plot the PDF and the cumulative PDF. These two plots 
must be turned into class on the day the homework is due.  

 
Problem 2.3. 

A continuous random variable, X, that can assume values between x=2 and x=5 has a PDF 
given by  

 

  xxf  1
27

2
)(   

 
Find (a) P(X<4) and find (b) P(3<X<4).  Plot the PDF and the cumulative PDF.  

 
Problem 2.4. 

Consider a system of particles that sit in an electric field where the energy of interaction with 
the electric field is given by E(x) = 2477.572 + 4955.144x, where x is spatial position of the 
particles. The probability distribution of the particles is given by statistical mechanics to be f(x) = 
c*exp(-E(x)/(R*T)) for 0<x<1 and 0 otherwise, where R = 8.314 J/mol/K and T = 270.0 Kelvin.  

 (a) Find the value of c that makes this a legitimate PDF.  
 (b) Find the probability that a particles sits at x<0.25  
 (c) Find the probability that a particles sits at x>0.75  
 (d) Find the probability that a particles sits at 0.25<x<0.75  
 

Problem 2.5.   
Let X denote the reaction time, in seconds, to a certain stimulant and Y denote the temperature 

(reduced units) at which a certain reaction starts to take place.  Suppose that the random variables 
X and Y have the joint PDF,  
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where c = 0.907029.  Find (a)  2
1

4
1 and2

10  YXP  and (b)  YXP  . 

 
Problem 2.6.   

Let X denote the number of times that a control machine malfunctions per day (choices:  1, 2, 
3) and Y denote the number of times a technician is called.  f(x,y) is given in tabular form. 

 
f(x,y) x 1 2 3 

y 
1 0.05 0.05 0.1 
2 0.05 0.1 0.35 
3 0.0 0.2 0.1 

 
(a) Evaluate the marginal distribution of X. 
(b) Evaluate the marginal distribution of Y. 
(c) Find P(Y = 3|X = 2). 
 
 
 


