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Chapter 6.  Sampling and Estimation 
 

6.1.  Introduction 

Frequently the engineer is unable to completely characterize the entire population.  She/he 
must be satisfied with examining some subset of the population, or several subsets of the 
population, in order to infer information about the entire population.  Such subsets are called 
samples.  A population is the entirety of observations and a sample is a subset of the population.  
A sample that gives correct inferences about the population is a random sample, otherwise it is 
biased. 

Statistics are given different symbols than the expectation values because statistics are 
approximations of the expectation value.  The statistic called the mean is an approximation to the 
expectation value of the mean.  The statistic mean is the mean of the sample and the expectation 
value mean is the mean of the entire population.  In order to calculate an expectation, one requires 
knowledge of the PDF.  In practice, the motivation in calculating a statistic is that one has no 
knowledge of the underlying PDF. 

6.2.  Statistics 

Any function of the random variables constituting a random sample is called a statistic. 
 

Example 6.1.:  Mean 
The mean is a statistic of a random sample of size n and is defined as 
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Example 6.2.:  Median 

The median is a statistic of a random sample of size n, which represents the “middle” value of 
the sample and, for a sampling arranged in increasing order of magnitude, is defined as 
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The median of the sample space {1,2,3} is 2. 
The median of the sample space {3,1,2} is 2. 
The median of the sample space {1,2,3,4} is 2.5. 
 

Example 6.3.:  Mode 
The mode is a statistic of a random sample of size n, which represents the most frequently 

appearing value in the sample.  The mode may not exist and, if it does, it may not be unique. 
 
The mode of the sample space {2,1,2,3} is 2. 
The mode of the sample space {2,1,2,3,4,4} is 2 and 4.  (bimodal) 
The mode of the sample space {1,2,3} does not exist since each entry occurs only once. 
 

Example 6.4.:  Range 
The range is a statistic of a random sample of size n, which represents the “span” of the sample 

and, for a sampling arranged in increasing order of magnitude, is defined as 
 

1-XXrange(X) n=           (6.3) 
 
The range of {1,2,3,4,5} is  5-1=4. 
 

Example 6.5.:  Variance 
The variance is a statistic of a random sample of size n, which represents the “spread” of the 

sample and is defined as 
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The reason for using (n-1) in the denominator rather than n is given later. 
 

Example 6.6.:  Standard Deviation 
The standard deviation, s, is a statistic of a random sample of size n, which represents the 

“spread” of the sample and is defined as the positive square root of the variance. 
 

2SS =            (6.5) 
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6.3.  Sampling Distributions 

We have now stated the definitions of the statistics we are interested in.  Now, we need to 
know the distribution of the statistics to determine how good these sampling approximations are to 
the true  expectation values of the population. 

 
Statistic 1.  Mean when the variance is known:  Sampling Distribution 

If X  is the mean of a random sample of size n taken from a population with mean µ and 
variance σ2, then the limiting form of the distribution of  
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as ∞→n , is the standard normal distribution n(z;0,1).  This is known as the Central Limit 
Theorem.  What this says is that, given a collection of random samples, each of size n, yielding a 
mean X , the distribution of X  approximates a normal distribution, and becomes exactly a normal 
distribution as the sample size goes to infinity.   The distribution of X does not have to be normal.  
Generally, the normal approximation for X  is good if n > 30. 

We provide a derivation in Appendix V proving that the distribution of the sample mean is 
given by the normal distribution. 

 
Example 6.7.:  distribution of the mean, variance known 

In a reactor intended to grow crystals in solution, a “seed” is used to encourage nucleation.  
Individual crystals are randomly sampled from the effluent of each reactor of sizes 10=n .  The 
population has variance in crystal size of 0.12 =σ µm2.   (We must know this from previous 

research.)  The samples yield mean crystal sizes of 0.15=x  µm.  What is the likelihood that the 
true population mean, µ , is actually less than 14.0 µm? 
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( ) ( )162.314 >=< zPP µ  

 
We have the change in sign because as µ increases, z decreases.   
The evaluation of the cumulative normal probability distribution can be performed several 

ways.  First, when the pioneers were crossing the plains in their covered wagons and they wanted 
to evaluate probabilities from the normal distribution, they used Tables of the cumulative normal 
PDF, such as those provided in the back of the statistics textbook.  These tables are also available 
online.  For example wikipedia has a table of cumulative standard numeral PDFs at  
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http://en.wikipedia.org/wiki/Standard_normal_table 
 
Using the table, we find  
 

( ) ( ) ( ) 0008.09992.01162.31162.314 =−=<−=>=< zPzPP µ  
 
Second, we can use a modern computational tool like MATLAB to evaluate the probability.  

The problem can be worked in terms of the standard normal PDF (µ = 0 and σ = 1), which for 
( ) ( ) ( )162.31162.314 <−=>=< zPzPP µ  is  

 
>> p = 1 - cdf('normal',3.162,0,1) 
 
p = 7.834478217108032e-04 
 
Alternatively, the problem can be worked in terms of the non-standard normal PDF ( 15=x  

and 10/1/ =nσ ), which for ( )14<µP  
 
>> p = cdf('normal',14,15,1/sqrt(10)) 
 
p = 7.827011290012762e-04 
 
The difference in these results is due to the round-off in 3.162, used as an argument in the 

function call for the standard normal distribution.   
Based on our sampling data, the probability that the true sample mean is less than 14.0 µm is 

0.078%. 
 

Statistic 2.  difference of means when the variance is known:  Sampling Distribution  
 
It is useful to know the sampling difference of two means when you want to determine whether 

there is a significant difference between two populations.  This situation applies when you takes 
two random samples of size 1n  and 2n from two different populations, with means 1µ  and 2µ  and 
variances 2

1
σ  and 2

2
σ , respectively.  Then the sampling distribution of the difference of means, 

21 XX − , is approximately normal, distributed with mean 
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and variance 
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Hence, 
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is approximately a standard normal variable. 
 

Example 6.8.:  distribution of the difference of means, variances known 
In a reactor intended to grow crystals, two different types of “seeds” are used to encourage 

nucleation.  Individual crystals are randomly sampled from the effluent of each reactor of sizes 
101 =n  and 202 =n .  The populations have variances in crystal size of 0.12

1
=σ µm2 and 

0.22
2 =σ  µm2.   (We must know this from previous research.)  The samples yield mean crystal 

sizes of 0.151 =X  µm and 0.102 =X  µm.  How confident can we be that the true difference in 
population means, 21 µµ − , is actually 4.0 µm or greater? 

Using equation (6.7) we have: 
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( ) ( )2.23610.421 <=>− zPP µµ  

 
We have the change in sign because as µ∆ increases, z decreases.   The probability that 

21 µµ −  is greater 4.0 µm is then given by P(Z<2.2361).  How do we know that we want 
P(Z<2.2361) and not P(Z>2.2361)?   We just have to sit down and think what the problem 
physically means.  Since we want the probability that 21 µµ −  is greater 4.0 µm, we know we need 
to include the area due to higher values of 21 µµ − .  Higher values of 21 µµ −  yield lower values 
of Z.  Therefore, we need the less than sign. 

The evaluation of the cumulative normal probability distribution can again be performed two 
ways.  First, using a standard normal table, we have  

 
98750242 .) .P(Z =<  

 
Second, using MATLAB we have  
 
>> p = cdf('normal',2.2361,0,1) 
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p =  0.987327389270190 
 
We expect 98.73% of the differences in crystal size of the two populations to be at least 4.0 

µm. 
 
Statistic 3.  Mean when the variance is unknown:  Sampling Distribution  

 
Of course, usually we don’t know the population variance.  In that case, we have to use some 

other statistic to get a handle on the distribution of the mean. 
If X  is the mean of a random sample of size n taken from a population with mean µ and 

unknown variance , then the limiting form of the distribution of  
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as ∞→n , is the t distribution );( vtfT .  The T-statistic has a t-distribution with v=n-1 degrees of 
freedom.  The t-distribution is just another continuous PDF, like the others we learned about in the 
previous section.   

The t distribution is given by  
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As a reminder, the t 

distribution is plotted again in 
Figure 6.1. 
 
Example 6.9.:  distribution of the 
mean, variance unknown 

In a reactor intended to grow 
crystals, a “seed” is used to 
encourage nucleation.  Individual 
crystals are randomly sampled 
from the effluent of each reactor 
of sizes 10=n .  The population 
has unknown variance in crystal 
size.   The samples yield mean 
crystal sizes of 0.15=x  µm and a 
sample variance of 0.12 =s µm2.  

 
Figure 6.1.  The t distribution as a function of the degrees 
of freedom and the normal distribution. 
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What is the likelihood that the true population mean , µ , is actually less than 14.0 µm? 
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( ) ( )162.314 >=< tPP µ  

 
We have the change in sign because as µ increases, t decreases.  The parameter v = n-1 = 9.  
 
The evaluation of the cumulative t probability distribution can again be performed two ways.  

First, we can use a table of critical values of the t-distribution.  It is crucial to note that such a table 
does not provide cumulative PDFs, rather it provides one minus the cumulative PDF.  In other 
words, where as the standard normal table provides the probability less than z (the cumulative 
PDF), the t-distribution table provides the probability greater than t (one minus the cumulative 
PDF).  We then have  

 
( ) ( ) 007.0162.314 ≈>=< tPP µ  

 
Second, using MATLAB we have ( ) ( ) ( )162.31162.314 <−=>=< tPtPP µ  
 
>> p = 1 - cdf('t',3.162,9) 
 
p =   0.005756562560207 
 
Based on our sampling data, the probability that the true sample mean is less than 14.0 µm is 

0.57%. 
We should point out that our percentage here is substantially greater than for our percentage 

when we knew the population variance (0.078%).  That is because knowing the population 
variance reduces our uncertainty.  Approximating the population variance with the sampling 
variance adds to the uncertainty and results in a larger percentage of our population deviating 
farther from the sample mean. 

 
Example 6.10.:    distribution of the mean, variance unknown 

An engineer claims that the population mean yield of a batch process is 500 g/ml of raw 
material.  To verify this, she samples 25 batches each month.  One month the sample has a mean 

518=X  g and a standard deviation of s=40 g.  Does this sample support his claim that 500=µ g? 
 
The first step in solving this problem is to compute the T statistic. 
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Second, using MATLAB we have ( ) ( )25.2518 −<=> tPP µ  

 
>> p = cdf('t',-2.25,24) 
 
p =  0.016944255452754 
 
(Or using a Table, we find that when v=24 and T=2.25, α=0.02).  This means there is only a 

1.6% probability that a population with 500=µ  would yield a sample with 518=X  or higher.  
Therefore, it is unlikely that 500 is the population mean.   

 
Statistic 4.  difference of means when the variance is unknown:  Sampling Distribution  

It is useful to know the sampling difference of two means when you want to determine whether 
there is a significant difference between two populations.  Sometimes you want to do this when 
you don’t know the population variances.  This situation applies when you takes two random 
samples of size 1n  and 2n from two different populations, with means  1µ  and 2µ  and unknown 
variances.  Then the sampling distribution of the difference of means, 21 XX − , follows the t-
distribution.   
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symmetry:  αα tt −=−1 ,  
 
parameters:  221 −+= nnv  if 21 σσ =  
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Since we don’t know either population variance in this case, we can’t assume they are equal 

unless we are told they are equal. 
 

Example 6.11.:  distribution of the difference of means, variances unknown 
In a reactor intended to grow crystals, two different types of “seeds” are used to encourage 

nucleation.  Individual crystals are randomly sampled from the effluent of each reactor of sizes 
101 =n  and 202 =n .  The populations have unknown variances in crystal size.  The samples yield 
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mean crystal sizes of 0.151 =X  µm and 0.102 =X  µm and sample variances  of 0.12
1

=s µm2 and 

0.22
2 =s  µm2.  What percentage of true population differences yielding these sampling results 

would have a true difference in population means, 21 µµ − , of  4.0 µm or greater? 
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The degree of freedom parameter is given by: 
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( ) ( ) ( )2.236112.23610.421 >−=<=>− tPtPP µµ  

 
The evaluation of the cumulative normal probability distribution can again be performed two 

ways.  First, using a table of critical values of the t-distribution, we have  
 

( ) ( ) ( ) 9783.00217.012.236112.23610.421 =−=>−=<=>− tPtPP µµ  
 
Second, using MATLAB we have for ( ) ( )2.23610.421 <=>− tPP µµ  
 
>>  p = cdf('t',2.2361,28) 
 
p =  0.983252747598848 
 
We expect 98.3% of the differences in crystal size of the two populations to be at least 4.0 µm. 
 

Statistic 5.  Variance:  Sampling Distribution  
We now wish to know the sampling distribution of the sample variance, S2.  If S2 is the 

variance of a random sample of size n taken from a population with mean µ and variance σ2, then 
the statistic 
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has a chi-squared distribution with v=n-1 degrees of freedom, )1;( 2
2 −nf χ

χ
.  The chi-squared 

distribution is defined as  
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It is a special case of the 

Gamma Distribution, when 
α=v/2 and β=2, where v is called 
the “degrees of freedom” and is a 
positive integer.  As a reminder, 
we provide a plot of the chi-
squared distribution in Figure 
6.2. 

 
Example 6.12.:  distribution of 
the variance 

In a reactor intended to grow 
crystals, a “seed” is used to 
encourage nucleation.  Individual 
crystals are randomly sampled 
from the effluent of each reactor 
of sizes 10=n .  The samples 
yield mean crystal sizes of 

0.15=x  µm and a sample variance of 0.12 =s µm2.  What is the likelihood that the true population 

variance , 2σ , is actually less than 0.5 µm2? 
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( ) ( )185.0 22 >=< χσ PP  

 
We have the change in sign because as 2σ increases, 2χ  decreases.  The parameter v = n-1 = 

9.  
 
The evaluation of the cumulative 2χ  probability distribution can again be performed two 

ways.  First, we can use a table of critical values of the 2χ -distribution.  It is crucial to note that 
such a table does not provide cumulative PDFs, rather it provides one minus the cumulative PDF.  
We then have  

 
Figure 6.2.  The chi-squared distribution for various values 
of v. 
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( ) ( ) 04.0185.0 22 ≈>=< χσ PP  

 
Second, using MATLAB we have ( ) ( ) ( )181185.0 222 <−=>=< χχσ PPP  
 
>> p = 1 - cdf('chi2',18,9) 
 
p =   0.035173539466985 
 
Based on our sampling data, the probability that the true variance is less than 0.5 µm2 is 3.5%. 

 
Statistic 6.  the ratio of 2 Variances:  Sampling Distribution (F-distribution)  

Just as we studied the distribution of two sample means, so too are we interested in the 
distribution of two variances.  In the case of the mean, it was a difference.  In the case of the 
variance, the ratio is more useful.  Now consider sampling  two random samples of size 1n  and 2n
from two different populations, with means 2

1
σ  and 2

2σ , respectively.  The statistic, F,  
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provides a distribution of the ratio of two variances.  This distribution is called the F-distribution 
with 111 −= nv  and 122 −= nv  degrees of freedom.  The f-distribution is defined as  
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As a reminder, the f-distribution is plotted in Figure 6.3. 

 
Example 6.13.:  ratio of the variances 

In a reactor intended to grow crystals, two different types of “seeds” are used to encourage 
nucleation.  Individual crystals are randomly sampled from the effluent of each reactor of sizes 

101 =n  and 202 =n .  The populations have unknown variances in crystal size.  The samples yield 
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mean crystal sizes of 0.151 =X  µm 
and 0.102 =X  µm and sample 
variances  of 0.12

1
=s µm2 and 

0.22
2 =s  µm2.  What is the 

probability that the ratio of variances 

, 2
2

2
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σ
σ

, is less than 0.25? 
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We have the change in sign because as 2
2

2
1

σ
σ

increases, F  decreases.  The parameters are 

9111 =−= nv  and  19122 =−= nv . 
The evaluation of the cumulative F  probability distribution can again be performed in one 

way.  We cannot use tables because there are no tables for arbitrary values of the probability.  
There are only tables for two values of the probability, 0.01 and 0.05.  Therefore, using MATLAB 

we have ( ) ( )21225.02
2

2
1 <−=>=








< FPFPP

σ
σ

 

 
>>  p = 1 - cdf('f',2,9,19) 
 
p =  0.097413204997132 
 
Based on our sampling data, the probability that the ratio of variances is less than 0.25 is 9.7%. 

6.4.  Confidence Intervals 

In the previous section we showed what types of distributions describe various statistics of a 
random sample.  In this section, we discuss estimating the population mean and variance from the 
sample mean and variance.  In addition, we introduce confidence intervals to quantify the 
goodness of these estimates. 

 
Figure 6.3.  The F distribution for various values of v1 and 
v2. 
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A confidence interval is some subset of random variable space with which someone can 
say something like, “I am 95% sure that the true population mean is between lowµ  and hiµ .”  In 
this section, we discuss how a confidence interval is defined and calculated. 

The confidence interval is defined by a percent.  This percent is called (1-2α).  So if α=0.05, 
then you would have a 90% confidence interval. 

The concept of a confidence interval is illustrated in graphical terms in Figure 6.4. 
 

 
Figure 6.4.  A schematic illustrating a confidence interval. 
 
The trick then is to find αµ zlow =  and αµ −== 1zhi so that you can say for a given α, I am 

( )%21 α−  confident that hilow µµµ << . 
 

Statistic 1.  mean, σ known:  confidence interval  
We now know that the sample mean is distributed with the standard normal distribution.  For a 

symmetric PDF, centered around zero, like the standard normal, hilow µµ −= .  We can then make 
the statement: 

 
ααα 21)( 1 −=<< −zZzP  

 
Now the normal distribution is symmetric about the y-axis so we can write 

 
αα −−= 1zz  

 
so  

 
ααααα 21)()( 1 −=−<<=<< − zZzPzZzP  
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where 
 

n
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We can rearrange this to equation to read 

 

ασµσ
αα 21)( −=−<<+

n
zX

n
zXP       (6.12) 

 
where we now have lowµ  and hiµ  explicitly. 

 
Example 6.14.:  confidence interval on mean, variance known 

Samples of dioxin contamination in 36 front yards in St. Louis show a concentration of 6 ppm.  
Find the 95% confidence interval for the population mean.  Assume that the standard deviation is 
1.0 ppm. 

To solve this, first calculate ααα −1,, zz . 
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The z value came from a standard normal table.  Alternatively, we can compute this value from 

MATLAB, 
 
>> z = icdf('normal',0.025,0,1) 
 
z =  -1.959963984540055 
 
Here we used the inverse cumulative distribution function (icdf) command.  Since we have the 

standard normal PDF, the mean is 0 and the variance is 1.  The value of 0.025 corresponds to 
alpha, the probability. 

To get the value of the other limit, we either rely on symmetry, or compute it directly,  
 
>> z = icdf('normal',0.975,0,1) 
 
z =  1.959963984540054 
 
Note that these values of z are independent of all aspects of the problem except the value of the 

confidence interval. 



Sampling and Estimation - 148 
 

 148 

Therefore, by equation (6.12) 
 

95.005.01
36
1)96.1(

36
1)96.1(6( =−=−−<<−+ XP µ  

 
so the 95% confidence interval for the mean is 327.6673.5 << µ . 

 
Statistic 2.  mean, σ unknown:  confidence interval  

Now usually, we don’t know the variance.  We have to use our estimate of the variance, s, for 
σ.  In that case, estimating the mean  requires the T-distribution.  (See previous section.)  Let me 
stress that we do everything exactly as we did before but we use s for σ and use the t-distribution 
instead of the normal distribution.  Remember the t-distribution is also symmetric about the origin, 
so αα tt −=−1 .  (this means you only have to compute the t probability once.  Remember, v=n-1. 
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Just as before, we can rearrange this to equation to read 

 

αµ αα 21)( −=−<<+
n
stX

n
stXP        (6.13) 

 
where we now have lowµ  and hiµ  explicitly. 

 
Example 6.15.:  confidence interval on mean, variance unknown 

Samples of dioxin contamination in 36 front yards in St. Louis show a concentration of 6 ppm.  
Find the 95% confidence interval for the population mean.  The sample standard deviation, s, was 
measured to be 1.0. 

To solve this, first calculate ααα −1,, tt  for v = 35. 
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The t value came from a table of t-distribution values.  Alternatively, we can compute this 
value using MATLAB, 

 
>> t = icdf('t',0.025,35) 
 
t =  -2.030107928250342 
 

and for the upper limit 
 
>> t = icdf('t',0.975,35) 
 
t =  2.030107928250342, 
 

which can also be obtained by symmetry.  Note that these values of t are independent of all aspects 
of the problem except the value of the confidence interval and the number of sample points, n. 

 
Therefore, by equation (6.13) 

 

95.005.01
36
1)03.2(

36
1)03.2(6( =−=+<<− XP µ  

 
so the 95% confidence interval for the mean is 338.6662.5 << µ . 

You should note that we are a little less confident about the mean when we use the sample 
variance as the estimate for the population variance, for which the 95% confidence interval for the 
mean was 327.6673.5 << µ . 

 
Statistic 3.  difference of means, σ known:  confidence interval 

The exact same derivation that we used above for a single mean can be used for the difference 
of means.  When we the variances of the two samples are known, we have: 

 

( ) ( ) ( ) ασσµµσσ
αα 21
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nn
zXX

nn
zXXP   (6.14) 

 
where z is a random variable obeying the standard normal PDF. 

 
Example 6.16.:  confidence interval on the difference of means, variances known 

Samples of dioxin contamination in 36 front yards in Times Beach, a suburb of St. Louis, show 
a concentration of 6 ppm with a population variance of 1.0 ppm2.  Samples of dioxin 
contamination in 16 front yards in Quail Run, another suburb of St. Louis, show a concentration of 
8 ppm with a population variance of 3.0 ppm2.  Find the 95% confidence interval for the difference 
of population means.  . 
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To solve this, first calculate ααα −1,, zz . 
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The z value came from a table of standard normal PDF values.  Alternatively, we can compute 

this value from MATLAB, 
 
>> z = icdf('normal',0.025,0,1) 
 
z =  -1.959963984540055 
 
Therefore, by equation (6.16) 
 

( ) ( ) ( ) )025.0(21
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3
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16
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( )[ ] 95.0091.1909.2 21 =−<−<− µµP  

 
So the 95% confidence interval for the mean is ( ) 091.1909.2 21 −<−<− µµ . 

If we are determining which site is more contaminated, then we are 95% sure that site 2 (Quail 
Run) is more contaminated by 1 to 3 ppm than site 1, (Times Beach). 

 
Statistic 4.  difference of means, σ unknown:  confidence interval  

When we the variances of the two samples are unknown, we have: 
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where the number of degrees of freedom for the t-distribution is 

 
221 −+= nnv  if 21 σσ =  
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Example 6.16.:  confidence interval on the difference of means, variances unknown 

Samples of dioxin contamination in 36 front yards in Times Beach, a suburb of St. Louis, show 
a concentration of 6 ppm with a sample variance of 1.0 ppm2.  Samples of dioxin contamination in 
16 front yards in Quail Run, another suburb of St. Louis, show a concentration of 8 ppm with a 
sample variance of 3.0 ppm2.  Find the 95% confidence interval for the difference of population 
means.  . 

To solve this, first calculate ααα −1,, tt . 
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The t value came from a table of t-PDF values.  Alternatively, we can compute this value using 

MATLAB, 
 
>> t = icdf('t',0.025,20) 
 
t =  -2.085963447265864 
 
Therefore, substituting into equation (6.15) yields 
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( )[ ] 95.003.197.2 21 =−<−<− µµP  
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So the 95% confidence interval for the mean is ( ) 03.197.2 21 −<−<− µµ . 
 
If we are determining which site is more contaminated, then we are 95% sure that site 2 (Quail 

Run) is more contaminated by 1 to 3 ppm than site 1, (Times Beach). 
 

Statistic 5.  variance:  confidence interval 
The confidence interval of the variance can be estimated in a precisely analogous way, 

knowing that the statistic  
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has a chi-squared distribution with v=n-1 degrees of freedom, )1;( 2
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Perversely, the tables of the critical values for the 2χ  distribution, have defined α to be 1-α, so 

the indices have to be switched when using the table.   
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snsnP   when using the 2χ  critical values table only! 

 
If you get confused, just remember that the upper limit must be greater than the lower limit.  

Remember also that the )1;( 2
2 −nf χ

χ
 is not symmetric about the origin, so we cannot use the 

symmetry arguments used for the confidence intervals for functions of the mean. 
 

Example 6.17.: variance 
Samples of dioxin contamination in 16 front yards in St. Louis show a concentration of 6 ppm.  

Find the 95% confidence interval for the population mean.  The sample standard deviation, s, was 
measured to be 1.0. 

To solve this, first calculate 2
1

2 ,, αα χχα − . 
 
For v = n – 1 = 15, we have  
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The t value came from a table of 2χ -distribution values.  Alternatively, we can compute this 

value using MATLAB, 
 
>>  chi2 = icdf('chi2',0.025,15) 
 
chi2 =   6.262137795043251 
 
and 
 
>>  chi2 = icdf('chi2',0.975,15) 
 
chi2 =  27.488392863442972 

 
Therefore, substituting into equation (6.16) yields 
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( ) 95.0395.25457.0 2 =<< σP  

 
So the 95% confidence interval for the mean is 395.25457.0 2 << σ . 

 
Statistic 6.  ratio of variances:  confidence interval (p. 253) 

The ratio of two population variances can be estimated in a precisely analogous way, knowing 
that the statistic  
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follows the F-distribution with 111 −= nv  and 122 −= nv  degrees of freedom.   Remember, the F-

distribution has a symmetry, 
),(

1)(
122/

2,12/1 vvf
vvf

α
α =− .  This symmetry relation is essential if one 

is to use tables for the critical value of the F-distribution.  It is not essential if one uses MATLAB 
commands. 

If one is computing the cumulative PDF for the f distribution, then one simply, rearranges this 

equation for 2
2

2
1

σ
σ
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One notes that the order of the limits has changed here, since as 2
2

2
1

σ
σ

 goes up, F goes down.  In 

any case, the lower limit must be smaller than the upper limit.  If one chooses to use tables of 
critical values, one must take into account two idiosyncrasies of the procedure.  First, as was the 
case with the t and chi-squared distributions, the table provide the probability that f is greater than 
a value, not the cumulative PDF, which is the probability that f is less than a value.  Second, the 
tables only provide data for small values of α.  Therefore, we must eliminate all instances of 1-α., 
using a symmetry relation.  The result is 
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Example 6.18.:  confidence interval on the ratio of variances 

Samples of dioxin contamination in 20 front yards in Times Beach, a suburb of St. Louis, show 
a concentration of 6 ppm with a sample variance of 1.0 ppm2.  Samples of dioxin contamination in 
16 front yards in Quail Run, another suburb of St. Louis, show a concentration of 8 ppm with a 
sample variance of 3.0 ppm2.  Find the 90% confidence interval for the difference of population 
means.  . 

To solve this, first calculate ααα −1,, FF , with 19111 =−= nv  and 15122 =−= nv  
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=
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We can compute the f probabilities using MATLAB, 
 
>>  f = icdf('f',0.05,19,15) 
 
f =   0.447614966503185 
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and 
 
>> f = icdf('f',0.95,19,15) 
 
f =   2.339819281665456 

 
Substituting into equation (6.16) yields 

 

)05.0(21
0.4476

1
3
1

2.3398
1

3
1

2
2

2
1 −=








<<

σ
σP  

 

90.07447.01425.0 2
2

2
1 =








<<

σ
σP  

 
Alternatively, we can use the table of critical values 
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So the 90% confidence interval for the mean is 7447.01425.0 2
2

2
1 <<

σ
σ

. 

If we are determining which site has a greater variance of contamination levels then we are 
90% sure that site 2 (Quail Run) has more variance  by a factor of 1.3 to 7.0. 

6.5.  Problems 

We intend to purchase a liquid as a raw material for a material we are designing.  Two vendors 
offer us samples of their product and a statistic sheet.  We run the samples in our own labs and 
come up with the following data: 
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Vendor 1 Vendor 2 
sample # outcome sample # outcome 

1 2.3 1 2.49 
2 2.49 2 1.98 
3 2.05 3 2.18 
4 2.4 4 2.36 
5 2.18 5 2.47 
6 2.12 6 2.36 
7 2.38 7 1.82 
8 2.39 8 1.88 
9 2.4 9 1.87 
10 2.46 10 1.87 
11 2.19   
12 2.04   
13 2.43   
14 2.34   
15 2.19   
16 2.12   

 
Vendor Specification Claims: 
Vendor 1:  0.2=µ  and 05.02 =σ , 0.2236=σ  
Vendor 2:  3.2=µ  and 12.02 =σ , 0.3464=σ  
 
Sample statistics, based on the data provided in the table above. 
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Problem 6.1. 
Determine a 95% confidence interval on the mean of sample 1.  Use the value of the 

population variance given.  Is the given population mean legitimate? 
 

Problem 6.2. 
Determine a 95% confidence interval on the difference of means between samples 1 and 2.  

Use the values of the population variance given.   Is the difference between the given population 
means legitimate? 
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Problem 6.3. 

Determine a 95% confidence interval on the mean of sample 1.  Assume the given values of 
the population variances are suspect and not to be trusted.   Is the given population mean 
legitimate? 

 
Problem 6.4. 

Determine a 95% confidence interval on the difference of means between samples 1 and 2.  
Assume the given values of the population variances are suspect and not to be trusted.   Is the 
difference between the given population means legitimate? 

 
Problem 6.5. 

Determine a 95% confidence interval on the variance of sample 1.  Is the given population 
variance legitimate? 

 
Problem 6.6. 

Determine a 98% confidence interval on the ratio of variance of samples 1 & 2.  Is the ratio of 
the given population variances legitimate? 

 
 


