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Chapter 3.  Expectations 
 

3.1.  Introduction 

In this chapter, we define five mathematical expectations—the mean, variance, standard 
deviation, covariance and correlation coefficient.  We apply these general formula to an array of 
situations involving discrete and continuous random variables obeying single and joint probability 
distribution functions to evaluate expectations of both random variables and functions of random 
variables.  Ideally, the reader observes the common analogy in the application of the five concepts 
expressed in a variety of different ways.   

3.2.  Mean of a Random Variable 

The “mean” is another name for the “average”.  A third synonym for mean is the “expected 
value”.  Let x be a random variable with probability distribution f(x).  The mean of x is  
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if x is a discrete random variable, and  

 

∫
∞

∞−

== dxxxfxEx )()(µ          (3.1.b) 

 
if x is a continuous random variable.  We observe that this expectation weights each value of x by 
its corresponding probability.   

 
Example 3.1:  You all may be pretty upset that I suggest that the complicated formulae above give 
the average when you have been taught since elementary school that the average is given by: 
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where you just sum up all the elements in the set and divide by the number of elements.  Well, let 
me reassure you that what you learned in elementary school is not wrong.  This formula above is 
one case of equation (3.1) where the probability distribution, f(x) = 1/n.   (This is called the 
discrete uniform probability distribution in the following chapter.)  Since, in this case, f(x) is not a 
function of x, it can be pulled out of the summation, giving the familiar result for the mean.  
However, the uniform distribution is just one of an infinite number of probability distributions.  
The general formula will apply for any probability distribution. 

3.3.  Mean of a Function of a Random Variable 

Equation 3.1 gives the expected value of the random variable.  In general, however, we need 
the expected value of a function of that random variable.  In the general case, our equations which 
define the mean become: 
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if x is discrete, and  
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if x is continuous, where h(x) is some arbitrary function of x.  You should see that equation (3.1) is 
an example of the case of equation (3.2) where h(x)=x.  This is one kind of function.  However, 
there is no point in learning a formula for one function, when the formula for all functions is at 
hand.  So, equation (3.2) is the equation to remember. 

 
Example 3.2:  In a gambling game, three coins are tossed.  A man is paid $5 when all three coins 
turn up the same, and he will lose $3 otherwise.  What is the expected gain? 
 
In this problem, the random variable, x, is the number of heads.  The distribution function, f(x) is a 
uniform distribution for the 8 possible outcomes of the gambling game.  The function h(x) is the 
payout or forfeit for outcome x. 

outcome x h(x) f(x) 
HHH 3 +$5 1/8 
HHT 2 -$3 1/8 
HTH 2 -$3 1/8 
HTT 1 -$3 1/8 
THH 2 -$3 1/8 
THT 1 -$3 1/8 
TTH 1 -$3 1/8 
TTT 0 +$5 1/8 
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We know that the probability distribution f(x) = 1/8, since there are 8 random, equally probable 

outcomes.  Using equation (3.2), we find: 
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The average outcome is that the gambler loses a dollar. 
 

We can also work this same problem another way and make the distribution over the number 
of heads rather than all possible outcomes.  In this case, the table looks like: 

 
outcome x h(x) f(x) 
HHH 3 +$5 1/8 
HHT,HTH,THH 2 -$3 3/8 
TTH, THT, TTH 1 -$3 3/8 
TTT 0 +$5 1/8 
 
Then using equation (3.2) again, we find: 
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In fact there are other ways to define the problem.  Choose a distribution that makes sense to 

you.   They will all give the same answer so long as your distribution agrees with the physical 
reality of the problem. 

3.4.  Mean of a Function of Two Random Variables 

Equation (3.2) gives the expected value of a function of one random variable.  This equation 
can be simply extended to a function of two random variables. 
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if x and y are discrete random variables, and  
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if x and y are continuous random variables.  You should see that equation (3.3) is entirely 

analogous to equation (3.2). 
 

Example 3.3:  Given the joint probability density function 
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find the mean of h(x,y) = y. 
 
Using equation (3.3.b) we have  
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What this says is that the average value of y for this joint probability distribution function is 0.6. 

3.5.  Variance of a Random Variable 

The mean is one parameter of a distribution of data.  It gives us some indication of the location 
of the random variable.  It does not however give us any information about the distribution of the 
random variable.  For example, in Figure 3.1., we observe the visually three PDFs with different 
values of the mean but the same value of the variance.  The location of each PDF is different but 
the spread of the PDF remains the same.  In Figure 3.2., we observe three PDFs with different 
values of the variance but the same value of the mean.  Here, the location of the PDF remains 
constant but the spread of the PDF increases with increasing variance.  The variance is a statistical 
measure of this spread. 
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Figure 3.1.  Three continuous probability density functions with common variance but different 

values of the mean. 

 
Figure 3.2.  Three continuous probability density functions with common mean but different 

values of the variance. 
 

We define the variance as follows.  Let x be a random variable with PDF f(x) and mean µx.  
The variance of x, 2

xσ , is defined as  
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if x is a discrete random variable, and  
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if x is a continuous random variable.  You should see that equation (3.4) is just another case of 
equation (3.2) where ( ) ( )2

xxxh µ−= .  What the variance gives is “the average of the square of the 
deviation from the mean”.  The square is in there so that all the deviations are positive and the 
variance is a positive number. 

 
Some tricks with the variance: 

 
The definition for the variance given above, if evaluated properly, will always give the correct 

value of the variance.  However, there is another shortcut formula that is often used.  We derive 
the shortcut here. 
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Thus we have,  
 

[ ] [ ]222 xExEx −=σ          (3.5) 
 

People frequently express the variance as “the difference between the mean of the squares and 
the square of the mean” of the random variable x.  They do this because sometimes, you have 

[ ]2xE  and [ ]xE  so the variance is often easier to calculate from equation (3.5) than it is from 
equation (3.4). 

 
Example 3.4.:  Calculate the mean and variance of the discrete data set of 10 numbers containing 
{1,2,3,4,5,6,7,8,9,10}. 
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The mean is calculated from equation (3.3.a), where the probability distribution is uniform, i.e., 
f(x) = 1/n.  So xµ  = 5.5.  The variance is calculated by squaring each number in the set so that you 
have a new set of x2 containing {1,4,9,16,25,36,49,64,81,100}.  Then the mean of this set of 
numbers (using equation (3.3.a)) is 2xµ  = 38.5.  Now using equation (3.5), we have: 

 
[ ] [ ] 25.8)5.5(5.38 2222 =−=−= xExExσ  

 
The variance is always positive.  If you don’t get a positive answer using this formula then you 

have most certainly done something wrong.  
 

Warning on using equation (3.5), the shortcut for the variance 
 
The equation 3.5 may look very friendly but it comes with dangers.  You often use this 

equation to obtain a small variance from the difference of two large numbers.  Therefore, the 
answer you obtain may contain round-off errors.  You need to keep all your insignificant figures in 
the averages in order to obtain the variance to the same number of significant figures. 

 
Example 3.5.:  Use [ ] [ ]222 xExEx −=σ  to obtain the variance of the following 10 numbers, using 
f(x) = 1/10. 

s = [9.92740197834152 
  10.06375116530286 
   9.98603320980938 
  10.07806434475388 
  10.04698164235319 
  10.03746471832082 
   9.96922239354823 
   9.93320694775544 
   9.93112251526341 
   9.93822326228399] 
Below we give a table that reports the means and variance when keeping different number of 

significant figures: 
4 sig figs:  xµ  = 9.990000000e+000 2xµ  = 9.983000000e+001 2

xσ  = 2.990000000e-002 
5 sig figs:  xµ  = 9.991000000e+000 2xµ  = 9.982600000e+001 2

xσ  = 5.919000000e-003 

6 sig figs:  xµ  = 9.991100000e+000 2xµ  = 9.982630000e+001 2
xσ  = 4.220790000e-003 

7 sig figs:  xµ  = 9.991150000e+000 2xµ  = 9.982626000e+001 2
xσ  = 3.181677500e-003 

8 sig figs:  xµ  = 9.991147000e+000 2xµ  = 9.982626500e+001 2
xσ  = 3.246624391e-003 

9 sig figs:  xµ  = 9.991147200e+000 2xµ  = 9.982626470e+001 2
xσ  = 3.242327932e-003 

10 sig figs:  xµ  = 9.991147220e+000 2xµ  = 9.982626473e+001 2
xσ  = 3.241958286e-003 

all sig figs:  xµ  = 9.991147218e+000 2xµ  = 9.982626473e+001 2
xσ  = 3.242000540e-003 
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You can see that when we only keep 4 significant figures, our calculated variance is off by 

822%!  You need to keep additional significant figures in the mean and the mean of the squares in 
order to get the variance with any accuracy. 

 
For your information, the Matlab code that I used to generate the data is provided in the 

appendix of this chapter. 

3.6.  Standard Deviation 

The standard deviation, xσ , is the positive square root of the variance, 2
xσ . 

 
Example 3.6.:  Calculate the standard deviation of the discrete data set of 10 numbers containing 
{1,2,3,4,5,6,7,8,9,10}.  We calculated the variance in the example 3.4. above.  The standard 
deviation is the square root of the variance 

    
872281323.225.82 === xx σσ   

 
The standard deviation gives us a number in the same units as the random variable x, which 
describes the spread of the data. 

3.7.  Variance of a Function of a Random Variable 

Let x be a random variable with PDF f(x).  Let g(x) be an arbitrary function of x.  We know that 
the mean of g(x) is, and mean µg(x) from equation (3.2). The variance of a function g(x), is  

 
( )[ ] ( )∑ −=−=

x
xgxgxg xfxgxgE )()()( 2

)(
2

)(
2

)( µµσ      (3.6.a) 

 
if x is a discrete random variable and  
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if x is a continuous random variable.  You should see that equation (3.6) is just another case of 
equation (3.2) where the function of the random variable is ( ) ( ) ( )( )2

xgxgxh µ−= .  As in the case 

where the function was ( ) ( )2
xxxh µ−= , (in equation (3.4)), equation (3.6) can also be reduced to 

a second form:   
    



Expectations - 9 
 

( )[ ] ( )[ ]222
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Beware:  we have defined 3 functions, f(x), g(x), and h(x).  f(x) is the probability distribution.  

g(x) is the arbitrary function of the random variable that we would like to know about.  h(x) is the 
function with a mean that provides the variance of its argument.  In other words, if 
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Example 3.7.: Given the joint probability density function 
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find the variance of g(x) = x-1. 
 
We will use equation (3.7).  To do so we must find ( )[ ]2xgE  and ( )[ ]xgE .  ( )[ ]xgE  is the mean 
of g(x) and can be calculated from the formula for the mean, equation (3.2). 
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Now we repeat the calculation for the square of g(x)     
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Then we substitute into equation (3.7)  
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3.8.  Variance & Covariance of a Function of Two Random Variables 

By analogous methods, we can extend the variance definition to a function of two variables.    
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if x and y are discrete random variables and  
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if x and y are continuous random variables.  You should see that equation (3.8) is just another case 
of equation (3.3) where the function of the random variable, let’s call it ( ) ( ) ( )( )2

,,, yxgyxgyxh µ−=
.  Again, equation (3.8) can be rewritten 
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Now, let’s think about equation 3.8.  If g(x,y)=x, then h(x,y)= (x- µx) 2 and we calculate the 

variance of x from equation (3.8). If g(x,y)=y, then h(x,y)= (y- µy) 2 and we have the variance of y 
from equation (3.8).   

Now, if ( ) ( )( )yx yxyxh µµ −−=, , then we can use equation (3.8) to calculate the 
COVARIANCE, σxy.  The covariance has the units of xy.  There is no function g(x) defined for 
the covariance, so equation (3.9) does not apply to the calculation of the covariance.  But if you 
substitute ( ) ( )( )yx yxyxh µµ −−=,  into equation (3.2) and solve as we did to arrive with equation 
(3.5) you find: 
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The qualitative significance of the covariance is the dependency between variables x and y.   
 

XYσ  qualitative significance  
0>XYσ  as x increases, y increases 
0=XYσ  x and y are independent 
0<XYσ  as x increases, y decreases 
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Example 3.8.: Given the joint probability density function 
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find the covariance of x and y. 
 

To find the covariance, we need: [ ] [ ]xExyE ,  and [ ]yE .  We already calculated [ ]yE  in 
example 3.3. and we found [ ]yE =0.6.  Using a similar procedure, we calculate, the expected value 
of x, [ ]xE  
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In an analogous fashion, we calculate [ ]xyE  
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so using equation (3.10), we find: 
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3.9.  Correlation Coefficients 

The magnitude of XYσ  does not say anything regarding the strength of the relationship between 
x and y because XYσ . depends on the values taken by x and y.  A scaled version of the covariance, 
called the correlation coefficient is much more useful.  The correlation coefficient is defined as  

 

YX

XY
XY σσ

σ
ρ =           (3.11) 

 
This variable ranges from -1 to 1 and is 0 when XYσ  is zero.  A negative correlation coefficient 

means that when y increases, x decreases and vice versa.  A positive correlation coefficient means 
that when x increases, y also increases, and vice versa for decreasing. 

 

XYρ  qualitative significance  
1=XYρ  x = y 
0>XYρ  as x increases, y increases 
0=XYρ  x and y are independent 
0<XYρ  as x increases, y decreases 

1−=XYρ  x = -y 
 

 
Example 3.9.:  Given the joint PDF in example 3.8., find the correlation coefficient and make a 
statement about whether x is strongly or weakly correlated to y, relative to the variance of x and y.  
 
To do this, we need the variance of x and y, which means we need [ ]2xE  and [ ]2yE  
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Now for y: 
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so the correlation coefficient is 
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The small value of the correlation coefficient indicates that the random variables x and y are 

not strongly correlated, but they are weakly negatively correlated. 

3.10.  Means and Variances of linear combinations of Random Variables 

These are several rules for means and variances.  These rules have their basis in the theory of 
linear operators.  A linear operator L[x] performs some operation on x, such that: 

 
][][][ ybLxaLbyaxL +=+         (3.12) 

  
where x and y are variables and a and b are constants.  This is the fundamental rule which all linear 
operators must follow.   
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Consider the differential operator:  ][][ x
dt
dxL = .  Is it a linear operator?  To prove or disprove 

the linearity of the differential operator, you must substitute it into equation (3.12) to verify it.   
 

][][][
?

y
dt
dbx

dt
dabyax

dt
d

+=+  

][][][][
?

y
dt
dbx

dt
daby

dt
dax

dt
d

+=+  

][][][][ y
dt
dbx

dt
day

dt
dbx

dt
da +=+    This is an identity. 

 
So, we have shown that the differential operator is a linear operator.  What about the integral 

operator, ∫= xdtxL ][ ? 
 

∫∫∫ +=+ ydtbxdtadtbyax
?

][  

 ∫∫∫∫ +=+ ydtbxdtabydtaxdt
?

 

∫∫∫∫ +=+ ydtbxdtaydtbxdta
?

  This is an identity. 
 
So, we have shown that the differential operator is a linear operator.  What about the square 

operator, 2][ xxL = ? 
 

 22
?

2][ byaxbyax +=+  
22

?
222 2 byaxbyabxyxa +=++  

0)1(2)1(
?

22 =−++− ybbabxyxaa  
 
we can use the quadratic equation to solve for x: 
 

 
)1(

)1()1( 222

aa
ybbaabaab

x
−

−−−±−
=  

 
For any given value of y, the solution to this quadratic formula are the only solutions which 

satisfy equation (3.12).  In order for the operator to be linear, equation (3.12)  must be satisfied for 
all x.  Therefore, the square operator is not a linear operator. 
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Now, let’s see if the mean is a linear operator (we will do this just for the continuous case, but 

the result could also be shown for the discrete case): 
 

][][][
?

ybExaEbyaxE +=+  
 

Substitute in the definition of the mean from equation (3.1) 
 

∫∫∫
∞

∞−

∞

∞−

∞

∞−

+=+ dxxyfbdxxxfadxxfbyax )()()(][
?

 

 
The integral of a sum is the sum of the integrals.  Constants can be pulled outside the integral, so 

 

∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

+=+ dxxyfbdxxxfadxxyfbdxxxfa )()()()(  

 
This is an identity.  The mean is a linear operator.  As a result, we have a few simplifications for 
the mean.  In the equations below, we assume that  a and b are constants. 
 
The mean of a constant is the constant. 
 

aaE =)(      
 
Adding a constant to a random variable adds the same constant to the mean. 
 

bxaEbaxE +=+ )()(      
 
The mean of the sum is the sum of the means. 
 

))(())(())()(( xhExgExhxgE +=+     
 
These rules also apply to joint PDFs. 
 

)),(()),(()),(),(( yxhEyxgEyxhyxgE +=±    
 

If and only if x and y are independent random variables, then  
 

)()()( yExExyE =   (only for independent x and y) 
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We can show that the variance is not a linear operator.  However, by substituting in for the 

definition of the variance, equation (3.4), we can come up with several short-cuts for computing 
some variances of functions.  Again, we assume that a and b are constants. 
 
The variance of a constant is zero. 

 
02 =bσ     

 
Adding a constant to a random variable does not change the variance of the random variable. 
 

222
xbax a σσ =+       

 
The variance of the sum is not the sum of the variances. 

 
xyyxbyax abba σσσσ 222222 ++=+   

 
If and only if x and y are independent, then 

 
22222
yxbyax ba σσσ +=+  (only for independent x and y) 

 
We did not just make any of these theorems up.  They can all be derived.  As an example we 

now derive,  
 

xyyxbyax abba σσσσ 222222 ++=+   
 
We begin by direct substitution of (ax+by) into the definition of the variance: 
 

( )[ ] ∫ ∫
∞

∞−

∞

∞−

−=−≡ dxdyyxfyxgyxgE yxgyxgyxg ),()),((),( 2
),(

2
),(

2
),( µµσ  

∫ ∫
∞

∞−

∞

∞−
+−+= dxdyyxfbyax byaxyxg ),()( 22

),( µσ  

∫ ∫
∞

∞−

∞

∞−
+++ +−−++= dxdyyxfbyaxabxyybxa byaxbyaxbyaxyxg ),()222( 222222

),( µµµσ  

∫ ∫∫ ∫∫ ∫

∫ ∫∫ ∫∫ ∫
∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

+−−

++=

dxdyyxfdxdyyxfbydxdyyxfax

dxdyyxabxyfdxdyyxfybdxdyyxfxa

byaxbyaxbyax

yxg

),(),(2),(2

),(2),(),(

2

22222
),(

µµµ

σ
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∫ ∫∫ ∫∫ ∫

∫ ∫∫ ∫∫ ∫
∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

+−−

++=

dxdyyxfdxdyyxyfbdxdyyxxfa

dxdyyxxyfabdxdyyxfybdxdyyxfxa

byaxbyaxbyax

yxg

),(),(2),(2

),(2),(),(

2

22222
),(

µµµ

σ
 

2222
),( 22222 byaxybyaxxbyaxxyyxyxg baabba +++ +−−++= µµµµµµµµσ  

yxbyax ba µµµ +=+  

yxyx

xyyxyxxyyxyxg

abba

abbabaabba

µµµµ

µµµµµµµµµσ

2

22222
2222

2222222
),( 22

+++

−−−−++=
 

( ) ( ) ( )xyxyyyxxyxg abba µµµµµµµσ −+−+−= 222222
),( 22  

xyyxyxg abba σσσσ 222222
),( ++=  

Q.E.D. 

3.11.  An Extended Example for Discrete Random Variables 

Consider the isomerization reaction: 
 

BA →  
 

This reaction takes place in a plant which relies on raw material solution, which unfortunately, is 
supposed to have a concentration of reactant of 1.0 mol/liter but in reality varies +/- 20%.  The 
reactor is jacketed and is supposed to be isothermal.  Day to day observation of the thermocouples 
in the reactor indicates that temperature swings about 10% around its set point of 300 K. 

 
The reaction rate is given as  

 

A
RT
E

oAb CekkCr
a−

==  
 

where k  is the rate constant, ok  is the pre-exponential factor of the rate constant, aE  is the 
activation energy, R  is the gas constant, T  is the temperature,  and AC is the concentration of the 

reactant.  In one such reaction, 
min

20 litersko = , 
mol
kJEa 10= , and 

Kmol
JR

⋅
= 314.8 .  Over a 

month, 20 spot measurements are made of the reactor, measuring the concentration of the reactant 
and the temperature.   
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Consider that the probability of obtaining any of the data points was uniform.  Therefore, 

n
xf 1)( =  where n is the number of measurements taken. 

The tabulated data and the functions of that data are shown below: 
 

runs 
AC  T  Br  2

AC  2T  2
Br  TCA ⋅  BA rC ⋅  BrT ⋅  

 mol 
liter 

K mol 
min 

      

1 1.11 296.49 0.38 1.22 87904.81 0.15 327.92 0.42 113.49 
2 1.01 272.80 0.25 1.02 74419.84 0.06 275.60 0.25 67.06 
3 1.03 270.22 0.24 1.06 73020.02 0.06 278.42 0.25 64.96 
4 0.82 324.55 0.40 0.67 105332.35 0.16 265.94 0.33 130.71 
5 0.83 273.87 0.21 0.70 75006.19 0.04 228.67 0.17 56.61 
6 1.11 274.20 0.28 1.23 75185.95 0.08 304.31 0.31 75.73 
7 0.80 299.56 0.29 0.64 89733.67 0.08 239.93 0.23 86.56 
8 0.84 325.13 0.42 0.71 105709.64 0.17 273.64 0.35 135.39 
9 0.89 310.19 0.37 0.78 96220.00 0.13 274.75 0.32 113.75 

10 1.16 271.78 0.28 1.35 73862.15 0.08 315.23 0.32 75.44 
11 1.13 298.13 0.40 1.27 88878.56 0.16 336.10 0.45 118.94 
12 1.14 304.56 0.44 1.30 92759.55 0.19 347.10 0.50 133.77 
13 1.13 270.54 0.26 1.27 73189.31 0.07 305.20 0.30 71.58 
14 1.04 280.21 0.29 1.09 78514.87 0.08 292.34 0.30 79.93 
15 1.15 306.72 0.46 1.32 94077.94 0.21 352.47 0.52 139.67 
16 0.87 319.16 0.40 0.76 101864.25 0.16 277.89 0.35 128.30 
17 0.83 304.60 0.32 0.68 92778.97 0.10 251.76 0.26 97.07 
18 1.06 303.42 0.40 1.11 92064.18 0.16 320.26 0.42 121.60 
19 0.83 289.58 0.26 0.69 83856.40 0.07 241.11 0.22 75.75 
20 0.89 301.14 0.33 0.79 90684.97 0.11 267.54 0.29 98.58 

sum 19.66 5896.84 6.66 19.68 1745063.64 2.32 5776.21 6.57 1984.89 
mean 0.98 294.84 0.33 0.98 87253.18 0.12 288.81 0.33 99.24 
variance 0.02 321.47 0.01   covariance -1.03 0.00 1.09 
standard 
deviation 

0.13 17.93 0.07   correlation -0.43 0.14 0.83 

  
We use the definition of the mean, ∑==

x
xxfxE )()(µ ,  to obtain expectation values for the 

following functions:  AC , T , Br , 2
AC , 2T , 2

Br , TCA ⋅ , BA rC ⋅  and BrT ⋅ .  The expectations are 
shown in the table above in the row marked mean.  The variances of AC , T , and Br are calculated 
using the “difference between the mean of the square and the square of the mean” rule. 

 
( )[ ] ( )[ ]222

)( xgExgExg −=σ  
 

Those variances are shown in the first three columns in the row marked variance.  The covariances 
are obtained using the formula: 



Expectations - 19 
 
 

[ ] [ ] [ ]yExExyExy −=σ  
 

and are shown in the last three columns for TCA ⋅ , BA rC ⋅  and BrT ⋅ .  The standard deviations and 
correlation coefficients are given in the bottom row, obtained from: 

 
2

)( )( xgxg σσ =  and 
yx

xy
xy σσ

σ
ρ = . 

 
Physical explanation of statistical results: 

The mean and the standard deviation of the concentration show that statistically speaking: 
 

liter
molCA 13.098.0 ±=  

 

Similarly, KT 9.175.294 ±=  and 
min

07.033.0 molrB ±= . 

The physical meaning of the correlation coefficients are as follows.  The concentration of A and 
the temperature (two independent random variables) should not be correlated.  The correlation 
coefficient should be zero.  It is -0.43.  This non-zero value is a result of only having 20 data 
points.  More data points would eventually average out to a correlation coefficient of zero. 

The BA rC ⋅  correlation coefficient should be positive because as the concentration increases, 
the reaction rate increases.  It is positive.  The BA rC ⋅  correlation coefficient is small because the 
relationship is a linear (weak) relationship. 

The BrT ⋅  correlation coefficient should be positive because as the temperature increases, the 
reaction rate increases.  It is positive.  The BrT ⋅  correlation coefficient is large because the 
relationship is an exponential (strong) relationship. 

3.12.  An Extended Example for Continuous Random Variables 

A construction company has designed a distribution function which describes the area of their 
construction sites.  The sites are all rectangular with dimensions a and b.  The Joint PDF of the 
dimensions a and b are: 

  

 




 ≤≤<≤=  

                       otherwise               0

4b3 and 2a1for           ab
21
4

),( baf  
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The company is interested in determining pre-construction site costs including fencing and 

clearing land.  The amount of fencing gives rise to a perimeter cost.  The Perimeter Costs, PC , are 
$10 per meter of fencing required: 

 
( )babaPC 2210),( +=  

 
The amount of land cleared is proportional to the area of the site and gives rise to an area cost.  

The Area Costs, AC , are $20 per square meter of the lot: 
 

abbaAC 20),( =  
 
(a)  Are a  and b independent? 
(b)  Find the mean of a , b , PC , and AC . 
(c)  Find the variance of a , b , PC , and AC . 
(d)  Find the covariance of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ . 
(e)  Find the correlation coefficient of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ . 
 
(a) a  and b are independent if   )()(),( yhxgyxf = where the marginal distributions are 

defined in Chapter 2 as 
 

   ),()(    and   ),()( ∫∫
∞

∞−

∞

∞−

== dxyxfyhdyyxfxg  

 
We evaluate the marginal distributions. 
 

abaabdbdbbafag
3
2

221
4

21
4 ),()(

4

3

24

3

4

3

==== ∫∫  

bababdadabafbh
7
2

221
4

21
4 ),()(

2

1

22

1

2

1

==== ∫∫  

 

abbayhxgabyxf
21
4  

7
2

3
2)()(

21
4),( =














===  

 
Therefore, a  and b are independent. 
 
(b)  Find the mean of a , b , PC , and AC . 
 
The general formula for the mean is: 
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∫ ∫
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We can use the definition of the mean to compute the mean value of the perimeter costs. 
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OR remember that the mean is a linear operator, )()()( ybExaEbyaxE +=+  
 

6.101$)52.3(20)56.1(20)(20)(20)20()20()( =+=+=+== bEaEbEaEPCEPCµ  
 
For the area cost, we can use the definition of the mean. 
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OR remember )()()( yExExyE =  for independent variables. 

 
63.109$)52.3)(56.1(20)()(20)20()( ==≠== bEaEabEACEACµ  

 
because  a and b  are independent. 
 

(c)  Find the variance of a , b , PC , and AC . 
 
The working equation to calculate the variance of a function is: 
 

( )[ ] ( )[ ]222
),( ,, yxgEyxgEyxg −=σ  
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For these variables, we have calculated the mean (necessary to evaluate the function in the 

second term on the right hand side).  We must next calculate the mean of the square (the first term 
on the right hand side) before we can calculate the variance. 
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To calculate the variance of ( )babaPC 2210),( +=  remember 
 

XY
2
Y

22
X

22
bYaX ab2ba σ+σ+σ=σ +  

 
Then we only need to calculate the covariance of a and b.  The working formula for the 

covariance is: 
 

[ ] [ ] [ ]yExExyEXY −=σ  
 

So we need the expectation value of E(ab) 
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Then 
 

00.0)52.3(56.148.5 =−=
ab

σ  
 

The covariance of a and b is zero.  We should have known that because we showed in part (a) 
that a and b were statistically independent. 

 
( ) .2.65)20)(20(220 2222
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Lastly, for the area cost,  
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(d)  Find the covariance of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ . 

In part (c) we found the covariance of ba ⋅ to be 0.0 because they were statistically 
independent.   For the rest of these quantities, we use the rule 

 
[ ] [ ] [ ]yExExyEXY −=σ  

 
where we already have the expectation values of the two factors in the second term on the r.h.s.  
We only need to find the first term on the r.h.s. to find the covariance.  For the covariance between 
a and the perimeter cost we have 
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For the covariance between b and the perimeter cost we have 
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For the covariance between a and the area cost we have 
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For the covariance between b and the area cost we have 
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For the covariance between the perimeter cost and the area cost we have 
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(e)  Find the correlation coefficient of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ . 

 
The general formula for the correlation coefficient is: 
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These correlations (with the exception of a and b) are all positive.  They should be because as 

you increase one side of the lot (either a or b), you should increase both the perimeter and the area.  
Also, as you increase the perimeter, on average, you increase the area, given our distribution 
function. 

3.13.  Subroutines 

Code 3.1.  Variance as a function of truncation 
This simple code illustrates the need to keep all significant figures in the intermediate 

calculations of averages before computing the variance using equation (3.5). 
 
n=10; 
r = rand(n,1); 
s = 10 + 0.1*(2*r - 1) 
s2 = s.^2; 
f = 1/n; 
format long 
mu_s = sum(f*s); 
mu_s2 = sum(f*s2); 
var_s = mu_s2 - mu_s^2; 
for i = 2:1:8 
   mu_s_cut(i) = round(mu_s*(10^i))/(10^i); 
   mu_s2_cut(i) = round(mu_s2*(10^i))/(10^i); 
   var_s_cut(i) = mu_s2_cut(i) - mu_s_cut(i)^2; 
 fprintf(1,'%i sig figs:  mu_s = %16.9e mu_s2 = %16.9e var_s = %16.9e\n', 

i+2, mu_s_cut(i),mu_s2_cut(i),var_s_cut(i)); 
end 



Expectations - 26 
 
fprintf(1,'all sig figs: mu_s = %16.9e mu_s2 = %16.9e var_s = %16.9e\n', 

mu_s,mu_s2,var_s); 
 

3.14.  Problems 

Homework problems are posted on the course website. 
 


