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Chapter 3. Expectations

3.1. Introduction

In this chapter, we define five mathematical expectations—the mean, variance, standard
deviation, covariance and correlation coefficient. We apply these general formula to an array of
situations involving discrete and continuous random variables obeying single and joint probability
distribution functions to evaluate expectations of both random variables and functions of random
variables. ldeally, the reader observes the common analogy in the application of the five concepts
expressed in a variety of different ways.

3.2. Mean of a Random Variable

The “mean” is another name for the “average”. A third synonym for mean is the “expected
value”. Let x be a random variable with probability distribution f(x). The mean of x is

= E() = Y xF (X) (3.1a)
if x is a discrete random variable, and
i, =E(X) = j xf (x)dx (3.1.b)

if X is a continuous random variable. We observe that this expectation weights each value of x by
its corresponding probability.

Example 3.1: You all may be pretty upset that | suggest that the complicated formulae above give
the average when you have been taught since elementary school that the average is given by:
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where you just sum up all the elements in the set and divide by the number of elements. Well, let
me reassure you that what you learned in elementary school is not wrong. This formula above is
one case of equation (3.1) where the probability distribution, f(x) = 1/n. (This is called the
discrete uniform probability distribution in the following chapter.) Since, in this case, f(x) is not a
function of x, it can be pulled out of the summation, giving the familiar result for the mean.
However, the uniform distribution is just one of an infinite number of probability distributions.
The general formula will apply for any probability distribution.

3.3. Mean of a Function of a Random Variable

Equation 3.1 gives the expected value of the random variable. In general, however, we need
the expected value of a function of that random variable. In the general case, our equations which
define the mean become:

Hiey = E(h(X)) = z h(x) f (x) (3.2.9)

if x is discrete, and
Hney = E(h(X)) = Th(x)f(x)dx (3.2.b)

if x is continuous, where h(x) is some arbitrary function of x. You should see that equation (3.1) is
an example of the case of equation (3.2) where h(x)=x. This is one kind of function. However,
there is no point in learning a formula for one function, when the formula for all functions is at
hand. So, equation (3.2) is the equation to remember.

Example 3.2: In a gambling game, three coins are tossed. A man is paid $5 when all three coins
turn up the same, and he will lose $3 otherwise. What is the expected gain?

In this problem, the random variable, x, is the number of heads. The distribution function, f(x) is a
uniform distribution for the 8 possible outcomes of the gambling game. The function h(x) is the
payout or forfeit for outcome x.

outcome X h(x) f(x)
HHH 3 +$5 1/8
HHT 2 -$3 1/8
HTH 2 -$3 1/8
HTT 1 -$3 1/8
THH 2 -$3 1/8
THT 1 -$3 1/8
TTH 1 -$3 178
TTT 0 +$5 1/8
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We know that the probability distribution f(x) = 1/8, since there are 8 random, equally probable
outcomes. Using equation (3.2), we find:

Hnx) =Zh(X)f(X)=Zh(x)(%]=%2h(x):%(5—3—3—3—3—3—3+5)=—1

The average outcome is that the gambler loses a dollar.

We can also work this same problem another way and make the distribution over the number
of heads rather than all possible outcomes. In this case, the table looks like:

outcome X h(x) f(x)
HHH 3 +$5 1/8
HHT,HTH,THH 2 -$3 3/8
TTH, THT, TTH 1 -$3 3/8
TTT 0 +$5 1/8

Then using equation (3.2) again, we find:

iy = LT () = D 0000 = [(5)% NEENEEN (5)1} .

In fact there are other ways to define the problem. Choose a distribution that makes sense to

you. They will all give the same answer so long as your distribution agrees with the physical
reality of the problem.

3.4. Mean of a Function of Two Random Variables

Equation (3.2) gives the expected value of a function of one random variable. This equation
can be simply extended to a function of two random variables.

iy = E((,Y)) = 20D h(x, ) F(x,y) (3.3.)

if x and y are discrete random variables, and

o0 00

By = E(N(Y) = [ [h(x,y) f(x, y)dxdy (3.3b)

—00—00
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if x and y are continuous random variables. You should see that equation (3.3) is entirely
analogous to equation (3.2).

Example 3.3: Given the joint probability density function

F(x,y) = 2(2x+3y) for0<x<1,0<y<1

0 otherwise

find the mean of h(x,y) =Y.

Using equation (3.3.b) we have

ey = EOCY) = | [0 Y) £ (x y)ady =] | [ (2x:+3y jdxdy

—00—00

/uh(x y)

o'—-.r—‘

1 1 x=1 1
:[y(zx—Jrgy)jdxdy = j%(yxz +3y2x1 dy :jé(y +3y2)1y

5 0 x=0 0

2(y 2(1 ) 6
_4 v v -
Haon) 5(2 yj 5(2 j 10

What this says is that the average value of y for this joint probability distribution function is 0.6.

y=1

y=0

3.5. Variance of a Random Variable

The mean is one parameter of a distribution of data. It gives us some indication of the location
of the random variable. It does not however give us any information about the distribution of the
random variable. For example, in Figure 3.1., we observe the visually three PDFs with different
values of the mean but the same value of the variance. The location of each PDF is different but
the spread of the PDF remains the same. In Figure 3.2., we observe three PDFs with different
values of the variance but the same value of the mean. Here, the location of the PDF remains
constant but the spread of the PDF increases with increasing variance. The variance is a statistical
measure of this spread.
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Figure 3.1. Three continuous probability density functions with common variance but different
values of the mean.
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Figure 3.2. Three continuous probability density functions with common mean but different
values of the variance.

We define the variance as follows. Let x be a random variable with PDF f(x) and mean 4.
The variance of x, o, is defined as

ol =Elx-u )] = X x-pF 1% (3.4.2)

if x is a discrete random variable, and
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o = Ellx -, )= [ox= )7 £ (00 (3.45)

if X is a continuous random variable. You should see that equation (3.4) is just another case of
equation (3.2) where h(x)=(x -z, )*. What the variance gives is “the average of the square of the

deviation from the mean”. The square is in there so that all the deviations are positive and the
variance is a positive number.

Some tricks with the variance:

The definition for the variance given above, if evaluated properly, will always give the correct
value of the variance. However, there is another shortcut formula that is often used. We derive
the shortcut here.

o? = E[(x- 1, |= [(x- 1) 1 ()0x
= .sz f (x)dx — TZXyX f (x)dx + Tyf f (x)dx

= sz f(X)dx —2u, Txf (X)dx + g’ T f (x)dx
= E[x* |- 201, E[x]+ us?
= E[x?]-2p2 + 2
~Ex]- i =[] ElP
Thus we have,

o2 =E[x’] —E[x] (3.5)

People frequently express the variance as “the difference between the mean of the squares and
the square of the mean” of the random variable x. They do this because sometimes, you have

E[Xz] and E[x] so the variance is often easier to calculate from equation (3.5) than it is from
equation (3.4).

Example 3.4.: Calculate the mean and variance of the discrete data set of 10 numbers containing
{1,2,3,4,5,6,7,8,9,10}.
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The mean is calculated from equation (3.3.a), where the probability distribution is uniform, i.e.,
f(x) = 1/n. So u, =5.5. The variance is calculated by squaring each number in the set so that you
have a new set of x* containing {1,4,9,16,25,36,49,64,81,100}. Then the mean of this set of
numbers (using equation (3.3.a)) is u , = 38.5. Now using equation (3.5), we have:

o =E[x*|-E[x} =385 (5.5 =8.25

The variance is always positive. If you don’t get a positive answer using this formula then you
have most certainly done something wrong.

Warning on using equation (3.5), the shortcut for the variance

The equation 3.5 may look very friendly but it comes with dangers. You often use this
equation to obtain a small variance from the difference of two large numbers. Therefore, the
answer you obtain may contain round-off errors. You need to keep all your insignificant figures in
the averages in order to obtain the variance to the same number of significant figures.

Example 3.5.: Use o = E[xz] — E[x]? to obtain the variance of the following 10 numbers, using
(x) = 1/10.

s = [9.92740197834152
10.06375116530286
9.98603320980938
10.07806434475388
10.04698164235319
10.03746471832082
9.96922239354823
9.93320694775544
9.93112251526341
9.93822326228399]

Below we give a table that reports the means and variance when keeping different number of
significant figures:

4 sig figs: u, =9.990000000e+000 4, =9.983000000e+001 o =2.990000000e-002
5sig figs: g, =9.991000000e+000 x , =9.982600000e+001 o’ =5.919000000e-003
6 sig figs: , =9.991100000e+000 x ., =9.982630000e+001 o =4.220790000e-003
7sig figs: g, =9.991150000e+000 x , =9.982626000e+001 o = 3.181677500e-003
8 sig figs: x, =9.991147000e+000 x , =9.982626500e+001 o = 3.246624391e-003
9sig figs: g, =9.991147200e+000 x , =9.982626470e+001 o = 3.242327932e-003
10 sig figs: 1, =9.991147220e+000 x , =9.982626473e+001 o, = 3.241958286€-003

2
all sig figs:  p, =9.991147218e+000 1, =9.982626473e+001 o’ = 3.242000540e-003

X
2
X
2
X
2
X
2
X
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You can see that when we only keep 4 significant figures, our calculated variance is off by
822%! You need to keep additional significant figures in the mean and the mean of the squares in
order to get the variance with any accuracy.

For your information, the Matlab code that | used to generate the data is provided in the
appendix of this chapter.

3.6. Standard Deviation

The standard deviation, o, , is the positive square root of the variance, 7.

Example 3.6.: Calculate the standard deviation of the discrete data set of 10 numbers containing
{1,2,3,4,5,6,7,8,9,10}. We calculated the variance in the example 3.4. above. The standard
deviation is the square root of the variance

o, =+ 0. =4/8.25 = 2.872281323

The standard deviation gives us a number in the same units as the random variable x, which
describes the spread of the data.

3.7. Variance of a Function of a Random Variable

Let x be a random variable with PDF f(x). Let g(x) be an arbitrary function of x. We know that
the mean of g(x) is, and mean 4 from equation (3.2). The variance of a function g(x), is

6200 = E[000 = 210 F] = S (000 = 1y, £¥) (3.62)

X

if X is a discrete random variable and

02y = 000 ~ 00 1= [(00 ~ t1y0)? £ ()0 (3.6.0)

if X is a continuous random variable. You should see that equation (3.6) is just another case of
equation (3.2) where the function of the random variable is h(x) = (g(x)— yg(x))z . As in the case

where the function was h(x)=(x — z, ), (in equation (3.4)), equation (3.6) can also be reduced to
a second form:
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o2y = Elo(x)?] —Elg()f 37)

Beware: we have defined 3 functions, f(x), g(x), and h(x). f(x) is the probability distribution.
g(x) is the arbitrary function of the random variable that we would like to know about. h(x) is the
function with a mean that provides the variance of its argument. In other words, if

h(x) = (9(X) = 11y f then o2y = iy -

Example 3.7.: Given the joint probability density function
XZ
F(X) =42 for-1<x<2

0 otherwise

find the variance of g(x) = x*.

We will use equation (3.7). To do so we must find E[g(x)z] and E[g(x)] . E[g(x)] isthe mean
of g(x) and can be calculated from the formula for the mean, equation (3.2).

a0y = E@00) = [ 900 T (X)X (3:2)

2 2
E(x Y =[x 2 Jax =2
0 =]x (3] 6 6 6 2

-1

x=-1

Now we repeat the calculation for the square of g(x)

[ B ] E[X_z] J-X_z dx_—xzzzg_(__l)zl
X=-1 3 3
Then we substitute into equation (3.7)
1) 3
02 = Elg(0) |- Elg()f =1‘(E) 4
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3.8. Variance & Covariance of a Function of Two Random Variables

By analogous methods, we can extend the variance definition to a function of two variables.
e = El0061) = 1300 ] = 3000 ) = 21900 F £ (6) (3.8. a)
Xy

if x and y are discrete random variables and

Gs(x,y) = E[(g(X, y) - ug(x,y) )2 ] = T T(g(x’ y) - Mg(x,y))zf(X, y)dXdy (38b)

—00—00

if x and y are continuous random variables. You should see that equation (3.8) is just another case
of equation (3.3) where the function of the random variable, let’s call it h(x,y)= (g(x, y)- yg(xyy))z
. Again, equation (3.8) can be rewritten

ng(x,y) = E[g (X’ y)z] - E[g (X’ y)]2 = Hn(xy) (3.9

Now, let’s think about equation 3.8. If g(x,y)=x, then h(x,y)= (x- z) ? and we calculate the

variance of x from equation (3.8). If g(x,y)=y, then h(x,y)= (y- 1) 2 and we have the variance of y
from equation (3.8).

Now, if h(x,y)=(x -, \y — &, ), then we can use equation (3.8) to calculate the

COVARIANCE, oy,. The covariance has the units of xy. There is no function g(x) defined for
the covariance, so equation (3.9) does not apply to the calculation of the covariance. But if you
substitute h(x, y) = (x— s, y — , ) into equation (3.2) and solve as we did to arrive with equation

(3.5) you find:

Oxy = E[Xy]_ E[X]E[Y] = Hyy — Hy Hy (3.10)

The qualitative significance of the covariance is the dependency between variables x and y.

Oyy qualitative significance
Oy >0 as X increases, y increases
oy =0 x and y are independent
Oy <0 as X increases, y decreases
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Example 3.8.: Given the joint probability density function
2(2x+3y) for0<x<10<y<1
f(xy)= SRR
O otherwise

find the covariance of x and y.

To find the covariance, we need: E[xy], E[x] and E[y]. We already calculated E[y] in

example 3.3. and we found E[y]:O.G. Using a similar procedure, we calculate, the expected value
of x, E[x]

= T ,TXf (x, y)dxdy ='([ ! X(demy

—00—00

2\[V?
E[X]:g ﬂ+3i 2(E+§j E
503 4 ), 5.3 4) 30

In an analogous fashion, we calculate E[xy]

E[xy]= J' '[xyf (x, y)dxdy j '[xy(TJrgy)}dxdy

—00—00

it v

=222

y=0

so using equation (3.10), we find:
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o, = E[xy]-E[x]E[y]= 1 1r6 _100-102 —1;0 = —0.006667

3.9. Correlation Coefficients

The magnitude of o,, does not say anything regarding the strength of the relationship between
x and y because o, . depends on the values taken by x and y. A scaled version of the covariance,
called the correlation coefficient is much more useful. The correlation coefficient is defined as

Oy

Pxy = (3.11)
Oy Oy

This variable ranges from -1 to 1 and is 0 when o, is zero. A negative correlation coefficient

means that when y increases, x decreases and vice versa. A positive correlation coefficient means
that when x increases, y also increases, and vice versa for decreasing.

Pyy qualitative significance
Pxy = X=y

Pxy >0 as x increases, y increases
Pyy = x and y are independent
Pyy <0 as x increases, y decreases
Py =—1 X=-y

Example 3.9.: Given the joint PDF in example 3.8., find the correlation coefficient and make a
statement about whether x is strongly or weakly correlated to y, relative to the variance of x and y.

To do this, we need the variance of x and y, which means we need E[xz] and E[yz]

E[xz]: T sz f (x, y)dxdy il.xz(z(szJAy)jdxdy

—00—00
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SO
o2 = E[x*|- E[x]’ =§—(é—7) ~0.0789
Now for y:
11
ely?]= [ [a0xyf(x yaxdy [ [y (dexdy
—00—00 00
11 1 x=1 1
E[yz]:.!.!‘yz(Z(ZX+3Y)jd dy:,([é(yzxz-’_?’ysqxody =£§(y2+3y3)iy
Ely? :g(y_3+3y4] : 2[1+§J 3
5{3 4 ) "5\374) 3
SO

so the correlation coefficient is

ow _ —0.00667

_ - -0.0877
0,0, +/0.0789+/0.0733

Pxy =

The small value of the correlation coefficient indicates that the random variables x and y are
not strongly correlated, but they are weakly negatively correlated.

3.10. Means and Variances of linear combinations of Random Variables

These are several rules for means and variances. These rules have their basis in the theory of
linear operators. A linear operator L[x] performs some operation on X, such that:

L[ax + by] = aL[x] +bL[y] (3.12)

where x and y are variables and a and b are constants. This is the fundamental rule which all linear
operators must follow.
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Consider the differential operator: L[x]=%[x]. Is it a linear operator? To prove or disprove
the linearity of the differential operator, you must substitute it into equation (3.12) to verify it.

d ? d d

—[ax+by]=a—[x]+b—

laxrbyl=a [d+by]

d d ? d d

—[ax]+—[by]=a—[x]+b—

OIt[ ]+dt[y] OIt[]+ Glt[y]

d d d d .. . .
a— b—[y]=a— b— This is an identity.
XIebIyl=a [X+bly] Y

So, we have shown that the differential operator is a linear operator. What about the integral
operator, L[x]= I xdt ?
j[ax+by]dt£ajxdt + bj ydt
Iaxdt + J'bydtia.[ xdt + bJ' ydt

aj xdt + bj ydt;aj xdt + bj ydt This is an identity.

So, we have shown that the differential operator is a linear operator. What about the square
operator, L[x] = x*?
[ax + by]? =ax? + by?
a?x? + 2abxy + by? =ax? + by?

a(l—a)x? + 2abxy + b(1—b)y2=0

we can use the quadratic equation to solve for x:

. —ab+,/a’h? —a(l-a)b(l-b)y?
- a(l-a)
For any given value of y, the solution to this quadratic formula are the only solutions which

satisfy equation (3.12). In order for the operator to be linear, equation (3.12) must be satisfied for
all x. Therefore, the square operator is not a linear operator.
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Now, let’s see if the mean is a linear operator (we will do this just for the continuous case, but
the result could also be shown for the discrete case):

E[ax + by] ; aE[x]+bE[y]

Substitute in the definition of the mean from equation (3.1)
T[ax + by] f (x)dx;aTxf (x)dx+b T yf (x)dx

The integral of a sum is the sum of the integrals. Constants can be pulled outside the integral, so
a T xf (x)dx +b ]O yf (x)dx =a T xf (x)dx +b ]3 yf (x)dx

This is an identity. The mean is a linear operator. As a result, we have a few simplifications for
the mean. In the equations below, we assume that a and b are constants.
The mean of a constant is the constant.
E(@d)=a
Adding a constant to a random variable adds the same constant to the mean.
E(ax+b)=aE(x)+b
The mean of the sum is the sum of the means.
E(g(x)+h(x)) = E(g(x)) + E(h(x))
These rules also apply to joint PDFs.
E(g(x,y)=h(x,y)) = E(g(x,¥)) + E(h(x,Y))
If and only if x and y are independent random variables, then

E(xy) = E(X)E(y) (only for independent x and y)
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We can show that the variance is not a linear operator. However, by substituting in for the
definition of the variance, equation (3.4), we can come up with several short-cuts for computing
some variances of functions. Again, we assume that a and b are constants.

The variance of a constant is zero.
ol =0

Adding a constant to a random variable does not change the variance of the random variable.

2 2 __2

a o

Jax+b = X

The variance of the sum is not the sum of the variances.

2

Gax+by

=a’c’ + b20'5 +2abo,,
If and only if x and y are independent, then

2
Uax+by

=a’o; +b’c;  (only for independent x and y)
We did not just make any of these theorems up. They can all be derived. As an example we
now derive,

2

2.2 2 2
Cwiy =270, +b°cy +2abo,,

We begin by direct substitution of (ax+by) into the definition of the variance:

0y = EN000Y) ~ st P 1= [ [ (006 1) = 1500007  (x, )cicly

—00—00

0

g(xy) — J. _[(ax + by o luax+by)2 f (X! y)dXdy

—00—00

Q
|

Gg(x,y) = j J(aZXZ + b2 y2 + Zabxy - 2aX/uax+by - 2by/uax+by + :uax+by2) f (Xv y)dXdy

—00—00

o0 00

Oy = Jjazxz f (x, y)dxdy + Tszyzf(x, y)dxdy + T TZabxyf (x, y)dxdy

—00—00 —00—00 —00—00

[ [ 24414 £ X, V)XY = [ [ 20yt 06, Y)Y+ [ [ a1y F (5, Y)Y

—00—00 —00—00 —00—00
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Oy =@° T sz f (x, y)dxdy +b? T T y2 f(x, y)dxdy + 2ab T Txyf (x, y)dxdy

—00—00 —00—00 —00—00

a1, [ [ X0 y)ixdy — 20, [ [VF O y)dxdy + ey [ [ F6 y)edy

—00—00 —00—00 —00—00

2

2
Ogixy) = azluXZ + bz/UYZ + 2ab:uxy - za‘luax+bylux - 2bluax+by/uy + Haxsvy
/uax+by = a/ux + b:uy

Loy =AM erz,uyz +2abu,, —2a’u’ —2abu, pu, —ZquyZ —2abu, p,

Og(xy)

+ az,ux2 + bz,uy2 +2abu, p,
2

i = e — 2 02l — 1,2 e 230las, - 1, 1,)

2 a2 2 2
Ogy =a 0, +b°c +2abo,,

Q.E.D.

3.11. An Extended Example for Discrete Random Variables

Consider the isomerization reaction:
A—->B

This reaction takes place in a plant which relies on raw material solution, which unfortunately, is
supposed to have a concentration of reactant of 1.0 mol/liter but in reality varies +/- 20%. The
reactor is jacketed and is supposed to be isothermal. Day to day observation of the thermocouples
in the reactor indicates that temperature swings about 10% around its set point of 300 K.

The reaction rate is given as

E

r,=kC, =k,e F"C,

where Kk is the rate constant, k, is the pre-exponential factor of the rate constant, E , is the

activation energy, R is the gas constant, T is the temperature, and C, is the concentration of the

liters & _10X and R-8.314
min mol mol - K

month, 20 spot measurements are made of the reactor, measuring the concentration of the reactant
and the temperature.

reactant. In one such reaction, k, = 20 . Over a
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Consider that the probability of obtaining any of the data points was uniform. Therefore,
f(X) 1 where n is the number of measurements taken.
n

The tabulated data and the functions of that data are shown below:

runs C, T ry CA2 T? rB2 Cio T Corg Torg
mol K mol
liter min
1 1.11 296.49 0.38 1.22 87904.81 0.15 327.92 0.42 113.49
2 1.01 272.80 0.25 1.02 74419.84 0.06 275.60 0.25 67.06
3 1.03 270.22 0.24 1.06 73020.02 0.06 278.42 0.25 64.96
4 0.82 324.55 0.40 0.67 105332.35 0.16 265.94 0.33 130.71
5 0.83 273.87 0.21 0.70 75006.19 0.04 228.67 0.17 56.61
6 1.11 274.20 0.28 1.23 75185.95 0.08 304.31 0.31 75.73
7 0.80 299.56 0.29 0.64 89733.67 0.08 239.93 0.23  86.56
8 0.84 325.13 0.42 0.71 105709.64 0.17 273.64 0.35 135.39
9 0.89 310.19 0.37 0.78  96220.00 0.13 274.75 0.32 113.75
10 1.16 271.78 0.28 135 73862.15 0.08 315.23 0.32 75.44
11 1.13 298.13 0.40 1.27 88878.56 0.16 336.10 0.45 118.94
12 1.14 304.56 0.44 130 92759.55 0.19 347.10 0.50 133.77
13 1.13 270.54 0.26 1.27 73189.31 0.07 305.20 0.30 71.58
14 1.04 280.21 0.29 1.09 78514.87 0.08 292.34 0.30 79.93
15 1.15 306.72 046 1.32 94077.94 0.21 352.47 0.52 139.67
16 0.87 319.16 0.40 0.76 101864.25 0.16 277.89 0.35 128.30
17 0.83 304.60 0.32 0.68 92778.97 0.10 251.76 0.26  97.07
18 1.06 303.42 040 1.11 92064.18 0.16 320.26 0.42 121.60
19 0.83 289.58 0.26 0.69 83856.40 0.07 241.11 0.22 75.75
20 0.89 301.14 0.33 0.79 90684.97 0.11 267.54 0.29 98.58
sum 19.66 5896.84 6.66 19.68 1745063.64 2.32 5776.21 6.57 1984.89
mean 0.98 294.84 0.33 0.98 87253.18 0.12 288.81 0.33 99.24
variance 0.02 321.47 0.01 covariance -1.03 0.00 1.09
standard 0.13 17.93 0.07 correlation -0.43 0.14 0.83
deviation

We use the definition of the mean, x = E(x) = z xf (x), to obtain expectation values for the

following functions: C,, T, ry, C,°, T?, r,°,C,-T,C,-r, and T -r,. The expectations are
shown in the table above in the row marked mean. The variances of C,, T, and r;are calculated
using the “difference between the mean of the square and the square of the mean” rule.

T = E[g(X)Z] ~E[g(x)f

Those variances are shown in the first three columns in the row marked variance. The covariances
are obtained using the formula:
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o,y = E[xy]- E[x|E[y]

and are shown in the last three columns for C,-T ,C, -1y and T -r,. The standard deviations and
correlation coefficients are given in the bottom row, obtained from:

o
_ [ _ 9

Oy =4/Csw and p = .
y

o0

Physical explanation of statistical results:
The mean and the standard deviation of the concentration show that statistically speaking:

c, —0.98+013M°
liter
- mol
Similarly, T =294.5£17.9K and r, =0.33+0.07——.
min

The physical meaning of the correlation coefficients are as follows. The concentration of A and
the temperature (two independent random variables) should not be correlated. The correlation
coefficient should be zero. Itis-0.43. This non-zero value is a result of only having 20 data
points. More data points would eventually average out to a correlation coefficient of zero.

The C, - ry correlation coefficient should be positive because as the concentration increases,
the reaction rate increases. It is positive. The C, -r, correlation coefficient is small because the
relationship is a linear (weak) relationship.

The T -1y correlation coefficient should be positive because as the temperature increases, the
reaction rate increases. Itis positive. The T -r, correlation coefficient is large because the
relationship is an exponential (strong) relationship.

3.12. An Extended Example for Continuous Random Variables

A construction company has designed a distribution function which describes the area of their
construction sites. The sites are all rectangular with dimensions a and b. The Joint PDF of the
dimensions a and b are:

4
f(a,b) = Zab forl<a<?2and3<b<4

0 otherwise
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The company is interested in determining pre-construction site costs including fencing and
clearing land. The amount of fencing gives rise to a perimeter cost. The Perimeter Costs, PC, are
$10 per meter of fencing required:

PC(a,b) =10(2a + 2b)

The amount of land cleared is proportional to the area of the site and gives rise to an area cost.
The Area Costs, AC, are $20 per square meter of the lot:

AC(a,b) = 20ab

(@) Are a and b independent?

(b) Find the meanof a, b, PC,and AC.

(c) Find the variance of a, b, PC,and AC.

(d) Find the covariance of a-b, a-PC, a-AC,b-PC, b-AC,and PC-AC.

(e) Find the correlation coefficient of a-b, a-PC, a-AC,b-PC, b-AC,and PC-AC.

(@) a and bare independent if f(x,y)=g(x)h(y) where the marginal distributions are
defined in Chapter 2 as

900 = [ (xy)dy and h(y) = [ (x,y)ox

—00 —o0

We evaluate the marginal distributions.

¢4 4 v} 2
a f(a,b)db=|—abdb=—a— =—=a
9(a)= j (a.b) !21 21 2|, 3
2 2 4 4 az|" 2
h(b):jf(a,b)da I—abdaz—b— =<b
) ) 21 21 2|, 7

4 2 )2 4
f(x,y)=—ab=g(Xx)h(y)=|=-a|=b|=—ab
(1) = 0= 90000 = 2a [ 25
Therefore, a and b are independent.
(b) Find the mean of a, b, PC,and AC.

The general formula for the mean is:
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Higeyy = EXY)) = [ Th(xy) £ (x, y)dxdy

—00—00

24 2 3 9\2
ya=E(a)=”a(iab]dbda=j 4 ab ) o (a2 T) 8 o

14 51 2" 2) M ez, e

24 3 2
yb:E(b):”b(iadebda: A0 (a7

P21 N2%3) P a23), =&

We can use the definition of the mean to compute the mean value of the perimeter costs.

80 ¢ ,b* b’ ~
.« =E(PC) = j | 20(a+b)(—ab]dbd o1 (a —+a?j da =

1

:80 a’ 7+a 37) _80 49+111 64OO_$10159
21032 2 3) 2116 6

OR remember that the mean is a linear operator, E(ax +by) = aE(x) + bE(y)
= E(PC) = E(20a) + E(20b) = 20E(a) + 20E(b) = 20(1.56) + 20(3.52) = $101.6

For the area cost, we can use the definition of the mean.

3
. =E(AC) = jzo(ab)[—abjdbda_@ a? 0°) da=50[ & ar) 20720_$10963
213" 3 )" 213 3 ) 189

OR remember E(xy) = E(x)E(y) for independent variables.
1 = E(AC) = E(20ab) = 20E(a)E(b) = 20(1.56)(3.52) = $109.63

because aand b are independent.

(c) Find the variance of a, b, PC,and AC.

The working equation to calculate the variance of a function is:

2y = Elo(x v |-E[g(x, y)
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For these variables, we have calculated the mean (necessary to evaluate the function in the
second term on the right hand side). We must next calculate the mean of the square (the first term
on the right hand side) before we can calculate the variance.

24 2\4
4, =E(a®)= ”az(—abjdbda j 20 ) g 42 7Y 40,0
g . 2 ), \2142) "168
o2 =Ela?]- E[a] = 2.50-1.55567 = 0.0802

24 a4 2 2
ﬂbz=E(b2)=”b2(—adebda jiab— dao| 2371751 525 4554
P 21 4 2102 4 ) a2

3
= E[p?]- E[o] =12.50 -3.52382 = 0.0828

To calculate the variance of PC(a,b) =10(2a + 2b) remember
Oly.py = a0 +b’c’ +2abo,,

Then we only need to calculate the covariance of a and b. The working formula for the
covariance is:

Oxy = E[Xy]_ E[X]E[y]
So we need the expectation value of E(ab)

24 2 3\4
4, = E(ab) = H(ab)[iabjdbda ~27la22 | ga-2 237 103 .
118N 51 213(% 3 7213 3 ), " 189

1
Then
o= 5.48-1.56(3.52) =0.00

The covariance of a and b is zero. We should have known that because we showed in part (a)
that a and b were statistically independent.

02 = Ol 202 (02 + 02 )+2(20)(20) 5, = 65.2.
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Lastly, for the area cost,

1600%( ,b*)'
M, =E(AC?) = j j 202 (ab) (—ab]dbd 1 (a T] da =
1 3

=12500.0

~ 1600 a_175 _4200000
21 ( 4 4 336

o2 = E[AC?]- E[ACTF =12500.0-109.63° = 481.

(d) Find the covariance of a-b, a-PC, a-AC,b-PC, b-AC,and PC-AC.
In part (c) we found the covariance of a-b to be 0.0 because they were statistically
independent. For the rest of these quantities, we use the rule

Oxy = E[Xy]_ E[X]E[y]
where we already have the expectation values of the two factors in the second term on the r.h.s.

We only need to find the first term on the r.h.s. to find the covariance. For the covariance between
a and the perimeter cost we have

21 4 803 ,b* ,b%)
Hapc = E(aPC) = J.j20(a2 + ab)(z abjdbda = Z![f ? + a2 ?] da =
3

=159.63

_80 a* 7+a 37Y’ _ 80 105+259 241360
21042 33/ 21l 8 9 1512

o..c = E[aPC]-E[a]E[PC]=159.63 - (1.556)(101.59) =1.56

For the covariance between b and the perimeter cost we have

803 ,b° _b*Y
fype = E(DPC) = ”20(ab+b ) —ab doda = a’ S ta | da=
1

3

=359.63

_80(a’37 a’175 175)° _80 259 525) _ 543760
21033 2 4 ) 219 8 ) 1512

o.c = E[bPC]-E[b]JE[PC]=359.63 - (3.5238)(101.59) =1.65
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For the covariance between a and the area cost we have

j j o[ 4 802( ,b*Y
.. =E(@AC)=|]20(a b)(—abjdbda:— (a —] da =
e 3 21 215\ 3 ),

= | S =T 217619
21\ 4 3 ) 252

80 (a_“ 37)2 44400
o..c = E[aAC]-E[a]E[AC]=176.19 - (1.556)(109.63) = 5.65

For the covariance between b and the area cost we have

j j (4 802 ,b")
., =E(BAC)=|120(ab )(—abjdbda =— (a —J da=
e x 21 211\ 4

3

=388.89

80(a’175) 98000
21(3 4 252

1
o.c = E[bAC]-E[b]JE[AC]=388.89 - (3.52)(109.63) = 3.00

For the covariance between the perimeter cost and the area cost we have

24 2 3 4\*
4 1600 b b
Lrepe = E(ACPC) = 202(a2b+ab2)(—abjdbda:— [a3—+a2—j da =
here ! ! 21 21 1 3 4 ),

_ 1600 { a's7 a’ 175}2 _ 1600 (555 ) 1225) _ 2848000

— — = =11301.63
21 (4 3 3 4 21 \ 12 12 252

1

o scpe = E[ACPC]-E[AC]E[PC]=11301.63— (109.63)(101.59) = 164.3

(e) Find the correlation coefficientof a-b, a-PC, a-AC,b-PC, b-AC,and PC-AC.

The general formula for the correlation coefficient is:
O xy

Pxy =
OxOy

O 0.0

= = =0.0
Pat 0,0, /1.564/3.52
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0 _ Opcac _ 164.3 _0.93
POAC  5peOac  4/65.24/481
- G.pc 1.56 0.15

0.00c  ~1.56+/652

Oppc 1.65

Popc = = =
G.0pc  /3.524/65.2

o = Ouc _ 5.65 _

¢ 6,00 /1.564/481.
G 3.00

Poac = bAC_ —

G,Oac  3.52+/481

These correlations (with the exception of a and b) are all positive. They should be because as
you increase one side of the lot (either a or b), you should increase both the perimeter and the area.
Also, as you increase the perimeter, on average, you increase the area, given our distribution
function.

3.13. Subroutines

Code 3.1. Variance as a function of truncation
This simple code illustrates the need to keep all significant figures in the intermediate
calculations of averages before computing the variance using equation (3.5).

n=10;
r = rand(n,1);
s =10 + 0.1*(2*r - 1)

S2 = s."2;

f = 1/n;

format long
mu_s = sum(f*s);

mu_s2 = sum(f*s2);
var_s = mu_s2 - mu_s”™2;
for 1 = 2:1:8
mu_s_cut(i) = round(mu_s*(10™Mi1))/(10™M1);

mu_s2_cut(i) round(mu_s2*(10Mi))/(10™M);
var_s_cut(i) mu_s2_cut(i) - mu_s _cut(i)"2;
fprintf(1, "%i sig figs: mu_s = %16.9e mu_s2 = %16.9e var_s = %16.9e\n",
i+2, mu_s cut(i),mu_s2 cut(i),var_s cut(i));
end
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fprintf(l,"all sig figs: mu s = %16.9e mu_s2 = %16.9e var_s = %16.9e\n",
mu_s,mu_s2,var_s);

3.14. Problems

Homework problems are posted on the course website.



