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Homework Assignment Number Ten Assignment Solutions 
 

Problem 1. 

Find the solution to the following system of nonlinear algebraic equations near (1,1,1).  

 

𝑓1 = 𝑥1 + 2𝑥2 + 3𝑥3 − 4 

𝑓2 = 𝑥1
3 − 4𝑥2

3 

𝑓3 = 𝑥3 − 𝑠𝑖𝑛 𝑥3 

 

Solution: 

 

Since this is a system of three nonlinear algebraic equations with three unknowns, we can use the multivariate 

Newton-Raphson with numerical approximations to the derivatives.  We will set a tolerance of 10-6. 

The input function looks like: 

 
function f = funkeval(x) 

% 

%  these two lines force a column vector of length n 

% 

n = max(size(x)); 

f = zeros(n,1); 

% 

%  enter the functions here 

% 

f(1) = x(1) + 2*x(2) + 3*x(3) - 4; 

f(2) = x(1)^3 - 4*x(2)^3; 

f(3) = x(3) - sin(x(3)); 
 

The command line prompt and output yields 

 
>> [x,err,f] = nrndn([1,1,1],1.0e-6,1) 

iter =    1, err =  3.28e-01 f =  2.08e+00  

 iter =    2, err =  3.97e-01 f =  5.13e-01  

 iter =    3, err =  1.50e-01 f =  6.63e-01  

... 

 iter =   31, err =  1.81e-06 f =  2.95e-10  

 iter =   32, err =  1.21e-06 f =  1.97e-10  

 iter =   33, err =  8.03e-07 f =  1.31e-10  

  

x =   1.769971344010968   1.115012077004957   0.000001500659706 

 

err =     8.031984760117370e-07 

 

f =     1.310558041829265e-10 

 

Therefore, the solution is 𝑥1 = 1.76997, 𝑥2 = 1.11501and𝑥3 = 0.   

 

Problem 2. 

Perform 2 iterations of multivariate Newton-Raphson on the following system of nonlinear algebraic equations.  

 

𝑓1 = 𝑥1
2 + 𝑥2

2 − 4 

𝑓2 = 𝑥1
2 − 𝑥2 + 1 

 

Show the value of the Jacobian, residual and 𝛿𝑥(𝑘) at each iteration.  Use and initial guess of (x1, x2) = (1,2). Report 

the values of (x1, x2) for the first two iterations. 

 

Solution: 

 

In order to perform the multivariate Newton-Raphson method, we must first determine the functional form of the 

partial derivatives 
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(𝐽)
1,1

= (
𝜕𝑓1

𝜕𝑥1
) = 2𝑥1 (𝐽)

1,2
= (

𝜕𝑓1

𝜕𝑥2
) = 2𝑥2

(𝐽)
1,2

= (
𝜕𝑓2

𝜕𝑥1
) = 2𝑥1 (𝐽)

2,2
= (

𝜕𝑓2

𝜕𝑥2
) = −1

 ⥂    

 

Then following the algorithm outlined above: 

Step One.  Make an initial guess.  In this case, the initial guess is given in the problem statement: 𝑥1= 1.0 and 𝑥2 = 

2.0 . 

Step Two.  Using that initial guess, calculate the residual and the Jacobian. 

 

𝐽(0) = [
2 4
2 −1

]  and   𝑅(0) = [
1
0

]        

 

Step Three.  Solve  𝐽(𝑘)𝛿𝑥(𝑘) ⥂= −𝑅(𝑘) (Using Linear Algebra) 

 

𝛿𝑥(0) = [
−0.1
−0.2

] 

 

Step Four.  Calculate new values for 𝑥 

 

𝑥(1) = 𝑥(0) + 𝛿𝑥(0) = [
1
2

] + [
−0.1
−0.2

] = [
0.9
1.8

] 

 

Step Five.  Loop back to Step 2. and repeat until converged. 

 

Here are what further iterations yield 

 

iteration 𝑥 𝐽 𝑅 𝛿𝑥 

0 [
1
2

] [
2 4
2 −1

] [
1
0

] [
−0.1
−0.2

] 

1 [
0.9
1.8

] [
1.8 3.6
1.8 −1

] [
0.05
0.01

] [
−0.0104
−0.0087

] 

2 [
0.8896
1.7913

] [
1.7792    3.5826
1.7792   − 1.0000

] [
0.1835𝑒 − 3
0.1079𝑒 − 3

] [
-0.6991e-4
-0.1650e-4

] 
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Problem 3. 

Consider the solid-liquid equilibrium of a binary alloy described by regular solution theory.  Consider two materials, 

A and B with the following pure component properties: 

 

component melting temperature (K) enthalpy of melting (J/mol) entropy of melting (J/mol/K) 

symbol 

 
𝑇𝐴

𝑚𝑒𝑙𝑡 , 𝑇𝐵
𝑚𝑒𝑙𝑡 ∆𝐻𝐴

𝑚𝑒𝑙𝑡 , ∆𝐻𝐵
𝑚𝑒𝑙𝑡  ∆𝑆𝐴

𝑚𝑒𝑙𝑡 , ∆𝑆𝐵
𝑚𝑒𝑙𝑡  

A 800.0 8,000.0 10.0 

B 1200.0 12,000.0 10.0 

 

The regular solution parameters for the enthalpy of mixing are given as  

 

 liquid solid 

enthalpy of mixing parameter (J/mol) (Ω) -5,000.0 0.0 

 

(a) Plot the free energy curve of each phase at a temperature of T = 1000 K as a function of composition. 

(b) Determine the liquid and solid equilibrium compositions at T = 1000 K. 

 

Regular solution theory in a nutshell.   

The total free energy of either liquid (liq) or solid (sol) phase is made up of two terms, one representing a phase 

change if the phase is not the equilibrium state and one representing the contribution due to mixing. 

 

∆𝐺𝑙𝑖𝑞
⬚ = ∆𝐺𝑙𝑖𝑞

𝑝ℎ𝑎𝑠𝑒
+ ∆𝐺𝑙𝑖𝑞

𝑚𝑖𝑥 (1.liq) 

 

∆𝐺𝑠𝑜𝑙
⬚ = ∆𝐺𝑠𝑜𝑙

𝑝ℎ𝑎𝑠𝑒
+ ∆𝐺𝑠𝑜𝑙

𝑚𝑖𝑥  (1.sol) 

 

The mixing term has the following form which is the sum of an enthalpy term and an entropy term. 

 

∆𝐺𝑙𝑖𝑞
𝑚𝑖𝑥 = Ω𝑙𝑖𝑞𝑥𝐴𝑥𝐵 + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + 𝑥𝐵𝑙𝑛(𝑥𝐵)] (2.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑚𝑖𝑥 = Ω𝑠𝑜𝑙𝑥𝐴𝑥𝐵 + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + 𝑥𝐵𝑙𝑛(𝑥𝐵)] (2.sol) 

 

where R is the gas constant (8.314 J/mol/K) and where 𝑥𝐴 is the atomic fraction of A, and 𝑥𝐵 is the atomic fraction 

of B.  Remember, in a binary mixture, 𝑥𝐵 is not an independent variable.  Rather, 𝑥𝐵 = 1 − 𝑥𝐴.  Note:  Because of 

the natural logarithm in equation (2), the free energy does not exist exactly at 𝑥𝐴 = 0 or 𝑥𝐴 = 1. 

 

 

The phase change term has the following form. 

 

∆𝐺𝑙𝑖𝑞
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

+ 𝑥𝐵∆𝐺𝑙𝑖𝑞,𝐵
𝑝ℎ𝑎𝑠𝑒

 (3.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

+ 𝑥𝐵∆𝐺𝑠𝑜𝑙,𝐵
𝑝ℎ𝑎𝑠𝑒

 (3.sol) 

 

where 𝑑𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

 and 𝑑𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

 are phase change free energies of pure component A in the liquid and solid phases 

respectively.  They are defined as  

 

∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

= {
∆𝐺𝐴

𝑚𝑒𝑙𝑡 𝑖𝑓 𝑇 < 𝑇𝐴
𝑚𝑒𝑙𝑡

0 𝑖𝑓 𝑇 ≥ 𝑇𝐴
𝑚𝑒𝑙𝑡  

(4.liq) 

 

∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

= {
0 𝑖𝑓 𝑇 ≤ 𝑇𝐴

𝑚𝑒𝑙𝑡

−∆𝐺𝐴
𝑚𝑒𝑙𝑡 𝑖𝑓 𝑇 > 𝑇𝐴

𝑚𝑒𝑙𝑡  
(4.sol) 

 

where  
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∆𝐺𝐴
𝑚𝑒𝑙𝑡 = ∆𝐻𝐴

𝑚𝑒𝑙𝑡 − 𝑇𝐴
𝑚𝑒𝑙𝑡∆𝑆𝐴

𝑚𝑒𝑙𝑡  (5) 

 

Equations (4) and (5) were written for component A.  Analogous versions can be written for component B. 

 

For part (b) of the problem, we will solve two equations for two unknowns.  The two equations can be understood 

from the point of view of the common tangent construction.  There is a tangent line to the liquid free energy curve 

and a second tangent line to solid free energy curve, given in equation (a).  These tangent lines have the age-old 

form. 

 

𝑦 = 𝑚𝑥 + 𝑏 (6) 

 

where 𝑚 is the slope of the line and 𝑏 is the y-intercept.  At the equilibrium liquid and solid composition we can 

write this equation as  

 

𝑦𝑙𝑖𝑞 = 𝑚𝑙𝑖𝑞𝑥𝑙𝑖𝑞,𝐴 + 𝑏𝑙𝑖𝑞  (7.liq) 

 

𝑦𝑠𝑜𝑙 = 𝑚𝑠𝑜𝑙𝑥𝑠𝑜𝑙,𝐴 + 𝑏𝑠𝑜𝑙  (7.sol) 

 

To be clear, our goal is to find the unknown liquid and solid compositions, 𝑥𝑙𝑖𝑞,𝐴 and 𝑥𝑠𝑜𝑙,𝐴.  Because there is a 

common tangent, we have two equations that define the unknown compositions, namely the slopes are the same and 

the y-intercepts are the same. 

 

𝑓1(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) = 𝑚𝑙𝑖𝑞 − 𝑚𝑠𝑜𝑙 = 0 (8.i) 

 

𝑓2(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) = 𝑏𝑙𝑖𝑞 − 𝑏𝑠𝑜𝑙 = 0 (8.ii) 

 

To evaluate equation (8.i), we must recognize that the slope of the liquid or solid free energy curve is the partial 

derivative of that curve with respect to the atomic fraction of A.   

 

𝑚𝑙𝑖𝑞 =
𝜕∆𝐺𝑙𝑖𝑞

⬚

𝜕𝑥𝐴

|
𝑥𝑙𝑖𝑞,𝐴

 
(9.liq) 

 

𝑚𝑠𝑜𝑙 =
𝜕∆𝐺𝑠𝑜𝑙

⬚

𝜕𝑥𝐴

|
𝑥𝑠𝑜𝑙,𝐴

 
(9.sol) 

 

We can rearrange equation (7) to solve for the intercepts 

 

𝑏𝑙𝑖𝑞 = 𝑦𝑙𝑖𝑞 − 𝑚𝑙𝑖𝑞𝑥𝑙𝑖𝑞,𝐴 (10.liq) 

 

𝑏𝑠𝑜𝑙 = 𝑦𝑠𝑜𝑙 − 𝑚𝑠𝑜𝑙𝑥𝑠𝑜𝑙,𝐴 (10.sol) 

 

where 𝑦𝑙𝑖𝑞 and 𝑦𝑠𝑜𝑙  are points on the respective free energy curves (equation 1) evaluated at  𝑥𝑙𝑖𝑞,𝐴 and 𝑥𝑠𝑜𝑙,𝐴. 

 

 

𝑦𝑙𝑖𝑞 = ∆𝐺𝑙𝑖𝑞
⬚ (𝑥𝑙𝑖𝑞,𝐴) (11.liq) 

 

𝑦𝑠𝑜𝑙 = ∆𝐺𝑠𝑜𝑙
⬚ (𝑥𝑠𝑜𝑙,𝐴) (11.sol) 

 

Substitution of equations (9), (10) and (11) into equation (8) yields 
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𝑓1(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) =
𝜕∆𝐺𝑙𝑖𝑞

⬚

𝜕𝑥𝐴

|
𝑥𝑙𝑖𝑞,𝐴

−
𝜕∆𝐺𝑠𝑜𝑙

⬚

𝜕𝑥𝐴

|
𝑥𝑠𝑜𝑙,𝐴

= 0 
(12.i) 

 

𝑓2(𝑥𝑙𝑖𝑞,𝐴, 𝑥𝑠𝑜𝑙,𝐴) = ∆𝐺𝑙𝑖𝑞
⬚ (𝑥𝑙𝑖𝑞,𝐴) −

𝜕∆𝐺𝑙𝑖𝑞
⬚

𝜕𝑥𝐴

|
𝑥𝑙𝑖𝑞,𝐴

𝑥𝑙𝑖𝑞,𝐴 − ∆𝐺𝑠𝑜𝑙
⬚ (𝑥𝑠𝑜𝑙,𝐴) +

𝜕∆𝐺𝑠𝑜𝑙
⬚

𝜕𝑥𝐴

|
𝑥𝑠𝑜𝑙,𝐴

𝑥𝑠𝑜𝑙,𝐴 = 0 
(12.ii) 

 

 

Addendum:  Help with obtaining the analytical derivative of free energy with respect to the atomic fraction of A. 

 

Start by differentiating equation (1) 

 

𝜕∆𝐺𝑙𝑖𝑞
⬚

𝜕𝑥𝐴

=
𝜕∆𝐺𝑙𝑖𝑞

𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

+
𝜕∆𝐺𝑙𝑖𝑞

𝑚𝑖𝑥

𝜕𝑥𝐴

 
(13.liq) 

 

𝜕∆𝐺𝑠𝑜𝑙
⬚

𝜕𝑥𝐴

=
𝜕∆𝐺𝑠𝑜𝑙

𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

+
𝜕∆𝐺𝑠𝑜𝑙

𝑚𝑖𝑥

𝜕𝑥𝐴

 
(13.sol) 

 

Next we differentiate the mixing term in equation (2).  Remember, in a binary mixture, 𝑥𝐵 is not an independent 

variable.  Rather, 𝑥𝐵 = 1 − 𝑥𝐴.  So, first rewrite equation (2) substituting 1 − 𝑥𝐴 for 𝑥𝐵. 

 

∆𝐺𝑙𝑖𝑞
𝑚𝑖𝑥 = Ω𝑙𝑖𝑞𝑥𝐴(1 − 𝑥𝐴) + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + (1 − 𝑥𝐴)𝑙𝑛(1 − 𝑥𝐴)] (14.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑚𝑖𝑥 = Ω𝑠𝑜𝑙𝑥𝐴(1 − 𝑥𝐴) + 𝑅𝑇[𝑥𝐴𝑙𝑛(𝑥𝐴) + (1 − 𝑥𝐴)𝑙𝑛(1 − 𝑥𝐴)] (14.sol) 

 

Now differentiate with respect to 𝑥𝐴.  We left out intermediate steps.  Check for yourself. 

 

𝜕∆𝐺𝑙𝑖𝑞
𝑚𝑖𝑥

𝜕𝑥𝐴

= Ω𝑙𝑖𝑞(1 − 2𝑥𝐴) + 𝑅𝑇𝑙𝑛 (
𝑥𝐴

1 − 𝑥𝐴

) 
(15.liq) 

 

𝜕∆𝐺𝑠𝑜𝑙
𝑚𝑖𝑥

𝜕𝑥𝐴

= Ω𝑠𝑜𝑙(1 − 2𝑥𝐴) + 𝑅𝑇𝑙𝑛 (
𝑥𝐴

1 − 𝑥𝐴

) 
(15.sol) 

 

Next we differentiate the phase change term in equation (3).  Remember, in a binary mixture, 𝑥𝐵 is not an 

independent variable.  Rather, 𝑥𝐵 = 1 − 𝑥𝐴.  So, first rewrite equation (3) substituting 1 − 𝑥𝐴 for 𝑥𝐵. 

 

∆𝐺𝑙𝑖𝑞
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

+ (1 − 𝑥𝐴)∆𝐺𝑙𝑖𝑞,𝐵
𝑝ℎ𝑎𝑠𝑒

 (16.liq) 

 

∆𝐺𝑠𝑜𝑙
𝑝ℎ𝑎𝑠𝑒

= 𝑥𝐴∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

+ (1 − 𝑥𝐴)∆𝐺𝑠𝑜𝑙,𝐵
𝑝ℎ𝑎𝑠𝑒

 (16.sol) 

 

Now differentiate with respect to 𝑥𝐴.   

 

𝜕∆𝐺𝑙𝑖𝑞
𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

= ∆𝐺𝑙𝑖𝑞,𝐴
𝑝ℎ𝑎𝑠𝑒

− ∆𝐺𝑙𝑖𝑞,𝐵
𝑝ℎ𝑎𝑠𝑒

 
(17.liq) 

 

𝜕∆𝐺𝑠𝑜𝑙
𝑝ℎ𝑎𝑠𝑒

𝜕𝑥𝐴

= ∆𝐺𝑠𝑜𝑙,𝐴
𝑝ℎ𝑎𝑠𝑒

− ∆𝐺𝑠𝑜𝑙,𝐵
𝑝ℎ𝑎𝑠𝑒

 
(17.sol) 

 

We now have everything we need to solve this problem. 
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Solution: 

 

First, I created a script called driver.m to call functions to perform both of the tasks for part (a) and part (b). 

 
clear all; 

close all; 

% 

%  make free energy plot 

% 

make_freeenergy_plot; 

 

% 

% solve for equilibrium compositions 

% 

% 

% make initial guess 

% 

xsol = 0.10; 

xliq = 0.30; 

x0 = [xsol,xliq]; 

fprintf(1,'initial guess xsol = %f & xliq = %f\n\n',x0); 

% 

%  call Newton-Raphson 

% 

tol = 1.0e-6; 

iprint = 1; 

[x,err,f] = nrndn(x0,tol,iprint); 

fprintf(1,'\nconverged values xsol = %f & xliq = %f\n',x); 

fprintf(1,'\nRMS error at converged solution = %e \n',err); 

 

Second, I created a function called make_freeenergy_plot.m to make the liquid and solid free energy curvers as a 

function of composition. 

 
function make_freeenergy_plot 

% parameters 

R = 8.314; % J/mol/K 

omega_sol =  0.0; % J/mol 

omega_liq =  -5000.0; % J/mol 

TA = 800.0; % K 

TB = 1200.0; % K 

dHmeltA = 8000.0; % J/mol 

dHmeltB = 12000.0; % J/mol 

dSmeltA = 10.0; % J/mol/K 

dSmeltB = 10.0; % J/mol/K 

% 

%  temperature  

% 

T = 1000.0; % K 

  

% 

%  create vector of mole fractions of A 

%  avoid 0.0 and 1.0 due to log 

% 

xAvec = [0:0.01:1]; 

nxA = max(size(xAvec)); 

xAvec(1) = 1.0e-3; 

xAvec(nxA) = 1.0 - 1.0e-3; 

% 

dGliq = zeros(1,nxA); 

dGsol = zeros(1,nxA); 

% 

%   define phase change values 

% 

dGmeltA = dHmeltA - T*dSmeltA; 

dGmeltB = dHmeltB - T*dSmeltB; 

if (T <= TA && T <= TB) 

    dGphase_liq_A = dGmeltA; 

    dGphase_liq_B = dGmeltB; 

    dGphase_sol_A = 0; 
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    dGphase_sol_B = 0; 

elseif (T >= TA && T >= TB) 

    dGphase_sol_A = -dGmeltA; 

    dGphase_sol_B = -dGmeltB; 

    dGphase_liq_A = 0; 

    dGphase_liq_B = 0; 

elseif (T > TA && T < TB) 

    dGphase_sol_A = -dGmeltA; 

    dGphase_sol_B = 0; 

    dGphase_liq_A = 0; 

    dGphase_liq_B = dGmeltB; 

end 

% 

% loop over mole fractions 

% 

for ix = 1:1:nxA 

   xA = xAvec(ix); 

   dGphase_liq = xA*dGphase_liq_A + (1-xA)*dGphase_liq_B; 

   dGphase_sol = xA*dGphase_sol_A + (1-xA)*dGphase_sol_B; 

   term2 = R*T*(xA*log(xA) + (1-xA)*log(1-xA)); 

   dGmix_sol =  omega_sol*xA*(1-xA) + term2; 

   dGmix_liq =  omega_liq*xA*(1-xA) + term2; 

   dGliq(ix) = dGphase_liq + dGmix_liq; 

   dGsol(ix) = dGphase_sol + dGmix_sol; 

end 

figure(1) 

plot(xAvec,dGliq,'k') 

hold on; 

plot(xAvec,dGsol,'r') 

hold off; 

legend('liquid','solid') 

title(strcat('T = ',int2str(T),' K')) 

xlabel('mole fraction of A'); 

ylabel('Gibbs free energy change (J/mol)'); 

 

Third, I modified the funkeval function associated with the Newton Raphson with Numerical Derivatives for N 

equations code (nrndn.m) as follows: 

 
function f = funkeval(x) 

% 

%  regular solution parameters 

% 

R = 8.314; % J/mol/K 

omega_sol =  0.0; % J/mol 

omega_liq =  -5000.0; % J/mol 

TA = 800.0; % K 

TB = 1200.0; % K 

dHmeltA = 8000.0; % J/mol 

dHmeltB = 12000.0; % J/mol 

dSmeltA = 10.0; % J/mol/K 

dSmeltB = 10.0; % J/mol/K 

% 

%  temperature  

% 

T = 1000.0; % K 

% 

%  these two lines force a column vector of length n 

% 

n = max(size(x)); 

f = zeros(n,1); 

% 

%  identify variables 

% 

xA_sol = x(1); 

xA_liq = x(2); 

% 

%   define phase change values 

% 

dGmeltA = dHmeltA - T*dSmeltA; 

dGmeltB = dHmeltB - T*dSmeltB; 
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if (T <= TA && T <= TB) 

        dGphase_liq_A = dGmeltA; 

        dGphase_liq_B = dGmeltB; 

        dGphase_sol_A = 0; 

        dGphase_sol_B = 0; 

elseif (T >= TA && T >= TB) 

        dGphase_sol_A = -dGmeltA; 

        dGphase_sol_B = -dGmeltB; 

        dGphase_liq_A = 0; 

        dGphase_liq_B = 0; 

elseif (T > TA && T < TB) 

        dGphase_sol_A = -dGmeltA; 

        dGphase_sol_B = 0; 

        dGphase_liq_A = 0; 

        dGphase_liq_B = dGmeltB; 

end 

% 

%  phase change component of free energy 

% 

dGphase_liq = xA_liq*dGphase_liq_A + (1-xA_liq)*dGphase_liq_B; 

dGphase_sol = xA_sol*dGphase_sol_A + (1-xA_sol)*dGphase_sol_B; 

% 

% mixing component of free energy 

% 

term2_liq = R*T*(xA_liq*log(xA_liq) + (1-xA_liq)*log(1-xA_liq)); 

term2_sol = R*T*(xA_sol*log(xA_sol) + (1-xA_sol)*log(1-xA_sol)); 

dGmix_sol =  omega_sol*xA_sol*(1-xA_sol) + term2_sol; 

dGmix_liq =  omega_liq*xA_liq*(1-xA_liq) + term2_liq; 

% 

%  total free energy 

% 

dG_liq = dGphase_liq + dGmix_liq; 

dG_sol = dGphase_sol + dGmix_sol; 

% 

%  the partial derivative of the free energy 

% 

dGdxA_phase_liq =  dGphase_liq_A - dGphase_liq_B; 

dGdxA_phase_sol =  dGphase_sol_A - dGphase_sol_B; 

dterm2dxA_liq = R*T*(log(xA_liq/(1-xA_liq))); 

dterm2dxA_sol = R*T*(log(xA_sol/(1-xA_sol))); 

dGdxA_mix_liq = omega_liq*(1-2*xA_liq) + dterm2dxA_liq; 

dGdxA_mix_sol = omega_sol*(1-2*xA_sol) + dterm2dxA_sol; 

dGdxA_liq = dGdxA_phase_liq + dGdxA_mix_liq; 

dGdxA_sol = dGdxA_phase_sol + dGdxA_mix_sol; 

% 

%  the equations 

% 

% slopes are equal 

f(1) = dGdxA_liq - dGdxA_sol; 

% intercepts are equal 

intercept_liq = dG_liq - dGdxA_liq*xA_liq; 

intercept_sol = dG_sol - dGdxA_sol*xA_sol; 

f(2) = intercept_liq - intercept_sol; 
 

I executed the script, driver.m, and obtained the following output. 

 

>> driver 

initial guess xsol = 0.100000 & xliq = 0.300000 

 

iter =    1, err =  3.93e-02 f =  3.71e+03  

iter =    2, err =  2.81e-02 f =  6.58e+02  

iter =    3, err =  5.00e-03 f =  9.57e+01  

iter =    4, err =  1.34e-04 f =  2.36e+00  

iter =    5, err =  8.94e-08 f =  1.58e-03  

 

converged values xsol = 0.194273 & xliq = 0.325002 
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RMS error at converged solution = 8.937836e-08  

 

and the plot 

 

 
 

Therefore, the solution is 𝑥𝑙𝑖𝑞,𝐴 = 0.194,  𝑥𝑠𝑜𝑙,𝐴 = 0.325.   

 

 

Note:  If you have trouble getting the Newton Raphson method to converge, you can extract reasonably good 

guesses for the solution from the plot in part (a) as initial guesses for part (b). 

 

 


