Midterm Examination Number One Administered: Monday, February 8, 1999

In all relevant problems: WRITE DOWN THE FORMULA YOU USE, BEFORE YOU USE IT. ALL PROBLEMS ARE WORTH 2 POINTS.

For Problems (1.1) to (1.7) Consider laminar flow down a circular pipe. 200 periodic readings of the maximum velocity (in the center of the pipe) and the viscosity were taken. We know that for laminar flow in a circular pipe that the average velocity [m/s] is:

$$\overline{v} = \frac{v_{\text{max}}}{2}$$
, the mass flow rate [kg/s] is

$$\dot{\mathbf{m}} = \rho A \overline{\mathbf{v}} = \rho \frac{\pi}{4} D^2 \overline{\mathbf{v}}$$
, and the Reynold's number is

 $N_{Re} = \frac{DV\rho}{\mu}$. (Thus all three of these equations are functions of random variables, V_{max} and μ .)

The density, $\rho = 1000.0$ kg/m³, and the diameter, D = 0.01 m, are constant. The following data is then tabulated for those 200 samples. (Not all of the data is shown below.)

lre mu-Nre	vmax*Nre	Nre^2	mu^2	vmax^2	Nre	mu	vmax	run
[kg/s] [kg/m/s]	[m/s]		[kg/m/s]^2	[m/s]^2		[kg/m/s]	[m/s]	
9E+04 1.0411E+02	9.2933E+05	7.9685E+09	1.3601E-06	1.0838E+02	8.9266E+04	1.1663E-03	1.0411E+01	1
9E+04 9.1656E+01	9.9045E+05	1.1677E+10	7.1942E-07	8.4008E+01	1.0806E+05	8.4819E-04	9.1656E+00	2
6E+04 8.3684E+01	8.5340E+05	1.0400E+10	6.7339E-07	7.0030E+01	1.0198E+05	8.2060E-04	8.3684E+00	3
9E+04 1.1792E+02	1.1730E+06	9.8949E+09	1.4054E-06	1.3906E+02	9.9473E+04	1.1855E-03	1.1792E+01	198
5E+04 9.1816E+01	8.3594E+05	8.2893E+09	1.0170E-06	8.4301E+01	9.1046E+04	1.0085E-03	9.1816E+00	199
7E+04 9.5214E+01	1.0119E+06	1.1295E+10	8.0261E-07	9.0658E+01	1.0628E+05	8.9588E-04	9.5214E+00	200
5E+07 1.9934E+04	2.0162E+08	2.0518E+12	2.0734E-04	2.0097E+04	1.9994E+07	2.0227E-01	1.9934E+03	sum
5E+04 9.9671E+01	1.0081E+06	1.0259E+10	1.0367E-06	1.0049E+02	9.9968E+04	1.0113E-03	9.9671E+00	avg
7E+04 5E+07 5E+04	2.0162E+08 1.0081E+06	2.0518E+12 1.0259E+10	2.0734E-07 1.0367E-06	9.0058E+01 2.0097E+04 1.0049E+02	1.9994E+05 9.9968E+04	2.0227E-01 1.0113E-03	9.5214E+00 1.9934E+03 9.9671E+00	200 sum avg

(1.1) Find the variance of the average velocity, $\sigma_{\overline{v}}^2$.

(1.2) Find the standard deviation of the viscosity, σ_{μ} .

(1.3) Find the mean of the mass-flow, $\mu_{\dot{m}}$.

- (1.4) Find the variance of the Reynold's number, σ_{NRe}^2 .
- (1.5) Find the covariance of the viscosity and Reynold's number, $\sigma_{\mu NRe}$
- (1.6) Find the correlation coefficient, $\rho_{\mu N R e}$.
- (1.7) Explain the sign of $\rho_{\mu NRe}$.

For problems (2.1) to (2.5) consider the Joint PDF f(x, y) given by:

у	x→	1	2	3	4
2		1/12	3/24	1/24	1/6
4		1/24	1/12	1/24	1/24
6		1/6	1/12	1/12	1/24

- (2.1) Is this PDF discrete or continuous?
- (2.2) Show this PDF is a valid PDF.
- (2.3) Find $P(X \ge 4, Y = 4)$
- (2.4) Find the marginal distribution, h(y)
- (2.5) Find $P(X \ge 4 | Y = 4)$

For questions (3.1) to (3.6):

In sampling a population for the presence of a disease, the population is of two types: Infected and Uninfected. The results of the test are of two types: Positive and Negative. In rare disease detection, a high probability for detecting a disease can still lead to more false positives than true positives. Consider a case where a disease infects 1 out of every 100,000 individuals. The probability for a positive test result given that the subject is infected is 0.99. The probability for a negative test result given that the subject is 0.999.

- (3.1) For testing a single person, define the complete sample space.
- (3.2) What is the probability of a false negative test result (a negative test result given that the subject is infected)?
- (3.3) What is the probability of being uninfected AND having a negative test result?
- (3.4) What is the probability of testing positive?
- (3.5) Determine rigorously whether testing positive and having the disease are independent.
- (3.6) Determine the percentage of people who test positive and who are really uninfected.