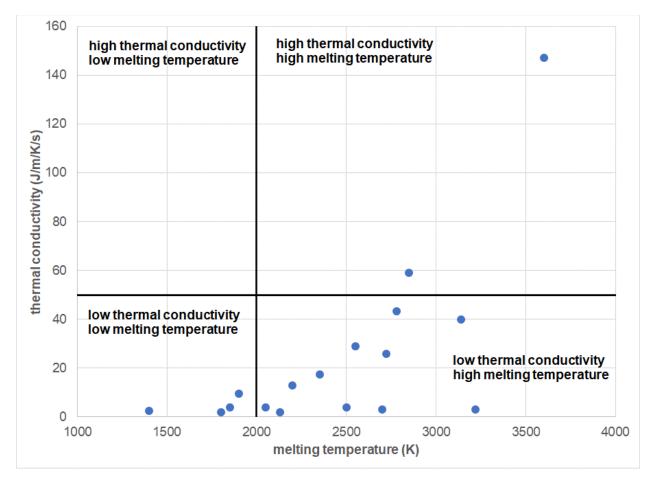
## Exam I Administered: Wednesday, September 21, 2021 24 points

| For each problem part: | 0 points if not attempted or no work shown,      |
|------------------------|--------------------------------------------------|
|                        | 1 point for partial credit, if work is shown,    |
|                        | 2 points for correct numerical value of solution |

## Problem 1. (12 points)

Consider the data for the following 17 refractory ceramics given below. This data is available electronically on the course website in a spreadsheet file.


|                  | Melting | Max  |             |         | Specific | Thermal<br>Expansion | Thermal      |
|------------------|---------|------|-------------|---------|----------|----------------------|--------------|
| Material         | Point   | Temp | Hardness    | Density | Heat     | (Linear)             | Conductivity |
|                  | °C      | °C   | Moh's Scale | g/cm3   | J/kg °C  | 10-6 / °C            | W/m °C       |
| Alumina          | 2050    | 1950 | 9           | 3.96    | 1050     | 8                    | 4            |
| Beryllia         | 2550    | 2400 | 9           | 3       | 2180     | 7.5                  | 29           |
| Magnesia         | 2850    | 2400 | 6           | 3.6     | 1170     | 13.5                 | 59           |
| Thoria           | 3220    | 2700 | 7           | 9.7     | 290      | 9.5                  | 3            |
| Zirconia         | 2700    | 2400 | 6.5         | 5.6     | 590      | 7.5                  | 3            |
| Zircon           | 2500    | 1870 | 7.5         | 4.6     | 630      | 4.5                  | 4            |
| Spinel           | 2130    | 1900 | 8           | 3.6     | 1050     | 8.5                  | 2            |
| Mullite          | 1850    | 1800 | 8           | 2.8     | 840      | 5                    | 4            |
| Sillimanite      | 1800    | 1800 | 6.5         | 3.2     | 840      | 5                    | 2            |
| Silicon Carbide  | 2200    | 1400 | 9           | 3.2     | 840      | 4.5                  | 13           |
| Silicon Nitride  | 1900    | 1400 | 9           | 3.18    | 1050     | 2.9                  | 9.5          |
| Graphite         | 3600    | 3273 | 0.75        | 2.2     | 1600     | 2.2                  | 147          |
| Quartizite       | 1400    | 3000 | 7           | 2.65    | 1170     | 8.6                  | 2.6          |
| Boron Carbide    | 2350    | 540  | 9.3         | 2.5     | 2090     | 5.7                  | 17.3         |
| Boron Nitride    | 2721    | 650  | 2           | 2.1     | 1570     | 7.5                  | 26           |
| Titanium Carbide | 3140    | 1500 | 9.5         | 6.5     | 1050     | 6.9                  | 40           |
| Tungsten Carbide | 2780    | 1000 | 9.5         | 14.3    | 300      | 6.3                  | 43.3         |

Answer the following questions for the materials in this table.

- (a) Determine the mean melting temperature.
- (b) Determine the mean specific heat.
- (c) Determine the standard deviation of the melting temperature.
- (d) Determine the standard deviation of the specific heat.
- (e) Determine the correlation coefficient between the melting temperature and the specific heat.
- (f) What is the physical significance of your answer to part (e)?

## Problem 2. (12 points)

Consider the 17 ceramic materials in the table in Problem 1. We are evaluating these materials in terms of low or high thermal conductivity and low or high melting temperature. A plot of the thermal conductivity vs the melting temperature is shown below.



Using this information, answer the following questions.

(a) Draw a Venn Diagram of the sample space for this data.

(b) What is the probability that a material has high thermal conductivity and high melt temperature?

(c) What is the probability that a material has high thermal conductivity?

(d) What is the probability that a material has high melt temperature given that it had high thermal conductivity?

(e) What is the probability that a material has low thermal conductivity given that it had low melt temperature?

(f) Given this classification, prove that thermal conductivity and melt temperature are not independent of each other.