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Final Exam  
Administered:  Friday, December 4, 2015 

8:00 AM – 10:00 AM 
22 points 

 
 
Problem 1.  (6 points) 

“Most solid-state transformations do not occur instantaneously because obstacles impeded 
the course of the reaction and make it dependent on time.” [Callister, W.D., “Materials Science 
and Engineering:  An Introduction, Wiley & Sons, New York, Fifth Ed., p. 296].  One expression 
used to describe the fraction of solid that has transformed is the Avrami equation, shown in the 
equation and Figure below, where y is the fraction of transformation, t is time (min), k is a rate 
constant (min-1) and n is an exponent. 

 
( )nkty −−= exp1  

 
(a) Linearize this equation so that it is linear in 
the unknown parameters, k and n. 
(b)  Using the table of data providing y and t in 
the file “xm4p01_f15.txt” on the exam portion 
of the course website, perform a linear 
regression to determine the mean values of k 
and n for this data. 
(c)  Also report the standard deviations of k and 
n. 
 
Solution: 
 
(a) Linearize this equation so that it is linear in the unknown parameters, k and n. 
 
Convert the data into a linear form necessary for a linear regression. 

 
( )nkty −−= exp1  

 
( )nkty −=− exp1  

 
( ) nkty −=−1ln  

 
This expression is still not linear in k and n.  Rearrange and take the log again. 
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Now this is in linear form, bmxz += , where the independent variable, ( )tx ln= , the 

dependent variable, 















−

=
y

z
1

1lnln , the slope, nm = , and the intercept, ( )kb ln= . 

 
(b)  Using the table of data providing y and t in the file “xm4p01_f15.txt” on the exam portion of 
the course website, perform a linear regression to determine the mean values of k and n for this 
data. 
 
I used the code linreg1.m for linear regression with one independent variable. 
 
I wrote the small script xm4p01_f15.m 
 
clear all; 
   
M = [0.10 3.03E-07 
0.11 5.75E-07 
0.12 7.72E-07 
... bunch of data omitted in this printout ... 
9.80 8.45E-01 
9.90 8.66E-01 
10.00 8.13E-01]; 
  
n = max(size(M)); 
for i = 1:1:n 
    x(i) = log(M(i,1)); 
    y(i) = log(log(1.0/(1.0-M(i,2)))); 
end 
[b,bsd,MOF] = linreg1(x, y) 
n_mean = b(2) 
k_mean = exp(b(1)) 
  
n_sd = bsd(2) 
k_sd = abs(bsd(1)/b(1))*k_mean 
 
At the command line prompt, I executed the script 
 
>> xm4p01_f15 
 
This generated the following output for the means, standard deviations and Measure of Fit. 
>> xm4p01_f15 
 
b = 
   -6.9298 
    3.3748 
 
bsd = 
    0.0258 
    0.0189 
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MOF =    0.9944 
 
n_mean =    3.3748 
k_mean =   9.7819e-04 
n_sd =    0.0189 
k_sd =   3.6439e-06 
 
The mean value of n is 3.37. 
The mean value of k is  9.8e-4 min-1. 
 
The code also generated a plot, shown here. 
 
(c)  Also report the standard deviations of k and n. 
 
Since the slope was n, the standard deviation of n is simply the standard deviation of the slope. 
The standard deviation of n is 0.02. 
 
For the standard deviation of k, we use the relation for the propagation of error that the relative 
error of k is equal to the relative error of the intercept. 
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The standard deviation of k is 3.6e-6 min-1. 
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Problem 2.  (4 points) 
 
Measurements of the elastic modulus, E, of large-particle composites, formed by particles (p) 
distributed in a matrix (m) at a particle volume fraction, pV , ( pm VV −=1 ) known to fall between 
an upper limit, given by [Callister, W.D., “Materials Science and Engineering:  An Introduction, 
Wiley & Sons, New York, Fifth Ed., pp. 523-524]. 
 

ppmmupper VEVEE +=  
 
and a lower limit given by  
 

mppm

pm
lower VEVE

EE
E

+
= . 

 
Experiments are performed tungsten particles dispersed in a copper matrix and the following 
results are obtained.  For 6.0=pV , 260=upperE  GPa and 180=lowerE  GPa.  (See Figure 17.3 of 
Callister, p. 524.) 
 
(a) Given this information, what numerical method can be used to determine the intrinsic elastic 
moduli of the matrix, mE , and the particle, pE . 
(b) Determine mE  and pE . 
 
Solution: 
 
I would use the multivariate Newton Raphson method with numerical approximations to the 
derivatives to solve a set of non-linear algebraic equations, 
 
( ) ( ) 0,1 =+−= ppmmupperpm VEVEEEEf  

 

( ) 0,2 =
+

−=
mppm

pm
lowerpm VEVE

EE
EEEf  

 
Alternatively, since equation (1) is linear, one of the two variables could be eliminated and the 
single variable version of the Newton-Raphson method could be used. 
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(b) Determine mE  and pE . 
 
I wrote a little script in the file xm4p02_f15.m 
 
clear all; 
format long; 
Eupper = 260.0; 
Elower = 180.0; 
Eavg = (Eupper + Elower)/2.0; 
Emo = Eavg; 
Epo = Eavg; 
xo = [Emo,Epo] 
tol = 1.0e-6; 
iprint = 1; 
[x,err,f] = nrndn(xo,tol,iprint) 
   
I modified the input function for nrndn.m as follows 
 
function f = funkeval(x) 
n = max(size(x)); 
f = zeros(n,1); 
Em = x(1); 
Ep = x(2); 
Vp = 0.6; 
Vm = 1.0 - 0.6; 
Eupper = 260.0; 
Elower = 180.0; 
f(1) = Eupper - (Vm*Em + Vp*Ep); 
f(2) = Elower - Em*Ep/(Vm*Ep + Vp*Em); 
 
I executed the script and received the following output: 
 
>> xm4p02_f15 
 
xo =   220   220 
 
iter =    1, err =  4.15e+11 f =  4.00e+01  
 iter =    2, err =  4.14e+11 f =  6.90e+11  
 iter =    3, err =  4.67e+08 f =  3.75e+08  
 iter =    4, err =  1.52e+04 f =  2.76e+04  
 iter =    5, err =  4.53e+02 f =  5.83e+02  
 iter =    6, err =  9.70e+01 f =  8.16e+01  
 iter =    7, err =  1.43e+01 f =  9.16e+00  
 iter =    8, err =  4.14e-01 f =  2.51e-01  
 iter =    9, err =  3.61e-04 f =  2.18e-04  
 iter =   10, err =  2.74e-10 f =  1.66e-10  
  
x =   1.0e+02 * 
   4.577638883463117   1.281574077691255 
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err =     2.738129993897519e-10 
 
f =     1.656811805361797e-10 
 
Based on this information, the intrinsic elastic modulus of the matrix (copper), mE , is 458 GPa 
and the intrinsic elastic modulus of the particle (tungsten), pE , is 128 GPa. 
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Problem 3. (4  points) 
 
It has been observed that the relative weight gain, W, as a function of time, t, due to formation of 
oxides on metals follows the following functional form [Callister, W.D., “Materials Science and 
Engineering:  An Introduction, Wiley & Sons, New York, Fifth Ed., p. 593] 
 

( )321 ln)( KtKKtW +=  
 
where three empirically determined constants appear and time is measure in days.  This 
expression arises from a weight gain rate equation of the form 
 

32

21)(
KtK

KK
dt

tdW
+

=  

 
For a surface with a composition gradient, the constants become dependent on the local 
composition and are therefore functions of time.  We propose a form 
 

( ) ( )


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11 exp
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such that the weight gain is now given by  
 

( ) dt
KtK
KtKtW

t

t
∫
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=
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(a)  What method could be used to evaluate the weight gain as a function of time? 
(b) Determine the weight gain of such a model at t = 14 days with the following parameters:  

2.01 =c , 31 =s , 4max =t , 52 =K , and 63 =K . 
 
Solution: 
 
(a)  What method could be used to evaluate the weight gain as a function of time? 
 
A method for numerical integration, such as the Simpson’s second order method, should be used. 
 
(b) Determine the weight gain of such a model at t = 14 days with the following parameters:  

2.01 =c , 31 =s , 4max =t , 52 =K , and 63 =K . 
 
I wrote a little script in the file xm4p03_f15.m, which contained the following text 
 
clear all; 
format long; 
a = 0; 
b = 14; 
nintervals = 10; 
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integral_10 = simpson2(a,b,nintervals); 
nintervals = 100; 
integral_100 = simpson2(a,b,nintervals); 
nintervals = 1000; 
integral_1000 = simpson2(a,b,nintervals); 
 
I altered the input file for the simpson2.m code as follows 
 
function f = funkeval(t) 
c1 = 0.2; 
s1 = 3; 
tmax = 4; 
K2 = 5; 
K3 = 6; 
K1 = c1*exp(-(t-tmax)^2/s1); 
f = K1*K2/(K2*t+K3); 
 
At the command line prompt, I executed the code and received the following output 
 
>> xm4p03_f15 
 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 14.000000 with 10 nintervals, 
the integral is 1.265478e-01  
 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 14.000000 with 100 nintervals, 
the integral is 1.258627e-01  
 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 14.000000 with 1000 nintervals, 
the integral is 1.258627e-01  
 
Therefore the relative weight gain after 14 days is 12.58%.  We know this is a converged number 
since the integrals with 100 and 1000 intervals gave the same result. 
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Alternate Solution to Problem 3: 
 
The problem can also be solved as an ODE, using, for example, the Runge-Kutta method. 
 

32

21)(
KtK

KK
dt

tdW
+

=  

 
subject to the initial condition that the object is initially unoxidized, 0)0( ==tW . 
 
I wrote a little script in xm04p03_f15.m 
 
clear all; 
close all; 
  
n=1000; 
xo = 0; 
yo = 0; 
xf = 14.0; 
  
[x,y]=rk41(n,xo,xf,yo); 
  
ans = y(n+1) 
 
I typed the ODE into the input routine for rk1.m 
 
function dydx = funkeval(x,y); 
c1 = 0.2; 
s1 = 3.0; 
tmax = 4.0; 
K2 = 5.0; 
K3 = 6.0; 
t = x; 
K1 = c1*exp(-((t-tmax)^2)/s1); 
dydx = K1*K2/(K2*t+K3); 
 
At the command line prompt, I ran the script and received the following output 
 
>> xm4p03_f15 
 
ans =    0.1259 
 
This is the same result from the numerical integration approach. 



D. Keffer, MSE 301, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 
 

 10 

Problem 4. (8  points) 
 
Consider the dimerization reaction: 

BA→2  
The reaction rate is given by  
 

RT
E

oA

a

ekCrate
−

= 2        [moles/m3/sec] 
 
where 

concentration of A:  AC  [moles/m3]  
prefactor:  ok  [m3/(moles⋅sec)]  
activation energy for reaction: aE    [Joules/mole] 
constant: 314.8=R    [Joules/mole/K] 
temperature: T    [K] 

 
If this reaction were to take place in a continuous stirred tank reactor, the mole balances on A and 
B would have the form 
 

generationoutinonaccumulati +−=  
 

rateFCFC
dt

dCV AinA
A 2, −−=        (1) 

 

rateFCFC
dt

dCV BinB
B +−= ,         (2) 

 
Equations (1) and (2) represent a set of two non-linear coupled ordinary differential equations. 
 
Assume the following parameter values: 

inlet concentration of A:  000,2, =inAC  [moles/m3]  
inlet concentration of B:  0, =inBC  [moles/m3]  
prefactor:  90.0=ok  [m3/(moles⋅sec)]  
activation energy for reaction: 000,56=aE    [Joules/mole] 
temperature: 500=T    [K] 
reactor volume:  1=V    [m3] 
flowrate:  01.0=F    [m3/sec] 

 
Also, assume that reactor initially has no A or B in it, so that the initial conditions are given by 

initial concentration of A:  ( ) 00 ==tCA  [moles/m3]  
initial concentration of B:  ( ) 00 ==tCB  [moles/m3]  
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Numerically solve the ordinary differential equations.   
(a)  Sketch the plot of the concentrations for A and B as a function of time.   
(a)  Report the steady state concentration of A and B. 
(c)  From this calculation, how do you know that the function is at steady state? 
(d)  From this calculation, verify that you have used a sufficiently fine temporal resolution. 
 
Solution: 
 
Use the routine rk4n.m.  Change the input file to look like: 
 
function dydx = funkeval(x,y); 
CA = y(1); 
CB = y(2); 
CAin = 2000.0; % mol/m^3 
CBin = 0.0; % mol/m^3 
R = 8.314; % J/mol/K 
T = 500.0; % K 
Ea = 56000.0; % J/mol 
ko = 0.90; % m^3/mol/sec 
V = 1; % m^3 
F = 0.01; % m^3/sec 
rate = CA*CA*ko*exp(-Ea/(R*T)); 
dCAdt = 1/V*(CAin*F – CA*F -2*rate);  
dCBdt = 1/V*(CBin*F – CB*F + rate); 
dydx(1) = dCAdt; 
dydx(2) = dCBdt; 
 
We don’t know how long to run this.  We choose to solve from x0 = 0 to xf = 100 initially.  We 
first use n = 1000 steps.  We create a little script, xm4p04_f15.m, 
 
clear all; 
format long 
  
n = 1000; 
xo = 0; 
xf = 100; 
yo = [0,0]; 
[x,y]=rk4n(n,xo,xf,yo); 
y_n1000_t100 = y(n+1,1) 
 
At the command prompt, we type and receive the 
following output: 
 
>> xm4p04_f15 
 
y_n1000_t100 =     1.148938691858799e+03 
 
The code executes without any warning messages.  The plot is shown above.  Clearly, the slope 
is not zero at t = 100.  We need to solve the ODE for a longer time. 
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We next choose to solve from x0 = 0 to xf = 500.  We first use n = 1000 steps.  We change one 
number in our script, 
 
clear all; 
format long 
  
n = 1000; 
xo = 0; 
xf = 500; 
yo = [0,0]; 
[x,y]=rk4n(n,xo,xf,yo); 
y_n1000_t500 = y(n+1,1) 
 
At the command prompt, we type and receive the 
following output: 
 
>> xm4p04_f15 
 
y_n1000_t500 =     1.458911283067430e+03 
 
The code executes without any warning messages.  The plot is shown above.  The slope is close 
to zero at t = 500.  However, the value of the concentration of A is very different from t=100 and 
t=500.  We should solve the ODE for a longer time. 
 
We next choose to solve from x0 = 0 to xf = 1000.  We first use n = 1000 steps.  We change one 
number in our script, 
 
clear all; 
format long 
  
n = 1000; 
xo = 0; 
xf = 1000; 
yo = [0,0]; 
[x,y]=rk4n(n,xo,xf,yo); 
y_n1000_t1000 = y(n+1,1) 
 
At the command prompt, we type and receive the 
following output: 
 
>> xm4p04_f15 
 
y_n1000_t1000 =     1.459218193716320e+03 
 
The code executes without any warning messages.  The plot is shown above.  The slope is close 
to zero at t = 1000.  The value of the concentration of A is the same to three digits at t=500 and 
t=1000.  We have solved the ODE for a sufficiently long time. 
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Finally, we want to make sure that we have used a sufficiently fine resolution in time.  We rerun 
the script with n = 10000 intervals. 
 
We change one number in our script, 
 
clear all; 
format long 
  
n = 10000; 
xo = 0; 
xf = 1000; 
yo = [0,0]; 
[x,y]=rk4n(n,xo,xf,yo); 
y_n10000_t1000 = y(n+1,1) 
 
At the command prompt, we type and receive the 
following output: 
 
>> xm4p04_f15 
 
y_n10000_t1000 =     1.459218193716320e+03 
 
This number is the same as what was obtained for n=1000 intervals, therefore we have a reliable 
solution.   
 
The concentration of A at steady state is about 1460 mol/m3. 
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