D. Keffer, MSE 301, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Final Exam
Administered: Friday, December 4, 2015
8:00 AM - 10:00 AM
22 points

Problem 1. (6 points)

“Most solid-state transformations do not occur instantaneously because obstacles impeded
the course of the reaction and make it dependent on time.” [Callister, W.D., “Materials Science
and Engineering: An Introduction, Wiley & Sons, New York, Fifth Ed., p. 296]. One expression
used to describe the fraction of solid that has transformed is the Avrami equation, shown in the
equation and Figure below, where y is the fraction of transformation, t is time (min), k is a rate
constant (min™*) and n is an exponent.

y =1-exp(-kt") *
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(a) Linearize this equation so that it is linear in
the unknown parameters, k and n.

(b) Using the table of data providing y and t in
the file “xm4p01_f15.txt” on the exam portion

0.6

0.5

0.4

fraction of transformation (y)
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of the course website, perform a linear 02

regression to determine the mean values of k 01

and n for this data. 00 - - - -
(c) Also report the standard deviations of k and thme (i) {logerttunic cale)

n.

Solution:

(a) Linearize this equation so that it is linear in the unknown parameters, k and n.

Convert the data into a linear form necessary for a linear regression.
y=1- exp(— kt”)
1-y= exp(— kt”)
In(1—y)=—kt"

This expression is still not linear in k and n. Rearrange and take the log again.

|n[ij= K"
1-y
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In{ln(ﬁﬂ =In(k)+nin(t)

Now this is in linear form, z = mx +b, where the independent variable, x = In(t), the

dependent variable, z = In{ln(%ﬂ , the slope, m =n, and the intercept, b = In(k).

(b) Using the table of data providing y and t in the file “xm4p01_f15.txt” on the exam portion of
the course website, perform a linear regression to determine the mean values of k and n for this
data.

I used the code linregl.m for linear regression with one independent variable.

I wrote the small script xm4p01_f15.m

clear all;

M = [0.10 3.03E-07

0.11 5.75E-07

0.12 7.72E-07

... bunch of data omitted in this printout ...
9.80 8.45E-01

9.90 8.66E-01

10.00 8.13E-01];

n = max(size(M));
for i = 1:1:n

x(1) = log(M(i,1));
y(i) = log(log(1.0/(1.0-M(i,2))));
d
?B,bsd,MOF] = linregl(x, y)
n_mean = b(2)
k_mean = exp(b(1))
n_sd = bsd(2)
k_sd = abs(bsd(1)/b(1))*k_mean

At the command line prompt, | executed the script

>> xm4p01_fF15

This generated the following output for the means, standard deviations and Measure of Fit.
>> xm4p01_fF15

b =
-6.9298
3.3748
bsd =
0.0258
0.0189
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0.9944

3.3748
9.7819%e-04
0.0189
3.6439e-06

The mean value of n is 3.37.
The mean value of k is 9.8e-4 min™.

The code also generated a plot, shown here.

(c) Also report the standard deviations of k and n.
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Since the slope was n, the standard deviation of n is simply the standard deviation of the slope.

The standard deviation of n is 0.02.

For the standard deviation of k, we use the relation for the propagation of error that the relative

error of k is equal to the relative error of the intercept.

Sk

Xk

Sp
Xb

Sp
Xb

= Xk

SO s, =

The standard deviation of k is 3.6e-6 min™.
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Problem 2. (4 points)

Measurements of the elastic modulus, E, of large-particle composites, formed by particles (p)
distributed in a matrix (m) at a particle volume fraction, V, (V,, =1-V,) known to fall between

an upper limit, given by [Callister, W.D., “Materials Science and Engineering: An Introduction,
Wiley & Sons, New York, Fifth Ed., pp. 523-524].

Eopper = EnVin + E,V,

upper
and a lower limit given by

E,E,
E'OWE‘I’ == =
E,V, +E,V,

Experiments are performed tungsten particles dispersed in a copper matrix and the following
results are obtained. For V, =0.6, E,, . =260 GPaand E,,, =180 GPa. (See Figure 17.3 of

upper lower
Callister, p. 524.)

(a) Given this information, what numerical method can be used to determine the intrinsic elastic
moduli of the matrix, E, and the particle, E,.

(b) Determine E, and E,.

Solution:

I would use the multivariate Newton Raphson method with numerical approximations to the
derivatives to solve a set of non-linear algebraic equations,

t.(EnEp )= Eypper — (EnVy +EV,)=0

upper

E E
fz(Em'Ep): E ower —ﬁ=
mYp p'm

Alternatively, since equation (1) is linear, one of the two variables could be eliminated and the
single variable version of the Newton-Raphson method could be used.

E - Eupper - Eme
P V
p
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(b) Determine E, and E,.

I wrote a little script in the file xm4p02_f15.m

clear all;

format long;

Eupper = 260.0;

Elower = 180.0;

Eavg = (Eupper + Elower)/2.0;
Emo Eavg;

Epo Eavg;

xo = [Emo,Epo]

tol = 1.0e-6;

iprint = 1;

[x,err,f] = nrndn(xo,tol,iprint)

I modified the input function for nrndn.m as follows

function f = funkeval (X)
n = max(size(x));
f = zeros(n,1);

Em = x(1);
Ep = x(2);
Vp = 0.6;
Vm = 1.0 - 0.6;
Eupper = 260.0;

Elower = 180.0;
(1) = Eupper - (Vm*Em + Vp*Ep);
f(2) Elower - Em*Ep/(Vm*Ep + Vp*Em);

I executed the script and received the following output:

>> xm4p02_F15

X0 = 220 220

iter = 1, err = 4.15e+11 ¥ = 4.00e+01
iter = 2, err = 4.14e+11 f = 6.90e+11
iter = 3, err = 4.67e+08 f = 3.75e+08
iter = 4, err = 1.52e+04 £ = 2.76e+04
iter = 5, err = 4.53e+02 f = 5.83e+02
iter = 6, err = 9.70e+01 f = 8.16e+01
iter = 7, err = 1.43e+01 f = 9.16e+00
iter = 8, err = 4.14e-01 f = 2.51e-01
iter = 9, err = 3.61e-04 f = 2.18e-04
iter = 10, err = 2.74e-10 f = 1.66e-10

X = 1.0e+02 *

4_.577638883463117 1.281574077691255
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err = 2.738129993897519e-10
f = 1.656811805361797e-10

Based on this information, the intrinsic elastic modulus of the matrix (copper), E,,, is 458 GPa
and the intrinsic elastic modulus of the particle (tungsten), E, is 128 GPa.
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Problem 3. (4 points)
It has been observed that the relative weight gain, W, as a function of time, t, due to formation of

oxides on metals follows the following functional form [Callister, W.D., “Materials Science and
Engineering: An Introduction, Wiley & Sons, New York, Fifth Ed., p. 593]

W (t) = K, In(K,t + K,)

where three empirically determined constants appear and time is measure in days. This
expression arises from a weight gain rate equation of the form

dw(t) KK,
dt Kt + K,

For a surface with a composition gradient, the constants become dependent on the local
composition and are therefore functions of time. We propose a form

K.(t)=c, exp(— M) |

Sl
such that the weight gain is now given by

t
t=0 KZt + KS

(@) What method could be used to evaluate the weight gain as a function of time?

(b) Determine the weight gain of such a model at t = 14 days with the following parameters:
c,=02,s5=3,t,=4, K,=5,and K, =6.

Solution:

(@) What method could be used to evaluate the weight gain as a function of time?

A method for numerical integration, such as the Simpson’s second order method, should be used.

(b) Determine the weight gain of such a model at t = 14 days with the following parameters:
c,=02,5=3,t,=4, K,=5,and K, =6.

max

I wrote a little script in the file xm4p03_f15.m, which contained the following text

clear all;
format long;

a = 0;

b = 14;
nintervals = 10;
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integral _10 = simpson2(a,b,nintervals);
nintervals = 100;

integral_100 = simpson2(a,b,nintervals);
nintervals = 1000;

integral 1000 = simpson2(a,b,nintervals);

| altered the input file for the simpson2.m code as follows

function F = funkeval (t)

cl =0.2;

sl = 3;

thax = 4;

K2 = 5;

K3 = 6;

K1 = cl*exp(-(t-tmax)”"2/sl);
f = K1*K2/(K2*t+K3);

At the command line prompt, | executed the code and received the following output

>> xm4p03_F15

Using the Simpsons Second Order method
to integrate from 0.000000 to 14.000000 with 10 nintervals,
the integral is 1.265478e-01

Using the Simpsons Second Order method
to integrate from 0.000000 to 14.000000 with 100 nintervals,
the integral is 1.258627e-01

Using the Simpsons Second Order method
to integrate from 0.000000 to 14.000000 with 1000 nintervals,
the integral is 1.258627e-01

Therefore the relative weight gain after 14 days is 12.58%. We know this is a converged number
since the integrals with 100 and 1000 intervals gave the same result.
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Alternate Solution to Problem 3:
The problem can also be solved as an ODE, using, for example, the Runge-Kutta method.

dw () KK,
dt Kt + K,

subject to the initial condition that the object is initially unoxidized, W (t =0) =0.

I wrote a little script in xm04p03_f15.m

clear all;
close all;

n=1000;
xo = 0;
yo = O;
xf = 14.0;

[x,y]=rk41(n,xo0,xf,yo0);
ans = y(n+l)
| typed the ODE into the input routine for rk1.m

dydx = funkeval(x,y);

t = X;
K1 = cl*exp(-((t-tmax)"2)/sl);
dydx = K1*K2/(K2*t+K3);

At the command line prompt, | ran the script and received the following output
>> xm4p03_F15
ans = 0.1259

This is the same result from the numerical integration approach.
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Problem 4. (8 points)

Consider the dimerization reaction:
2A—> B
The reaction rate is given by

Ea
rate=C2k.e R [moles/m*/sec]

where
concentration of A: C, [moles/m®]

prefactor: k, [m*/(moles-sec)]
activation energy for reaction: E, [Joules/mole]

constant: R=8.314 [Joules/mole/K]
temperature: T [K]

If this reaction were to take place in a continuous stirred tank reactor, the mole balances on A and
B would have the form

accumulation = in — out + generation

V d;“ =C,nF —C,F —2rate (1)
V d;:tB =Cy ,F —C,F +rate (2)

Equations (1) and (2) represent a set of two non-linear coupled ordinary differential equations.

Assume the following parameter values:
inlet concentration of A: C,;, = 2,000 [moles/m®]

inlet concentration of B: Cg;, =0 [moles/m®]
prefactor: k, =0.90 [m*/(moles-sec)]
activation energy for reaction: E, =56,000 [Joules/mole]

temperature: T =500 [K]
reactor volume: V =1 [m’]
flowrate: F=0.01 [m®/sec]

Also, assume that reactor initially has no A or B in it, so that the initial conditions are given by
initial concentration of A: C,(t =0)=0 [moles/m’]

initial concentration of B: C,(t=0)=0 [moles/m®]

10
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Numerically solve the ordinary differential equations.

(a) Sketch the plot of the concentrations for A and B as a function of time.

(a) Report the steady state concentration of A and B.

(c) From this calculation, how do you know that the function is at steady state?

(d) From this calculation, verify that you have used a sufficiently fine temporal resolution.

Solution:

Use the routine rk4n.m. Change the input file to look like:

function dydx = funkeval(X,y);
CA = y(1);
CB = y(2);
CAin = 2000.0; % mol/m™3
CBin = 0.0; % mol/m™3
R = 8.314; % J/mol/K
5

T 00.0; % K

Ea = 56000.0; % J/mol

ko = 0.90; % m™3/mol/sec
V=1; %9 m"3

F =0.01; % m3/sec

rate = CA*CA*ko*exp(-Ea/(R*T));
dCAdt = 1/V*(CAIn*F — CA*F -2*rate);
dCBdt = 1/V*(CBin*F — CB*F + rate);
dydx(1) = dCAdt;

dydx(2) dCBdt;

We don’t know how long to run this. We choose to solve from x, = 0 to x; = 100 initially. We
first use n = 1000 steps. We create a little script, xm4p04_f15.m,

clear all;
format long

1200

1000

n = 1000;
X0 = 0; 800
xf = 100;
Yo = [0,0]; > 600

[x,y]=rk4n(n,xo,xf,yo0);
y_nl1000_t100 = y(n+1,1)

400

At the command prompt, we type and receive the 200
following output:

>> xm4p04_TF15

y n1000 t100 = 1.148938691858799e+03

The code executes without any warning messages. The plot is shown above. Clearly, the slope
is not zero at t = 100. We need to solve the ODE for a longer time.

11
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We next choose to solve from xo = 0 to x; = 500. We first use n = 1000 steps. We change one
number in our script,

clear all; 1500
format long

n = 1000;

X0 0 . 1000
xF = 500;

yO [0 7 0] ; >
[x,y]=rk4n(n,xo,xf,yo0);

y_n1000_t500 = y(n+1,1) 500

At the command prompt, we type and receive the
following output:

. 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
X

>> xm4p04_f15

y_n1000_t500 = 1.458911283067430e+03

The code executes without any warning messages. The plot is shown above. The slope is close
to zero at t = 500. However, the value of the concentration of A is very different from t=100 and
t=500. We should solve the ODE for a longer time.

We next choose to solve from X, = 0 to x; = 1000. We first use n = 1000 steps. We change one
number in our script,

clear all; 1500
format long

n = 1000;

X0 = 0; 1000
xF = 1000;

yo = [0,0]; -

[x,y]=rk4an(n,xo,xf,yo);
y_n1000_ t1000 = y(n+1,1)

500

At the command prompt, we type and receive the
following output:

0

! 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
X

>> xm4p04_f15

y_n1000_t1000 = 1.459218193716320e+03

The code executes without any warning messages. The plot is shown above. The slope is close
to zero at t = 1000. The value of the concentration of A is the same to three digits at t=500 and
t=1000. We have solved the ODE for a sufficiently long time.

12
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Finally, we want to make sure that we have used a sufficiently fine resolution in time. We rerun

the script with n = 10000 intervals.

We change one number in our script,

1500
clear all;

format long

n = 10000; 1000
X0 = 0;

xf = 1000; .
yo = [0,0];

[x,y]=rk4n(n,xo,xf,yo0);
y_n10000_t1000 = y(n+1,1)

500

At the command prompt, we type and receive the
following output: °

>> xm4p04_f15

! 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
X

y_n10000_t1000 = 1.459218193716320e+03

This number is the same as what was obtained for n=1000 intervals, therefore we have a reliable

solution.

The concentration of A at steady state is about 1460 mol/m?®.
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