Final Exam Administered: Friday, December 4, 2015 8:00 AM – 10:00 AM 22 points

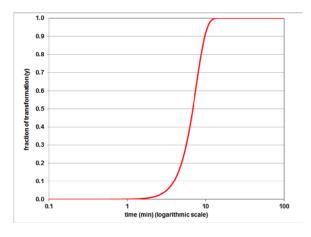
Problem 1. (6 points)

"Most solid-state transformations do not occur instantaneously because obstacles impede the course of the reaction and make it dependent on time." [Callister, W.D., "Materials Science and Engineering: An Introduction, Wiley & Sons, New York, Fifth Ed., p. 296]. One expression used to describe the fraction of solid that has transformed is the Avrami equation, shown in the equation and Figure below, where y is the fraction of transformation, t is time (min), k is a rate constant (min⁻¹) and n is an exponent.

$$y = 1 - \exp(-kt^n)$$

(a) Linearize this equation so that it is linear in the unknown parameters, *k* and *n*.

(b) Using the table of data providing y and t in the file "xm4p01_f15.txt" on the exam portion of the course website, perform a linear regression to determine the mean values of k and n for this data.
(c) Also report the standard deviations of k and n.



Problem 2. (4 points)

Measurements of the elastic modulus, *E*, of large-particle composites, formed by particles (*p*) distributed in a matrix (*m*) at a particle volume fraction, V_p , ($V_m = 1 - V_p$) are known to fall between upper and lower limits, given by [Callister, W.D., "Materials Science and Engineering: An Introduction, Wiley & Sons, New York, Fifth Ed., pp. 523-524].

Experiments are performed with tungsten particles dispersed in a copper matrix and the following results are obtained. For $V_p = 0.6$, $E_{upper} = 260$ GPa and $E_{lower} = 180$ GPa.

(a) Given this information, what numerical method can be used to determine the intrinsic elastic moduli of the matrix, E_m , and the particle, E_p .

(b) Determine E_m and E_p .

Problem 3. (4 points)

It has been observed that the relative weight gain, *W*, as a function of time, *t*, due to formation of oxides on metals follows the following functional form [Callister, W.D., "Materials Science and Engineering: An Introduction, Wiley & Sons, New York, Fifth Ed., p. 593]

$$W(t) = K_1 \ln(K_2 t + K_3)$$

where three empirically determined constants appear and time is measure in days. This expression arises from a weight gain rate equation of the form

$$\frac{dW(t)}{dt} = \frac{K_1 K_2}{K_2 t + K_3}$$

For a surface with a composition gradient, the constants become dependent on the local composition and are therefore functions of time. We propose a form

$$K_1(t) = c_1 \exp\left(-\frac{(t-t_{\max})^2}{s_1}\right).$$

such that the weight gain is now given by

$$W(t) = \int_{t=0}^{t} \frac{K_1(t)K_2}{K_2t + K_3} dt$$

(a) What method could be used to evaluate the weight gain as a function of time?

(b) Determine the weight gain of such a model at t = 14 days with the following parameters: $c_1 = 0.2$, $s_1 = 3$, $t_{\text{max}} = 4$, $K_2 = 5$, and $K_3 = 6$.

Problem 4. (8 points)

Consider the dimerization reaction:

 $2A \rightarrow B$

The reaction rate is given by

$$rate = C_A^2 k_o e^{\frac{E_a}{RT}} \qquad [moles/m^3/sec]$$

with the following variables defined: concentration of A, C_A [moles/m³]; prefactor, k_a

 $[m^3/(moles \cdot sec)]$; activation energy for reaction, E_a [Joules/mole]; constant, R = 8.314

[Joules/mole/K] and temperature, T [K]. If this reaction were to take place in a continuous stirred tank reactor, the mole balances on A and B would have the form

$$V\frac{dC_A}{dt} = C_{A,in}F - C_AF - 2rate$$
⁽¹⁾

$$V\frac{dC_B}{dt} = C_{B,in}F - C_BF + rate$$
⁽²⁾

Equations (1) and (2) represent a set of two non-linear coupled ordinary differential equations. Assume the following parameter values: inlet concentration of A: $C_{A,in} = 2,000 \text{ [moles/m^3]}$; inlet concentration of B: $C_{B,in} = 0 \text{ [moles/m^3]}$; prefactor: $k_o = 0.90 \text{ [m^3/(moles \cdot sec)]}$; activation energy: $E_a = 56,000$ [Joules/mole]; temperature: T = 500 [K]; reactor volume: V = 1 [m³] and flowrate: $F = 0.01 \text{ [m^3/sec]}$. Also, assume that reactor initially has no A or B in it, so that the initial conditions are given by: $C_A(t = 0) = 0 \text{ [moles/m^3]}$ and $C_B(t = 0) = 0 \text{ [moles/m^3]}$.

Numerically solve the ordinary differential equations.

- (a) Sketch the plot of the concentrations for A and B as a function of time.
- (a) Report the steady state concentration of A.
- (c) From this calculation, how do you know that the function is at steady state?
- (d) From this calculation, verify that you have used a sufficiently fine temporal resolution.