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Final Exam  
Administered:  Monday, December 8, 2014  

8:00 AM – 10:00 AM 
28 points 

 
 
Problem 1.  (8 points) 
 Consider the dimerization reaction: 

BA2  
The reaction rate is given by  
 

RT

E

oA

a

ekCrate


 2        [moles/m3/sec] 

 
where 

concentration of A:  AC  [moles/m3]  

prefactor:  ok  [m3/(molessec)]  

activation energy for reaction: aE    [Joules/mole] 

constant: 314.8R    [Joules/mole/K] 
temperature: T    [K] 

 
Determine the rate constants,  ok  and aE , from experimental data.  The reaction is measured at a 

constant concentration of A, AC = 2000 mol/m3, over a range of temperatures.  The rate is 
recorded.  The rate as a function of temperature is given in tabular form in the file 
“xm4p01_f14.txt” on the exam portion of the course website.   
 
Solution: 
 
Convert the data into a linear form necessary for a linear regression. 

 

     o
a

A k
RT

E
Crate lnln2ln   

 
This equation is of the form: 01 bxby  where 

 

   ACratey ln2ln  , aEb 1 , 
RT

x
1

 , and  okb ln0  . 

 
I used the code linreg1.m for linear regression with one independent variable. 

 
 
 
I wrote the small script xm4p01_f14.m 
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clear all; 
  
%Temperature    rate of A loss 
%K              mole/m^3/s 
  
M = [500 4.019406693 
525 8.822457706 
550 13.51828924 
575 24.46718276 
600 36.72515181]; 
  
R = 8.314; % J/mol/K 
CA = 2000; % mol/m^3 
n = max(size(M)); 
for i = 1:1:n 
    x(i) = -1.0/(R*M(i,1)); 
    y(i) = log(M(i,2)) – 2*log(CA); 
end 
[b,bsd,MOF] = linreg1(x, y) 
Ea = b(2) 
ko = exp(b(1)) 
 
At the command line prompt, I executed the script 
 
>> xm4p01_f14 
 
This generated the following output for the means, standard deviations and Measure of Fit. 
>> xm4p01_f14 
 
b =   1.0e+04 * 
   -0.0001 
    5.4504 
 
bsd =   1.0e+03 * 
    0.0005 
    2.4340 
 
MOF =    0.9941 
 
Ea =   5.4504e+04 
ko =    0.5283 
 
The activation energy was 54,500 J/mol. 
The rate constant was 0.528 m3/(molsec). 
 
The code also generated a plot. 
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Problem 2. (6  points) 
 
The gamma function is defined as  
 

0for      )(
0

1  


   dxex x  

 
(a)  Evaluate the gamma function for  = 5 using the intrinsic gamma function.  You likely will 
need to use the format long statement in MatLab to get enough digits to display. 
(b)  How many intervals so you need in the second-order Simpson’s method to obtain this result 
to four significant digits?  What did you use as your upper limit of integration? 
 
Solution: 
 
(a)  Evaluate the gamma function for  = 5 using the intrinsic gamma function.  
 
>> format long 
>> y = gamma(5) 
y =   24 
 
(b)  How many intervals so you need in the second-order Simpson’s method to obtain this result 
to four significant digits?  What did you use as your upper limit of integration? 
 
I used the simpson2.m code and changed the integrand function to  
 
function f = funkeval(x) 
f = x^4*exp(-x); 
 
From the command line prompt. 
 
>> integral = simpson2(0,100,10000) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 100.000000 with 10000 nintervals, 
the integral is 2.400000e+01  
integral =  23.999999999999794 
 
So using 100 as the upper limit & 10,000 intervals gives about 14 good significant digits.  
 
>> integral = simpson2(0,100,1000) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 100.000000 with 1000 nintervals, 
the integral is 2.400000e+01  
integral =  23.999999921216098 
 
So using 100 as the upper limit & 1,000 intervals gives about 9 good significant digits.  
 
>> integral = simpson2(0,100,100) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 100.000000 with 100 nintervals, 
the integral is 2.396216e+01  
integral =  23.962164020980257 
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So using 100 as the upper limit & 100 intervals gives about 3 good significant digits.  
 
>> integral = simpson2(0,100,200) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 100.000000 with 200 nintervals, 
the integral is 2.399897e+01  
integral =  23.998968144328195 
 
So using 100 as the upper limit & 200 intervals gives about 4 good significant digits.  
 
Note, using 10 as the upper limit & 10,000 intervals gives only 1 good significant digit, 
indicating that 10 is not high enough for an accurate evaluation of this integral. 
 
>> integral = simpson2(0,10,10000) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 10.000000 with 10000 nintervals, 
the integral is 2.329794e+01  
integral =  23.297935486152902 
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Problem 3. (8  points) 
 
Consider the dimerization reaction: 

BA2  
The reaction rate is given by  
 

RT

E

oA

a

ekCrate


 2        [moles/m3/sec] 

 
where 

concentration of A:  AC  [moles/m3]  

prefactor:  ok  [m3/(molessec)]  

activation energy for reaction: aE    [Joules/mole] 

constant: 314.8R    [Joules/mole/K] 
temperature: T    [K] 

 
If this reaction were to take place in a continuous stirred tank reactor, the mole balances on A 
and B would have the form 
 

generationoutinonaccumulati   
 

rateFCFC
dt

dC
V AinA

A 2,         (1) 

 

rateFCFC
dt

dC
V BinB

B  ,         (2) 

 
Equations (1) and (2) represent a set of two non-linear coupled ordinary differential equations. 
 
Assume the following parameter values: 

inlet concentration of A:  000,2, inAC  [moles/m3]  

inlet concentration of B:  0, inBC  [moles/m3]  

prefactor:  90.0ok  [m3/(molessec)]  

activation energy for reaction: 000,66aE    [Joules/mole] 

temperature: 600T    [K] 
reactor volume:  1V    [m3] 
flowrate:  01.0F    [m3/sec] 

 
Also, assume that reactor initially has no A or B in it, so that the initial conditions are given by 

initial concentration of A:    00 tCA  [moles/m3]  

initial concentration of B:    00 tCB  [moles/m3]  
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Numerically solve the ordinary differential equations.   
(a) Sketch the plot of the concentrations for A and B.   
(b) Report values of the concentrations of A and B at time 200 sec. 
(c) Report values of the concentrations of A and B at time 500 sec. 
(d) Report values of the concentrations of A and B at time 1000 sec. 
 
Solution: 
 
Use the routine rk4n.m.  Change the input file to look like: 
 
function dydx = funkeval(x,y); 
CA = y(1); 
CB = y(2); 
CAin = 2000.0; % mol/m^3 
CBin = 0.0; % mol/m^3 
R = 8.314; % J/mol/K 
T = 600.0; % K 
Ea = 66000.0; % J/mol 
ko = 0.90; % m^3/mol/sec 
V = 1; % m^3 
F = 0.1; % m^3/sec 
rate = CA*CA*ko*exp(-Ea/(R*T)); 
dCAdt = 1/V*(CAin*F – CA*F -2*rate);  
dCBdt = 1/V*(CBin*F – CB*F + rate); 
dydx(1) = dCAdt; 
dydx(2) = dCBdt; 
 
We choose to solve from x0 = 0 to xf = 1000.  We first use n = 1000 steps.  At the command 
prompt, type: 
 
>>  [x,y]=rk4n(1000,0,1000,[0,0]); 
 
The code executes without any warning messages.  The plot looks like  
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According to the legend, the black curve is y(1), the concentration of A, and red curve is y(2), 
the concentration of B. 
 
(b) Report values of the concentrations of A and B at time 200 sec. 
(c) Report values of the concentrations of A and B at time 500 sec. 
(d) Report values of the concentrations of A and B at time 1000 sec. 
 

Since 
    11000

010000 


 n
tt

t f sec 

 
Therefore the index in the x vector and y matrix corresponds to time in seconds, where the first 
point corresponds to the initial condition and the 1001 point corresponds to t = 1000 sec.   
 
So we can answer (b) by accessing the variables x and y as follows: 
 
>> x(201) 
ans =   200 
 
>> y(201,:) 
ans =   1.0e+03 * 
    1.3418    0.1938 
 
The concentration of A and B at t = 200 s are 1342 and 194 mol/m3 respectively. 
 
Similarly, we can answer (c) and (d) using an analogous approach. 
 
>> x(501) 
ans =   500 
 
>> y(501,:) 
ans =   1.0e+03 * 
    1.3824    0.3021 
 
The concentration of A and B at t = 500 s are 1382 and 302 mol/m3 respectively. 
 
>> x(1001) 
ans = 1000 
 
>> y(1001,:) 
ans =   1.0e+03 * 
    1.3825    0.3087 
 
The concentration of A and B at t = 1000 s are 1383 and 309 mol/m3 respectively. 
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Problem 4. (6  points) 
 
Consider the system exactly as given in Problem 3.  Now consider the system at steady state, 
where the accumulation term on the left hand sides of equation (1) and (2) are set to zero, 
yielding  
 

rateFCFC AinA 20 ,          (3) 

 
rateFCFC BinB  ,0         (4) 

 
Equations (3) and (4) represent a set of two non-linear algebraic equations. 
 
Numerically solve the ordinary differential equations.   
(a)  State a reasonable set of initial guesses for the concentrations of A and B. 
(b)  Report the converged values of the concentrations of A and B. 
(c)  Compare these results to the results from problem 3. 
 
Solution: 
Use the Newton Raphson with Numerical Derivatives for N equations routine, nrndn.m.  Change 
the input file to look like: 
 
function f = funkeval(x) 
n = max(size(x)); 
f = zeros(n,1); 
% 
CA = x(1); 
CB = x(2); 
CAin = 2000.0; % mol/m^3 
CBin = 0.0; % mol/m^3 
R = 8.314; % J/mol/K 
T = 600.0; % K 
Ea = 66000.0; % J/mol 
ko = 0.90; % m^3/mol/sec 
V = 1; % m^3 
F = 0.01; % m^3/sec 
rate = CA*CA*ko*exp(-Ea/(R*T)); 
dCAdt = 1/V*(CAin*F - CA*F -2*rate);  
dCBdt = 1/V*(CBin*F - CB*F + rate); 
f(1) = dCAdt; 
f(2) = dCBdt; 
 
 
Note that this input file contains the same content as that used in problem 3, but the input and 
output variables have changed names. 
 
(a)  State a reasonable set of initial guesses for the concentrations of A and B. 
 
Reasonable initial guesses can be obtained from part (d) of Problem (3) because the slope is not 
changing at long times, so that means, the system has also reached steady state. 
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xo = [1383,309] 
 
(b)  Report the converged values of the concentrations of A and B. 
 
 
>> [x,err,f] = nrndn([1383,309],1.0e-6,1) 
iter =    1, err =  3.78e-01 f =  6.19e-03  
 iter =    2, err =  2.86e-05 f =  5.42e-07  
 iter =    3, err =  1.85e-13 f =  3.14e-15  
  
x =   1.0e+03 * 
 
    1.3825    0.3087 
 
 
err =   1.8517e-13 
 
f =   3.1402e-15 
 
The code converged to six significant digits in three iteration to values of 1383 and 309 
moles/m3 for A and B respectively.   
 
(c)  Compare these results to the results from problem 3. 
 
These steady state values agree with long-time values obtained from solving the ODEs.  The 
advantage in solving the ODEs is that, in addition to reaching the steady state values, you also 
can see the transient behavior as it approaches steady state. 
 


