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Final Exam  
Administered:  Thursday, December 12, 2013 

24 points 
 

 
Problem 1.  (8 points) 
 Consider the isomerization reaction: 

BA  
The reaction rate is given by  
 

RT

E

oA

a

ekCrate


        [moles/m3/sec] 

 
where 

concentration of A:  AC  [moles/m3]  

prefactor:  ok  [1/sec]  

activation energy for reaction: aE    [Joules/mole] 

constant: 314.8R    [Joules/mole/K] 
temperature: T    [K] 

 
Determine the rate constants,  ok  and aE , from experimental data.  The reaction is measured at a 

constant concentration of A, AC = 2000 mol/m3, over a range of temperatures.  The rate is 
recorded.  The rate as a function of temperature is given in tabular form in the file 
“xm4p01_f13.txt” on the exam portion of the course website.   
 
Solution: 
 
Convert the data into a linear form necessary for a linear regression. 
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This equation is of the form: 01 bxby  where 

 

   ACratey lnln  , aEb 1 , 
RT

x
1

 , and  okb ln0  . 

 
I used the code linreg1.m for linear regression with one independent variable. 

 
I wrote the small script xm4p01_f13.m 
 
clear all; 
  
%Temperature    rate of A loss 
%K              mole/m^3/s 
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M = [500    0.000402223 
525 0.001902014 
550 0.005855487 
575 0.020039784 
600 0.053936753]; 
  
R = 8.314; % J/mol/K 
CA = 2000; % mol/m^3 
n = max(size(M)); 
for i = 1:1:n 
    x(i) = -1.0/(R*M(i,1)); 
    y(i) = log(M(i,2)) - log(CA); 
end 
[b,bsd,MOF] = linreg1(x, y) 
Ea = b(2) 
ko = exp(b(1)) 
 
At the command line prompt, I executed the script 
 
>> xm4p01_f13 
 
This generated the following output for the means, standard deviations and Measure of Fit. 
 
b =   1.0e+05 * 
    0.0001 
    1.2150 
 
bsd =   1.0e+03 * 
    0.0005 
    2.4340 
MOF =    0.9988 
Ea =   1.2150e+05 
 
ko =   1.0566e+06 
 
The activation energy was 121,500 J/mol. 
The rate constant was 1.0566x106 1/sec. 
 
The code also generated a plot. 
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Problem 2. (8  points) 
 
The complementary error function is defined as  
 

 dttxerfc
x

 
0

2exp
2

1)(


 

 
(a)  Evaluate the complementary error function for x = 2 using the intrinsic erfc function.  You 
likely will need to use the format long statement in MatLab to get enough digits to display. 
(b)  How many intervals so you need in the second-order Simpson’s method to obtain this result 
to four significant digits? 
 
Solution: 
 
(a) Evaluate the complementary error function for x = 2 using the intrinsic erfc function. 
 
>> format long 
>> y = erfc(2) 
 
y =   0.004677734981047 
 
(b)  How many intervals so you need in the second-order Simpson’s method to obtain this result 
to four significant digits? 
 
I used the simpson2.m code and changed the integrand function to  
 
function f = funkeval(x) 
f = 2.0/sqrt(pi)*exp(-x^2); 
 
From the command line prompt. 
 
>> erfc_2 = 1.0 - simpson2(0,2,100) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 2.000000 with 100 nintervals, 
the integral is 9.953223e-01  
erfc_2 =   0.004677735715887 
 
So 100 intervals gives about 7 good significant digits.  
 
>> erfc_2 = 1.0 - simpson2(0,2,10) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 2.000000 with 10 nintervals, 
the integral is 9.953149e-01  
erfc_2 =   0.004685085139049 
 
So 10 intervals gives about 3 good significant digits.  
 
>> erfc_2 = 1.0 - simpson2(0,2,20) 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 2.000000 with 20 nintervals, 
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the integral is 9.953218e-01  
erfc_2 =   0.004678194420860 
 
So 20 intervals gives about 4 good significant digits. 
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Problem 3. (8  points) 
 
The one-dimensional heat equation at steady state can describe heat transfer in a material with 
both heat conduction and radiative heat loss. 
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where the following variables [with units] are given as 
 temperature in the material T [K] 
 surrounding temperature 300sT  [K] 

 axial position along material z [m] 
 thermal conductivity k 401 [J/K/m/s] (for Cu) 
 mass density   8960 [kg/m3] (for Cu) 

 heat capacity 6.384pC  [J/kg/K] (for Cu) 

 Stefan–Boltzmann constant 8106404.6  x  [J/s/m2/K4] 
 gray body permittivity 05.0   
 surface area to volume ratio 200S  [1/m] (for a cylindrical rod of diameter 0.01 m) 
 
If the temperature of the material at z=0 is 1000)0( zT K and the flux at z=0 is 

2000
0


zdz

dT
 K/m, find the temperature in the material at z=0.1 m. 

 
Solution: 
 
Let us begin by rearranging this ODE. 
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This is a single second-order nonlinear ODE, subject to initial conditions.  We must convert this 
single second-order ODE to a system of two first-order ODEs.  The conversion is a three step 
process.  The first step is defining 2 new variables, which always have the following form: 
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The second step is writing one first-order ODE for each of these 2 variables.   
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The third and final step of the conversion process is to rewrite the initial conditions, equation 
(7.15), in terms of the new variables,  
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This set of two ODEs is an IVP we can solve using the Runge-Kutta method. 
 
We set the input function as 
 
function dydx = funkeval(x,y); 
sigma = 6.6404e-8; % J/s/m^2/K^4 
S = 200; % 1/m 
k = 401; % J/K/m/s 
Ts = 300; % K 
eps = 0.05; 
factor = eps*sigma*S/k; 
dydx(1) = y(2); 
dydx(2) = factor*(y(1)^4-Ts^4); 
 
Let’s solve these ODEs from z = 0 to 0.1 with 100 intervals. 
At the command line prompt, we write: 
 
>> [x,y]=rk4n(100,0,0.1,[1000,-2000]); 
 
This yields the following plot. 
The temperature at z = 0.1 m can be 
determined from  
 
>> y(101,1) 
 
ans = 8.063372642787826e+02 
 
So the temperature is 806 K. 
 
If we repeat this with 1000 intervals, we 
find that the temperature is the same to 
six digits, so we have a reliable answer. 
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