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Derivation of the fact that the distribution of the sample mean is the normal distribution 

 

 Consider taking n  samples from a population characterized by mean,  , and variance, 
2 .  The sample mean is given by x . 

 

 We define a moment generating function for a continuous PDF to be: 
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From this definition, and using the rules of linear operation, we can show that  
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So that 
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Since there isn’t anything intrinsic that distinguishes  one iX  from another, we can write 
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If we substitute this back into our original equation 
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Take the natural log of both sides: 
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Expand 
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Mx  as an infinite series in powers of t about t=0.   
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We can write this as 
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where v(t) is an infinite series in t.  For very large sample sizes, n 
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This can be shown by expanding the natural log in a Mclaurin series.  For the present purposes, 

we will take this step given above on faith.  Then, we have 
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So the first moment of  
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=  in the limit of large n is 2
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Well, let’s find what the moment of the random variable, z, would be if it follows the normal 

distribution.  The PDF of the normal distribution is 
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Complete the square in the exponent: 
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So that the first moment generating function of the standard normal PDF is 
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If we compare this moment generating function with that obtained for  
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we find that they are the same in the limit of large n.  Since there is a one-to-one 

correspondence between PDFs and moment-generating functions, we see that the PDF for 

n/

X
Z
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=  is the standard normal PDF. 

 

 


