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Derivation of the fact that the distribution of the sample mean is the normal distribution

Consider taking n samples from a population characterized by mean, p, and variance,

c”. The sample mean is given by X.

We define a moment generating function for a continuous PDF to be:
M, (t) = . =E[e"]= Te‘xf(x)dx
From this definition, and using the rules of linear operation, we can show that
M,y (t) = 1t = E[®?)]= Tet(m)f(x)dx - Te‘xe‘af(x)dx —e® Te"‘f(x)dx
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So that
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Now consider that X = 1 z X, so

i=1
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Since there isn’t anything intrinsic that distinguishes one X, from another, we can write

M, (tVn /o) = {M(#ﬂ

If we substitute this back into our original equation

M (i) (t) —tuf/cM (t\/_] —tu\/ﬁlc|:Mx( t j:|
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Take the natural log of both sides:

Expand M ( \/_j as an infinite series in powers of t about t=0.
c
t 2 3 tr
Mx(m) :1+v1t+v2E+v3§+...+vrﬁ+...
where
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We can write this as

t —
MX(mJ =1+ v(t)
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where v(t) is an infinite series in t. For very large sample sizes, n

lim In[ (t)} = lim Inft+ v(t)] = _2
i (o/f

This can be shown by expanding the natural log in a Mclaurin series. For the present purposes,
we will take this step given above on faith. Then, we have

t2
So the first moment of Z = Xop in the limit of large n is e?

o/~n

Well, let’s find what the moment of the random variable, z, would be if it follows the normal
distribution. The PDF of the normal distribution is
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Complete the square in the exponent:
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Let w = M so that dw = ax and

(&) (&)



ChE 301 Lecture Notes - D. Keffer, 6/24/98, updated 10/06/99

tZGZ © _LZ +2 2 +t20_2
M (t)=e" 2 J‘%e 2dw =g 2 (1)= e 2
2 A2

So that the first moment generating function of the standard normal PDF is

t2

M,(t)=e?
If we compare this moment generating function with that obtained for

{2
limM (R—n) (t) =g?2
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we find that they are the same in the limit of large n. Since there is a one-to-one
correspondence between PDFs and moment-generating functions, we see that the PDF for

Z= X-p is the standard normal PDF.
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