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1. Introduction 
 

Gaussian quadrature seeks to obtain the best numerical estimate of an integral by picking optimal 
abscissas xi at which to evaluate the function f(x). The fundamental theorem of Gaussian quadrature states that 
the optimal abscissas of the m point Gaussian quadrature formulas are precisely the roots of the orthogonal 
polynomial for the same interval and weighting function. Gaussian quadrature is optimal because it fits all 
polynomials up to degree 2m exactly.  
 
I will introduce Legendre polynomials and fitting a polynomial to a set of points because we will need them in the 
derivation of Gaussian quadrature. 
 
1.1 Legendre Polynomials 
 
Consider the expression 
 

(1-2rx+r2)-1/2           → 1.1.1 
 

in which |x| and |r| are both less than or equal to one. We can expand the expression 1.1.1 by the binomial 
theorem as a series of powers of r. This is straightforward, though not particularly easy, and we might expect to 
spend several minutes in obtaining the coefficients of the first few powers of r. We will find that the coefficient of 
rn is a polynomial expression in x of degree n. Indeed the expansion takes the form 

 
(1-2rx+r2)-1/2 = Po(x) + P1(x) r + P2(x) r2 + P3(x) r3 …… → 1.1.2 

  
The coefficients of the successive power of n are the Legendre polynomials; the coefficient of rn, which is Pn(x), 
is the Legendre polynomial of order n, and it is a polynomial in x including terms as high as xn. If we have 
conscientiously tried to expand expression 1.1.1, you will have found that 
 

Po(x) = 1, P1(x) = x, P2(x) = 0.5(3x2-1) → 1.1.3 
 
Though we probably gave up with exhaustion after that and didn’t take it any further. If we look carefully at how 
we derived the first few polynomials, we may have discovered for ourselves that we can obtain the next 
polynomial as a function of two earlier polynomials. we may even have discovered for  ourselves the following 
recursion relation: 
 

1n
nP1)xP(2n

P 1nn
1n +

−+
= −

+ → 1.1.4 

 
This enables us very rapidly to obtain higher order Legendre polynomials, whether numerically or in algebraic 
form. For example, put n = 1 and show that equation 1.1.4 results in P2 = ½(3x2 -1) we will then want to calculate 
P3, and then P4, and more and more and more. 
 
Another way to generate them is form the equation 
 

n2
n

n

n1n n)(x
dx
d

n2
1P −=+

!
 →1.1.5 

 
Here are the first eleven Legendre polynomials: 
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Inspection of the forms of these polynomials will quickly show that all odd polynomials have a root of zero, and 
all nonzero roots occur in positive/negative pairs. We have shall have no difficulty in finding the roots of these 
equations. 
The roots xn,i , are in appendix A, which also lists certain coefficients cn,i, that will be explained in section 1.2. 
 
The graphs of the Legendre polynomials are in figures I and 2. 
 

 
 

Figure I Legendre polynomials for even n 
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Figure 2 Legendre polynomials for odd n 
 
For further interest, it should be easy to verify, by substitution, that the Legendre polynomials are solutions of 
the differential equation 
 

(1 - x2) y’’ – 2xy’ + n (n + I) y = 0 →1.1.6 
 
1.2 Fitting a Polynomial to a Set of Points. Lagrange polynomials. Lagrange Interpolation 
 
 

Given a set of n points on a graph, there any many possible polynomials of sufficiently high degree that 
go through all n of the points. There is, however, just one polynomial of degree less than n that will go through 
them all. Most readers will find no difficulty in determining the polynomial. For example, consider the three points 
(1, 1), (2, 2), (3, 2). To find the polynomial y = ao + a1x + a2x2that goes through them, we simply substitute the 
three points in turn and hence set up the three simultaneous equations 
 

1 = a0 + a1 + a2
                2 = a0+ 2a1 + 4a2 → 1.2.1 

    3 = a0 + 3a1 + 9a2 
 

and solve them for the coefficients. Thus a0 = -1, a1 = 2.5 and a3 = -0.5. In a similar manner we can fit a 
polynomial of degree n-1 to go exactly through n points. If there are more than n points, we may wish to fit a 
least squares polynomial of degree n - 1 to go close to the points. We are interested in fitting a polynomial of 
degree n-1 exactly through n points, and we are going to show how to do this by means of Lagrange 
polynomials. 
 

While the smallest-degree polynomial that goes through n points is usually of degree n - 1, it could be 
less than this. For example, we might have four points, all of which fit exactly on a parabola (degree two). 
However, in general one would expect the polynomial to be of degree n-1, and, if this is not the case, all that will 
happen is that we shall find that the coefficients of the highest powers of x are zero. 
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That was straightforward. However, what we are going to do in this section is to fit a polynomial 
to a set of points by using some functions called Lagrange polynomials. These are functions that 
are described by Max Fairbairn as “cunningly engineered” to aid with this task. 
 
Let us suppose that we have a set of n points: 
 
 (x1, y1), (x1, y1), (x2, y2), … …  (xi, yi),… … (xn, yn),  
  
and we wish to fit a polynomial of degree n-1 to them. 
 
we assert that the function 
 

y =  →1.2.2 ∑
=

n

1i
ii (x)Ly

 
is the required polynomial, where the n functions  Li(x), i = 1, n, are n  Lagrange polynomials, which are 
polynomials of degree n-1 defined by 

Li(x) = ∏
≠
= −

−n

ij
`1j ji

j

xx
xx

 → 1.2.3 

 
Written more explicitly, the first three Lagrange polynomials are 

 

1.2.6
)x)......(xx)(xx)(xx(x

)x)......(xx)(xx)(xx(x
(x)L

1.2.5
)x)......(xx)(xx)(xx(x

)x)......(xx)(xx)(xx(x
(x)L

1.2.4
)x)......(xx)(xx)(xx(x

)x)......(xx)(xx)(xx(x
(x)L

n3432313

n432
3

n2423212

n432
2

n1413121

n432
1

→
−−−−

−−−−
=

→
−−−−

−−−−
=

→
−−−−

−−−−
=

 

 
At first encounter, this will appear meaningless, but with a simple numerical example it will become clear what it 
means and also that it has indeed been cunningly engineered for the task. 
 
Consider the same points as before, namely (1, 1), (2, 2), (3, 2). The three Lagrange polynomials are 
 

1.2.92),3x(x
2
1

2)1)(3(3
2)1)(x(x(x)L

1.2.83,4xx
3)1)(2(2
3)1)(x(x(x)L

1.2.76),5x(x
2
1

3)2)(1(1
3)2)(x(x(x)L

2
3

2
2

2
1

→+−=
−−
−−

=

→−+−=
−−
−−

=

→+−=
−−
−−

=

 

 
Equation 1.2.2 for the polynomial of degree n-1 that goes through the three points is, then, 
 

y = 1*0.5(x2-5x+6) + 2*(-x2+4x-3) + 2*0.5(x2-3x+2); → 1.2.10 
 
that is 
 

y = -0.5x2 + 2.5x- 1 → 1.2.11 
 
which agrees with what we got before. 
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One way or another, if we have found the polynomial that goes through the n points, we can then use the 
polynomial to interpolate between non tabulated points. Thus we can either determine the coefficients in y = a0 
+a1x + a2x2 … by solving n simultaneous equations, or we can use equation 1.2.2 directly for our interpolation 
(without the need to calculate the coefficients a0 , a1, etc.), in which case the technique is known as Lagrangian 
interpolation. If the tabulated function for which we need an interpolated value is a polynomial of degree less 
than n, the interpolated value will be exact. Otherwise it will be approximate.  
 
1.3 The Algorithm of Gaussian Quadrature 
 

Gaussian quadrature is an alternative method of numerical integration which is often much faster and 
more spectacular than Simpson’s rule. Gaussian quadrature allows you to carry out the integration 
 

∫
−

1

1

f(x)dx  → 1.3.1 

 
But what happens if our limits of integration are not ±1? What if we want to integrate 
 

∫
b

a

F(t)dt?  → 1.3.2 

 
That is no problem at all – we just make a change of variable. Thus, let 
 

x = ]baa)x[(b
2
1t,

ab
ba2t

++−=
−
−−  → 1.3.3 

and the new limits are then x = ±1. 
 
I now assert, without derivation (see the derivation in section 1.4), that 
 

I =  → 1.3.4 ∑
=

5

1i
i5,i5, ),f(xc

 
Let’s try it. 
 

 
 
and the expression 1.3.4 comes to 1.000 000 000 04, and might presumably have come even closer to 1 had 
we given xn,i , and Cn,i  to more significant figures. 
 
1.4 Gaussian Quadrature - Derivation 
 

In order to understand why Gaussian quadrature works so well, we first need to understand some 
properties of polynomials in general and of Legendre polynomials in particular. We also need to remind 
ourselves of the use of Lagrange polynomials for approximating an arbitrary function. 
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First, a statement concerning polynomials in general: Let P be a polynomial of degree n, and let S be a 

polynomial of degree less than 2n. Then, if we divide S by P, we obtain a quotient Q and a remainder R, each of 
which is a polynomial of degree less than n. 
 
That is to say: 
  

P
RQ

P
S

+=  → 1.4.1 

 
What this means is best understood by looking at an example, with n = 3, for example, 
 
Let  

P=5x3 -2x2 + 3x+7, → 1.4.2 
 
And 

S=9x5+4x4-5x3+6x2+2x-3 → 1.4.3 
 
If we carry out the division S/P the ordinary process of long division we obtain 
 

7325
304.7224.4104.14472.152.18.1

7325
326549

23

2
2

23

2345

++−

−+
−−+=

++−

−++−+

xxx
xxxx

xxx
xxxxx  → 1.4.4 

 
For example if x = 3, this becomes 
 

133
304.132288.19

133
2433

−=  

 
The theorem given by equation 1.1.1 is true for any polynomial P of degree n. In particular, it is true if P is the 
Legendre polynomial of degree n. 
 
Next an important property of the Legendre polynomials namely, if Pn and Pm are Legendre polynomials of 
degree n, and m respectively then 
 

∫
−

=
1

1

0dxPP mn  unless m=n. → 1.4.5 

 
This property is called the orthogonal property of the Legendre polynomials. 
 
Although the proof is straightforward, it may look formidable at first. 
 
From the symmetry of the Legendre polynomials (see figure 1.1), the following are obvious: 

∫ ≠ 0dxPP mn  if m=n 

and 
 

∫
−

=
1

1

0dxPP mn  if one (but not both) of m or n is odd. 

 
In fact we can go further, and as we shall show, 
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∫
−

=
1

1

0dxPP mn  unless m=n, weather m and n are even or odd. 

 
Thus Pm satisfied the differential equation (see equation 1.1.6) 
 

0)1(2)1(
2

2
2 =++−− m

mm Pmm
dx

dP
x

dx
Pd

x  → 1.4.6 

 
Which can also be written 
 

0)1(])1[( 2 =++− Pmm
dx

dP
x

dx
d m  → 1.4.7 

 
Mulitpy by Pn 

 

0)1(])1[( 2 =++− nm
m

n PPmm
dx

dP
x

dx
dP  → 1.4.8 

 
Which can also be written 
 

0)1()1(])1[( 22 +++−−− nm
mnm

n PPmm
dx

dP
dx

dP
x

dx
dP

Px
dx
d  → 1.4.9 

 
In a similar manner, we have 
 

0)]1()1([)])(1[( 2 =+−++−− nm
n

m
m

n PPnnmm
dx

dP
P

dx
dP

Px
dx
d  → 1.4.10 

 
Subtract one form the other: 
 

0)]1()1([)])(1[( 2 =+−++−− nm
m

m
n

n PPnnmm
dx

dP
P

dx
dP

Px
dx
d  → 1.4.11 

 
Integrate from -1 to +1: 
 

dxPPmmnn
dx

dP
P

dx
dP

Px nm
n

m
m

n ∫
−

+−+=−−
1

1

2 )]1()1([)])(1[(  → 1.4.12 

 
The left hand side is zero because 1-x2 is zero at both limits. 
There for, unless m=n 

∫
−

=
1

1

0dxPP mn  → 1.4.13 

 
We now assert that, if Pn is the Legendre polynomial of degree n, and if Q is any polynomial of degree less than 
n, then 

∫
−

=
1

1

0QdxPn  → 1.4.14 

We shall first prove this, and then give and example to see what it means. 
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To start the proof we recall the recursion relation (see equation 1.1.4-through here we are substituting n-1 for n) 
for the Legendre polynomials: 



 
nPn = (2n-1)xPn-1 –(n-1)Pn-2  → 1.4.15 

 
The proof will be induction. 
 
Let Q be any polynomial of degree les than n. Multiply the above relation by Qdx and integrate from -1 to +1: 

 

∫ ∫∫
−

−

−

−−−=
1

1
1

1

1

)1()12( PnQdxxPnQdxPn nn  → 1.4.16 

 
If the right hand side is zero, then the left hand side is also zero. 
For example, let n=4, so that 
 

Pn-2=P2=0.5(3x2-1) → 1.4.17 
 

and 
 

xPn-1=xP3=0.5(5x4-3x2), → 1.4.18 
 
and let 
 

Q=2(a3x3+a2x2+a1x+a0) → 1.4.19 
 
It is then straightforward (and only slightly tedious) to show that 
 

∫
−

− −=
1

1
22 )

3
2

5
6( aQdxPn  → 1.4.20 

 
And that 
 

∫
−

− −=
1

1
21 )

5
6

7
10( aQdxxPn  → 1.4.21 

 
But 
 

0)
3
2

5
6(3)

5
6

7
10(7 22 =−−− aa  → 1.4.22 

 
And therefore 
 

∫
−

=
1

1
4 0QdxP  → 1.4.23 

 
We have shown that 
 

∫ ∫ ∫
− − −

−− =−−−=
1

1

1

1

1

1
21 0)1()12( QdxPnQdxxPnQdxPn nnn  → 1.4.24 

 
For n=4, and therefore it is true for all positive integral n. 
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We can use this property for a parlour trick. For example, you can say “Think of any polynomial. Don’t tell me 
what it is –Just tell me its degree. Then multiply it by (here give a Legendre polynomial of degree more than 
this). Now integrate form -1 to +1. The answer is zero right?” (Applause). 
 
Thus: Think of any polynomial. 3x2-5x+7 . Now multiply it by 5x3 - 3x. Ok, that’s 15x5 - 25x4 - 2x3 + 15x2 - 21x. 
Now integrate it from -1 to +1. The answer is zero. 
 
Now, let S be any polynomial of degree less than 2n. Let us divide it b the Legendre polynomial of degree n, Pn 
to obtain the quotient Q and a remainder R, both of degree less than n. Then n assert that 
 

∫∫ −−
=

1

1

1

1
RdxSdx  → 1.4.25 

 
This follows trivially from equation 1.4.1 and 1.4.14. Thus 
 

∫ ∫ ∫− − −
=+=

1

1

1

1

1

1
1 RdxR)dx(QPSdx  → 1.4.26 

 
Example:  
 
Let S=6x5-12x4+4x3+7x2-5x+7.  
 
The integral of this from -1 to +1 is 13.86. If we divide S by 0.5(5x3-3x), we obtain a quotient of 2.4x2-4.8x+3.04 
and a remainder of -0.2x2-0.44x+7. The integral of the latter from -1 to +1 is also 13.86 
 
I have just described some properties of Legendre polynomials. Before getting on to the rationale behind 
Gaussian quadrature, let us remind ourselves from Section 1.2 about Lagrange polynomials. We recall from that 
section that, if we have a set of n points, the following function: 
 

∑
=

=
n

1i
ii (x)Lyy  → 1.4.27 

 
(in which the n functions Li(x), i=, n, are Lagrange polynomials of degree n-1) is the polynomial of degree n-1 
that passes exactly through the n points. Also, if we have some function f(x) which we evaluate at n points, then 
the polynomial 
 

∑
=

=
n

1i
ii (x))Lf(xy  → 1.4.28 

 
 
is a jolly good approximation to f(x) and indeed may be used to interpolated between nontabulated points, even 
if the function is tabulated at irregular intervals. In particular, if f(x) is a polynomial of degree n-1, then the 
expression 1.3.28 is an exact representation of f(x). 
 

We are now ready to start talking about quadrature. We finish to approximate by and n-term finite series ∫
−

1

1

f(x)dx

∫ ∑
− =

≈
1

1

n

1i
ii ),f(xCf(x)dx  → 1.4.29 

 
Where -1 < xi < 1. To this end, we can approximate f(x) by the right hand side of equation s1.4.28, so that 
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∫ ∫∑ ∫∑−
− = − =

=≈
1

1

1

1

n

1i

1

1

n

1i
iiii) (x)dx.L)f(x(x)dxLf(xf(x)dx  → 1.4.30 

 
Recall that the Lagrange polynomials in this expression are of degree n-1. 
The required coefficients for equation 1.4.29 are therefore 
 

∫−=
1

1
ii (x)dx.LC  → 1.4.31  

 
 
Note that at this stage the values of the xi have not yet been chosen; they are merely restricted to the interval [-1 
, 1]. 
 

Now let’s consider  where S is a polynomial of degree less than 2n, such as, for example, the 

polynomial of equation 1.4.3. We can write 
∫−

1

1
S(x)dx,

 

∫∑∫ ∫ ∑
− =

− −
=

+==
1

1

n

1i
iiii

1

1

1

1

n

1i
ii )]dxR(x))P(x(x)[Q(xL(x)dx)LS(xS(x)dx → 1.4.32 

 
Here, as before, P is a polynomial of degree n, and Q and R are of degree less than n. If we now choose the xi 
to be the roots of the Legendre polynomials, then 
 

∫ ∫ ∑− −
=

=
1

1

1

1

n

1i
ii )dx(x)R(xLS(x)dx  → 1.3.33 

 
Note that the integrand on the right hand side of equation 1.16.33 is an exact representation of R(x). But we 
have already shown (equation 1.4.26) that  
 

∫ ∫ ∑ ∑− −
= =

===
1

1

1

1

n

1i

n

1i
iiii )S(xC)R(xCR(x)dxS(x)dx → 1.4.34 

 
It follows that the Gaussian quadrature method, if we choose the roots of the Legendre polynomials for the n 
abscissas, will yield exact results for any polynomial of degree less than 2n, and will yield a good approximation 
to the integral if S(x) is a polynomial representation of a general function f(x) obtained by fitting a polynomial to 
several points on the function. 
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Roots of Pl = 0  
 

 

68183959417.0000000000000.0
50050830381.0377151845405.0
49391705279.0599185531741.0
17966484129.0343912107949.07

57934913467.0083186619238.0
05573761360.0466386209661.0
38492324171.0203514469932.06

89888888568.0000000000000.0
50670628478.0106310469538.0
06885926236.0939845179906.05

86154145652.0585043981339.0
14845854347.0594311136861.04

89888888888.0000000000000.0
56555555555.0241669596774.03

00000000000.1190269350577.02

,,

±
±
±

±
±
±

±
±

±
±

±

±

ilil cxl
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66224524295.0982338874148.0
47719266269.0129394395433.0
24362086219.0299568409679.0
64349451149.0689366063865.0
99343671066.0517528906973.010

00355239330.0000000000000.0
04077347312.0404423253324.0
40696610260.0170432371613.0
69160648180.0327107031836.0
36388274081.0508239160968.09

38783683362.0496642434183.0
88645706313.0916409532525.0
45034381222.0414477666796.0
29536228101.0498856289960.08

,,

±
±
±
±
±

±
±
±
±

±
±
±
±

ilil cxl

                                                      

                   
 

            11    !0.978 228 658 146        0.055 668 567 12 
                    !0.887 062 599 768        0.125 580 369 46 
                    !0.730 152 005 574        0.186 290 210 93 
                    !0.519 096 129 207        0.233 193 764 59 
                    !0.269 543 155 952        0.262 804 544 51 
                      0.000 000 000 000        0.272 925 086 78 
 
           12    !0.981 560 634 247        0.047 175 336 39 
                   !0.904 117 256 370        0.106 939 325 99 
                   !0.769 902 674 194        0.160 078 328 54 
                   !0.587 317 954 287        0.203 167 426 72    
                   !0.367 831 498 998        0.233 492 536 54 
                   !0.125 233 408 511        0.249 147 045 81 
 
            13   !0.984 183 054 719        0.040 484 004 77 
                   !0.917 598 399 223        0.092 121 499 84 
                   !0.801 578 090 733        0.138 873 510 22 
                   !0.642 349 339 440        0.178 145 980 76 
                   !0.448 492 751 036        0.207 816 047 54 
                   !0.230 458 315 955        0.226 283 180 26 
                     0.000 000 000 000        0.232 551 553 23 



 48 
 
                                  14  !0.986 283 808 697      0.035 119 460 33 

!0.928 434 883 664   0.080 158 087 16 
!0.827 201 315 070   0.121 518 570 69 
!0.687 292 904 812   0.157 203 167 16 
!0.515 248 636 358   0.185 538 397 48 
!0.319 112 368 928   0.205 198 463 72 
!0.108 054 948 707   0.215 263 853 46 

 
           15   !0.987 992 518 020      0.030 753 242 00 

!0.937 273 392 401   0.070 366 047 49 
!0.848 206 583 410   0.107 159 220 47 
!0.724 417 731 360   0.139 570 677 93 
!0.570 972 172 609   0.166 269 205 82 
!0.394 151 347 078   0.186 161 000 02 
!0.201 194 093 997   0.198 431 485 33 
  0.000 000 000 000   0.202 578 241 92 

 
           16   !0.989 400 934 992      0.027 152 459 41 

!0.944 575 023 073   0.062 253 523 94 
!0.865 631 202 388   0.095 158 511 68 
!0.755 404 408 355   0.124 628 971 26 
!0.617 876 244 403   0.149 595 988 82 
!0.458 016 777 657   0.169 156 519 39 
!0.281 603 550 779   0.182 603 415 04 
!0.095 012 509 838   0.189 450 610 46 

 
               17   !0.990 575 475 315      0.024 148 302 87 

!0.950 675 521 769   0.055 459 529 38 
!0 880 239 153 727   0.085 036 148 32 
!0.781 514 003 897   0.111 883 847 19 
!0.657 671 159 217   0.135 136 368 47 
!0.512 690 537 086   0.154 045 761 08 
!0.351 231 763 454   0.168 004 102 16 
!0.178 484 181 496   0.176 562 705 37 
  0.000 000 000 000   0.179 446 470 35 

 
 
 

 
 
 
 
 
 
 
 



Ashraf Marzouk Page 14 12/13/2005 

References 
 
1. http://www.lifelong-learners.com/pde/SYL/s3node3.php
 
2. http://mathworld.wolfram.com/GaussianQuadrature.html
 
3. http://en.wikipedia.org/wiki/Gaussian_quadrature
 
4. http://integrals.wolfram.com/
 
 

http://www.lifelong-learners.com/pde/SYL/s3node3.php
http://mathworld.wolfram.com/GaussianQuadrature.html
http://en.wikipedia.org/wiki/Gaussian_quadrature
http://integrals.wolfram.com/

	CHE505_Table of content.pdf
	CHE505_Project.pdf
	celm1 46.pdf
	celm1 47.pdf
	celm1 48.pdf
	celm1 49.pdf
	References che 505.pdf



