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Motivation

An increase in the operating temperature of the PEM fuel cell would
have the following advantages:

e increase the activity of the catalysts

e reduce catalyst poisoning

e |ower the amount of catalyst required

e reduce the cost of the fuel cell

But higher operating temperatures would have the following
disadvantages

e dry out the membrane

e diminish the connectivity of the agueous domain

e lower the diffusivity and conductivity of charge within the
membrane

One potential solution to this problem is to incorporate hydrophilic
entities within the membrane that are better at retaining water at high
temperature. These hydrophilic entities are typically metal or metal
oxide nanoparticles. The resulting membranes are called composite
membranes.
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Bulk silica has many crystalline forms. At room temperature
and pressure, a-quartz is the most stable.
If melted and quenched, amorphous silica or glass is formed.

http://www.quartzpage.de/gen_mod.html
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Silica

Figure 4. Snapshot of amorphous 4 nm S10; nanoparticle at T= 350
K. Small spheres denote oxygen atoms and large spheres denote silicon
ones.

Silica nanoparticles also have a variety of forms. They can be

amorphous (without long-range crystalline structure).
VV. Hoang, J. Phys. Chem. B, 2007.
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Mesoporous silica (MCM materials) were first synthesized in the 1990s.
They have large surface area and regular pore network.

Meynen, Microporous and Mesoporous Materials, 2009.



Structure of Nanoparticles YONSEI UNIVERSITY

Silica

Fig. 4.3. TEM image of the honeycomb structure of MCM-41 and a schematic
representation of the hexagonal shaped one-dimensional pores.

The silica is amorphous but is arranged in a regular array around pores.

Meynen, Microporous and Mesoporous Materials, 2009.



Structure of Nanoparticles
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One can obtain different
morphologies depending
upon the synthesis
conditions.

MCM-48 has two non-
intersecting pore networks.

The silica is again
amorphous.

Fig. 4.6. Cubic unit cell of MCM-48 with two independent micelle systems (red and
blue rods) separated by the pore wall (upper right). Mathematical representation of
a G gyroid minimal surface {upper left). Representation of 2 x 4 cubic unit cells
without the pore walls. The rods represent two independent micelle systems (red
and blue) moving towards the (100) direction (bottom ). (For interpretation of the
references in colour in this figure legend, the reader is referred to the web version of
this article.)

Meynen, Microporous and Mesoporous Materials, 2009.
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Mesoporous silica can be made into nanoparticles.
These particles are not solid. They are penetrated by a regular porous
network.

Lebedev, Solid State Sciences, 2004.
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Figure 10. [23] Left: bipyramidal hexagon

Right: bipyramidal hexagonal prism

Presumably, one could also have crystalline silica nanoparticles but these have
received much less attention than amorphous silica particles or mesoporous
silica particles.

Lebedev, Solid State Sciences, 2004.
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Silica

Silica nanoparticles can be
dispersed within Nafion
membranes.
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Figure 2. [9] TEM micrograph and histographs of a) 5 wt% Nafion-
Si0, and b) 30 wt% Nafion-SiO, nanoparticles Tang, J. Phys. Chem. C, 2008.
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Figure 8. [15]Temperature dependence of proton
conductivity for composites (S5wt% ea.) at 95RH%

Tominaga, J. Power Sources, 2007.
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Tominaga, J. Power Sources, 2007.
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Titania: (Titanium dioxide) TiO,
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Nie et al., Int. J. Photoenergy, 2009.
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Titania: (Titanium dioxide) TiO,

In contrast to silica, nanoparticles of titania are crystalline. Wang and Ying, Chem. Mater., 1999.
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Titania: (Titanium dioxide) TiO,
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The surface of wet titania will provide protons. Predota, J. Phys. Chem. B, 2004.
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Titania: (Titanium dioxide) TiO,
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Figure 7. (Color online) TGA of Nafion 115 and composite membranes
containing Ti0O; in air at a scan rate of 5°C/min.

Water retention at higher temperatures is superior for composite membranes. n =
nanoscale (n) and sm = sub-micron.

Abbaraju, J. Electrochem. Soc., 2008.
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Figure 8. Performance of cells made with recast Nafion, recast Nafion
+ sm-TiQ, of low surface area, recast Nafion + n-TiO, of high surface area,
recast Nafion + sm-Sn0; of low surface area, and recast Nafion + n-5n0; of
high surface area at 31% RH. Commercial Nafion 115 membrane was also
tested for comparison. Cells tested at 120°C with H, and O, pressures
slightly above the ambient.

Water retention leads to better performance curves.

Abbaraju, J. Electrochem. Soc., 2008.
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Figure 5. Performance of cells made with recast Nafion + sm-TiO; of low

surface area and recast Nafion + n-TiO; of high surface area at various RHs.
Cells tested at 80°C with H, and O, pressures slightly above the ambient.

Nanoscale (n) particles had better performance than larger sub-micron (sm) particles,

especially at low humidity.

Abbaraju, J. Electrochem. Soc., 2008.
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Figure 8. Performance of H,/O; PEM fuel cell operated with the recast
Mafion and Nafion/10%Ti0O; composite membranes with TiO,-1 powder and
TiO,-11 powder at 120°C, 3 bar, and various RH.

How the nanoparticles are synthesized and integrated into the membrane can make a

significant difference in performance.
Chalkova, J. Electrochem. Soc., 2005.
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Titania: (Titanium dioxide) TiO,
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the previous slide.
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Figure 6. (a,c) SEM images of dull sides of the composile membmnes morphology for Nafion Ti0,-1 and (b.d) Nafion/Te0-I at different magnification {ac
at 3500; b at 10 D00}

Chalkova, J. Electrochem. Soc., 2005.
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Platinum

Bulk platinum has an FCC structure.

Figura 2. FCC unit cell

Pt Nanoparticles
Qi, Huang, Wang, Yin and Li (J Nanopart Res, 2009) studied the nanoparticle

size influence on the lattice parameters. Specifically they looked at spherical,
cubic and cuboctahedral Pt nanoparticles with a number of atoms ranged from
79 to 2243, 108 to 2048 and 86 to 2436 respectively. They found that all the
particles retained the fcc structure except for the cube with 108 atoms which

was amorphous.
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Structure of Nanoparticles

Platinum
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%% Figure 2  Selective possible shapes of platinum nanoparticles
(a and b) without defects and bounded by (a) one group and
(b) two groups of facets; and (c—f) with different numbers of
defects. The notation (m, n) represents the number of defects
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synthesized today.
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Peng, Nano Today, 2009.
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Figure 1. Schematics of a conventional PEMFC with external humidification (left) of
reactant gases and a self-humidifving Pt-PEMFC (right) [13]

Platinum particles might not only work to retain moisture but also create
water by reacting cross-over gases.

Watanabe, J. Electrochem. Soc., 1998.
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Platinum

Fig. 5. STEM picture of Pt (0.1 mg/cm®)-Si0; (4.5 wt%)-PEM prepared by 1-
pentanol method. The sample was sliced by a microtome and put on a microgrid,
followed by carbon deposition before the observation.

Pt or Pt/SiO, nanoparticles can be uniformly dispersed with Nafion.

Hagihara, Electrochimica Acta, 2005.
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Fig. 3. (a} Current density—cell voltage curves for PEFCs with nor-
mal-PEM (A} and PH-PEMs (O, @} at 80°C and ambient pressure
without external humidification (£, O} and with slight humidifica-

tion (®, T, = 35°C, pu.o = 0.056 atm]. Utilizatien: H, 70%,
O, 40%. (b} Current density-power density curves using the same
symbols as {a).

Watanabe, J. Electrochem. Soc., 1998.
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Fig. 6. I-V curves of the standard cells uwsing () Pt-Si0:-PEM
(Pt=0.09 mg/cm?, $i02 = 1.0 wt%), (A) Si02-PEM (Si0; = 7.9 wt%), and (7))
normal-PEM operated at T =80°C and ambient pressure with the reactant
gases humidified at 30°C. U(H;)=70%, U(0,)=40%. (®) The cell using
normal-PEM under H; humidified at 80 °C and dry O,.

The presence of Pt or Pt on SiO, inside the PEM allows for the use of
unhumidified (dry) fuels.

Hagihara, Electrochimica Acta, 2005.



Fuel Cell Performance YONSEI UNIVERSITY

Platinum
1.0 600
08 U -4 500
[ ]
' 5
- - 400 E
v 0.6 | E
D >
= 1 300 &
S = &
o 04 - I L=
Q - 200 g
&
0.2 + —=— NN
—e— NPtC 1 100
—&— OMNPtC .
|:||:| i L 1 L 1 L 1 L 1 L 1 L 1 L 1 L |:|

0 200 400 600 800 1000 1200 1400 1600

Current density mA/cm?

Fig. 7 - Polarization characteristics of the cells fabricated
with the plain NN membrane and composite NPtC, ONPtC
membrane, operated with dry H, and O, at 60 °C.

Ordered nanoparticle Pt on C particles performed better than non-order
NPtC, which both performend better than pure Nafion (NN).

Yang, Int. J. Hydrogen Energy, 2008.
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Fig. 7. Comparison of current densities for the oxidation of
crossover H,, J{H,), at various PEMs (thickness = 50 pum) in PEFCs
operated at 80°C with the reactant gases humidified under differ-
ent conditions. Nonhumidified: dry H,// dry O, (condition e in
Table 1). Slightly humidified: wet H, (T, = 20°C)//dry O, (condition
d in Table I]. Fully humidified: wet H, (T, = 90°C)//dry O, |condi-
tion ¢ in Table ). The loss of hydrogen by the crossover (in the unit
of ml [STP) em~? h~"} is also indicated on the upper axis. The value
for Nafion 117 is calculated based on the fiﬁ:sion parameters
which appear in Ref. 22 (thickness = 50 pm, Ty = 80°C, wet
H,//wet O,, T, = BO°C for both gases).

Watanabe, J. Electrochem. Soc., 1996.
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The inclusion of relatively small amounts of inorganic nanoparticles acts to
retain moisture in the membrane, allowing higher performance of aqueous
based PEMs like Nafion at elevated temperatures.

If too much inorganic material is added, it has a negative effect on fuel cell
performance since the inorganic material is not a proton conductor.

The structure of the material
e solid nanoparticles of silica or mesoporous silica
e different methods of incorporating titania into the membrane
e Pt or Pt on SiO,, TiO, or carbon
can have a significant impact on the observed performance. A predictive
understanding of this effect is not currently available.

The optimization of these systems is highly dependent not only on the
nanostructure of the membrane but also on the operating conditions of the
fuel cell. The improvement of these composite membranes is only observed
under certain optimized operating conditions.



