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Water management

A good source for a more detailed
discussion is

Fuel Cell Systems Explained e
By Systems v’

James Larminie & Andrew Dicks

Explamed

Wiley, 2"d Edition, 2003
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Water management

Water is required in order for the membrane to conduct protons.
However, if there is too much water, the electrode will be flooded.
The catalyst particles will be submerged beneath a layer of water.
Since the diffusivity of molecular hydrogen through water is much
lower than the diffusivity of molecular hydrogen through a gaseous
phase, the presence of too much water in the electrode represents a
significant mass transfer barrier to molecular hydrogen getting to the
catalyst surface.
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Larminie and Dicks.
Water will be
dragged from

the anode to the
cathode sides by
protons moving

Water may through the
back-diffuse electrolyte
from the
cathode to
the anode, if
the cathode
side holds
more water.
Water will be
Water may removed by
be supplied evaporation
by externally into the air
humidifying circulating over
the hydrogen the cathode.
supply
Water may
be supplied
by externally
humidifying

the air supply

4,10  The different water movements to, within, and from the electrolyte of a PEM fuel cell.
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Fig. 1. Key components of a PEM fuel cell (not to scale). Descriptions of
individual components are given in the text.

Neutron tomography can be used to image the water distribution within fuel cells.
Here we see that water (red) collects in the corners of the manifold in the bipolar
plate that is distributing the humidified fuel. (Image is normal to plane of
membrane.)

T.A. Trabold et al [ Imternational Journal of Hear and Mass Transfer 49 (2006 ) 47124720
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Fig. 10. Fuelcell polarization curve and averaged channel water images at %
three current densities (280 °C, 270 kPa, 100%% inlet relative humidity, E
anode/cathode stoich = 2/1.3). E
1.0 Aemt -
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T.A. Trabold et al [ Imternational Journal of Hear and Mass Transfer 49 (2006 ) 47124720
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Water management

Models provide profiles of water normal to the plane of the membrane.
The anode is drier than the cathode, where the water is produced.

MPL WMPL

Figure 7. The contours of the liquid water within the MPL and GDL predicted from a 2-D
simulation of fuel cell operation at 0.65 V, 1 A/cm” and 40 °C.

Wang and Chen, ECS Transaction, 2010.



Water management

2} YONSEI UNIVERSITY

s’ v

diffusion and hydrodynamic flow
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Water transport within a PEM is due to both diffusion and hydrodynamic flow,
depending on the state of the membrane. Some operating conditions lead to

iInhomogeneously hydrated membranes that increase the hydrodynamic
driving force.

K.D. Kreuer, 2010.



Transport Processes in Anode Side
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Step 1. H, and H,0 diffuse through carbon pores of anode.
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Step 2. H, adsorbs on carbon support pore surface.
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Step 3. H, diffuses across surface of carbon support to catalyst surface.
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Step 4. H, adsorbs on catalyst surface.
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Transport Processes in Anode Side
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Step 5. H, dissociates on catalyst surface to two hydrogen atoms.



..-:'i:-"

Transport Processes in Anode Side

) YONSEI UNIVERSITY

h ¥ . o

carbon catalyst support pore surface

gas phase within pore

- (1)
; dissociation ;

"
catalyst particle

Step 6. Hydrogen atom dissociates on catalyst surface to proton and electron.
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Transport Processes in Anode Side
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Step 7. Proton joins with water to form hydronium ion.
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Transport Processes in Anode Side
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Step 8. Hydronium ion diffuses across catalyst particle surface.
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Step 9. Hydronium ion diffuses into hydrated polyelectrolyte membrane.
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Step 10. Charge diffuses across hydrated polyelectrolyte membrane
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For charge, the proton conductivity of the membrane is the important transport
property. In many simulations and in some experiments, such as PFG-NMR, it is the
diffusivity that is measured.

The diffusivity can be approximately related to the conductivity via

L

o~ ()
1zI°F/ €

Where R is the gas constant, T is temperature, z is the charge of the ion, F is Faraday’s
constant, ois the conductivity and c is the concentration.

One immediately observes that at low concentrations, the conductivity will scale
linearly will the concentration whereas the diffusivity is independent of concentration.
At higher concentrations, the concentration dependence of the diffusivity remains
much weaker than that of the conductivity.



Conclusions

Water management in fuel cells is critical.

Without water management the membrane will dehydrate , leaving an inhomogeneous
membrane with poor performance properties.

There are many elementary transport steps in the movement of a proton from a
hydrogen feed stream on the anode side of the fuel cell to its departure as part of a
water molecule on the cathode side.

Understanding which of these steps is rate limiting is important to developing next
generation nanostructured membrane electrode assemblies.



