

The Working Man’s Guide to Obtaining Self Diffusion Coefficients
from Molecular Dynamics Simulations

David Keffer

Department of Chemical Engineering
University of Tennessee, Knoxville

Begun: November 11, 2001
Last Updated: March 3, 2002

Table of Contents

I. Introduction 1
II. Theory 1
III. Numerical Considerations 2
IV. Two Examples 5
References 16
Appendix A. Self Diffusion Code in Fortran 17
Appendix B. Self Diffusion Code in MATLAB 20

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 1

I. Introduction

 The objective of these notes is to provide a method to obtain a self-diffusion coefficient
from a molecular dynamics simulation.
 Our molecular dynamics code, mddriver.f, periodically saves positions as a function of
time. From these positions we can obtain a self-diffusion coefficient. The self-diffusivity is
different than a transport-diffusivity, aka a Fickian diffusivity. The self-diffusivity describes the
random motion of a molecule in the absence of any gradients that would cause a mass flux. The
derivation of the self-diffusivity can be obtained from probability theory.[1] I recommend that
you check it out. It is not too complicated. In the next lecture packet, we are going to relate the
self-diffusivity to the transport diffusivity. Here, we simply obtain the self-diffusivity.
 I learned the general algorithm for obtaining the self-diffusivity from Haile.[2] Other
references also discuss the numerical procedure to obtain the self-diffusivity.[3-4]

II. Theory
 There are two common ways to obtain a self-diffusion coefficient. The first is from
molecule positions and the second is from velocities. Theoretically, both methods yield the same
result. Obtaining the self-diffusivity from the velocities involve integrating the velocity auto-
correlation function, an example from what is called Green-Kubo relations.[2] There is a “long-
time” tail to this integral that can cause numerical problems. Therefore, in my experience, I have
found that simulations have to be longer to obtain a reliable self-diffusivity form the velocity
than from the positions. In this hand-out we discuss only obtaining self-diffusion coefficients
from position data.
 Einstein related the self-diffusion coefficient to the mean square displacement of a
particle as a function of observation time. The mean square displacement is proportional to the
observation time in the limit that the observation time goes to infinity. The proportionality
constant that relates the MSD to the observation time is called the self-diffusivity. By
convention, we

[]

t

)t(r)tt(r
lim

d2
1D

2
oo

t

−+
≡

∞→
 (1)

where D is the self-diffusion coefficient, and d is the dimensionality of the system. The
numerator of equation (1) is the mean square displacement. The angled brackets indicate an
ensemble average has been taken. The ensemble average is an average over all molecules in the
simulation and all origins. By origins we mean that any time step can be considered the time
zero in equation (1), because equation (1) is only looking at observation times (relative times or
elapsed times) rather than some absolute time.
 We can see that by saving the positions as a function of time, we can calculate the mean
square displacement and obtain a self-diffusion coefficient.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 2

II. Numerical Considerations
 Our molecular dynamics codes saved positions of all particles every kmsd steps during the
data production phase of the simulation. The algorithm of the code which computes the self-
diffusion coefficients, get_diff.f, is as follows.

1. Read necessary parameters
2. Read positions
3. Calculate mean square displacement
4. Perform a linear least squares regression to obtain mean and variance of slope and

intercept
5. Report mean and standard deviations of self-diffusion coefficients

 We now discuss each step.

Read the Parameters
 The code used to generate self-diffusion coefficients is called get_diff.f (FORTRAN 90)
or get_diff.m (MATLAB). In order to calculate the self-diffusion coefficient, this code requires
four parameters from the molecular dynamics simulation. These parameters are the number of
molecules in the simulation, N, the number of production steps, maxstp, the interval during
which the mean square displacements were saved, kmsd, and the size of the time step, ∆t.

 integer, parameter :: maxstp = 100000 ! number of data production steps
 integer, parameter :: kmsd = 100 ! sampling interval
 integer, parameter :: N = 216 ! number of molecules
 double precision, parameter :: dt = 2.d0 ! timestep (fs)

The code also requires a data file which includes Ndata data points.












+








= 1

k
maxstpintNN
msd

data (2)

The only other parameter that needs to be specified is how long should we ignore the data before
we consider that it has reached the “long time” asymptotical behavior of Einstein’s relation.
This parameter is discussed in detail in the example. There is no general rule for how long a
simulation has to be run before we reach the long time asymptotical behavior predicted by
Einstein’s relation. However, below we present two examples, where this determination is
made. In the code, this parameter is the number of time origin to ignore and is called, Nmin.

Read the Positions
 The second step in the algorithm is to read the positions from the data file. There are a
lot of positions because we stored the time, x, y, and z position for every molecule at every save
interval. If we have a machine with a lot of memory, then we can simply read in all the data in a
huge matrix. (This is what the code get_diff.f does.) If we have more data than can fit in our
computer’s RAM at a single time, then we need to read a part at a time, perform the mean square

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 3

displacement calculation on that data, read in more data, and continue in this fashion. Haile
provides a code which performs this piecewise reading of data.[2]

Calculate the Mean Square Displacement
 The mean square displacement is simply an average. We know that for sample averages
we simply use the formula

 ∑
=

=
n

1i
ixn

1x (3)

Since this is the definition of the sample average, we too will use this formula. Our x is the
square of the displacement. In fact we will use this formula for every value of time, t, in
equation (1). In that way we can obtain the mean square displacement as a function of time.
 The average is over both molecules and “time origins”. Any point during the simulation
can be considered a time origin. However, we would like all times to be represented equally in
terms of the number of data points used to generate the MSD vs. time plot.
 Consider that we have saved positions of N molecules at Nt = 101 times. We will only
evaluate the MSD for ∆t = 1 to Nmax = int(Nt/2) = 50. Only the first 50 points will be considered
as time origins. The number of data points for the MSD at each ∆t will be N*Nmax. We stop
with ∆t = Nmax because, when the elapsed time is half the total time, then all the MSD have the
same number of data points contributing to them, and thus they are weighted equally. It is true
that we could have 100 time origins for ∆t = 1, 99 time origins for ∆t = 2, 98 time origins for ∆t
= 3, … 2 time origins for ∆t = 99, and 1 time origins for ∆t = 100. If we did this we have two
problems. First, you can’t get good statistics averaging over just a few time origins. Therefore,
you need to set Nmax substantially smaller than Nt; and Nmax = int(Nt/2) has proven to be a good
choice. Furthermore, if you select Nmax = int(Nt/2), then all of the ∆t has the same number of
time origins, namely Nmax. This is a bit confusing; it always is. The discussion in Haile, has
some graphics to illustrate the idea, but it is still somewhat confusing.[1] The only solution is to
examine the code yourself and see exactly what we are doing, in order to ensure good statistics
in the results.

Perform Linear Least Squares Regression
 Once we have the MSD as a function of time, we simply need to perform a linear least
squares regression to obtain the slope and intercept. If we examine equation one, it would seem
that the slope is 2dD and the intercept is zero. However, this behavior is the long time behavior.
Because there is some different (unknown) short time behavior, the linear portion of the curve is
shifted so that the intercept is not zero. So in fact we use linear least squares regression to fit the
model

 [] ()tdD2b)t(r)tt(r 0
2

oo +=−+ (4)

The value of b0 has no physical significance. However, if we don’t include it in the regression, it
changes the value of the slope.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 4

 We have made it clear that the linear relationship is only true in long times. Therefore,
we don’t want to perform the regression over all our data, just data where the observation time is
long enough that we have reached the long-time asymptotical behavior. How long does this time
have to be? It depends on the particulars of the system. In the examples below, we determine
this minimum time.
 In practice, we examine the x, y, and z diffusivities independently. In that case d=1, and
obtain a slope and intercept for each dimension. If the system is isotropic, we can obtain the
average diffusivity by averaging the values of the x, y, and z components of the diffusivity
obtained independently.

Report mean and standard deviations of self-diffusion coefficients
 Once we have the slope of the curve, we can directly obtain the best fit values of the self-
diffusivity in the x, y, and z components. We can also obtain variances and standard deviations
of these coefficients, from basic statistics. For a review on how to obtain the mean and variance
of coefficients in a linear regression fit, visit the ChE 301 course website and check out the
lecture packet on Regression.[5] The equations are all given there.
 In an isotropic medium, the x, y, and z diffusivities should all be the same. One can
calculate an average diffusivity by the arithmetic average of the three components. In this way,
one reclaims the 2d factor in equation (1). The standard deviation of the self-diffusivity can be
obtained by using the ordinary formula for a standard deviation from the three x, y, and z
diffusivities. (See the ChE 301 notes in the “Statistics and Sampling Estimation” lecture
packet.[5])

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 5

III. Two Examples

 In this section we calculate self-diffusion coefficients for pure methane in the isotropic
bulk liquid and bulk vapor phases. In runs 1 and 2, we ran a simulation of the liquid and vapor
phase respectively, for 200,000 fs of production. For program 3, we ran the vapor phase for
2,000,000 fs (2 ns) of production. The parameters for the molecular dynamics simulations that
generated these results are given in Table 1. The MD simulation program outputs are given in
Program Outputs 1 & 2. (The output of program 3 is not shown.)

Table 1. Molecular Dynamics Parameters
Program 1:
Liquid Methane

 integer, parameter :: N = 216 ! Number of molecules
 T = 150.0d0 ! Temperature (K)
 Vn = 1.1323d+2 ! Ang^3/molecule (liq at 150 K & 1 atm)
 maxeqb = 10000 ! Number of time steps during equilibration
 maxstp = 100000 ! Number of time steps during data production
 dt = 2.0d0 ! size of time step (fs)
 sig = 3.884d0 ! collision diameter (Angstroms)
 eps = 137.d0 ! well depth (K)
 MW = 16.0420d0 ! molecular weight (grams/mole)
 rcut = 15.d0 ! cut-off distance for potential (Angstroms)
 ksamp = 1 ! sampling interval
 knbr = 10 ! neighbor list update interval
 kwrite = 5000 ! writing interval
 kmsd = 100 ! position save for mean square displacement
 rnbr = rcut + 3.d0

Program 2:
Vapor Methane

 All parameters the same as program 1 except:
 T = 298.0d0 ! Temperature (K)
 Vn = 4.052d+4 ! Angstroms cubed / molecule (gas at 298 K & 1 atm)

Program 3:
Vapor Methane

 All parameters the same as program 2 except:
 maxstp = 200000 ! Number of time steps during data production
 dt = 10.0d0 ! size of time step (fs)
 kmsd = 200 ! position save for mean square displacement

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 6

 initially we have 17604 neighbor pairs
********** equilibration Completed **********
property instant average standard deviation
Kinetic Energy (aJ) 0.67100076E+00 0.67100076E+00 0.00000000E+00
Potential Energy (aJ) -0.14486458E+01 -0.14455271E+01 0.31280345E-01
Total Energy (aJ) -0.77764502E+00 -0.77452638E+00 0.31280345E-01
Temperature (K) 0.15000000E+03 0.15000000E+03 0.00000000E+00
x-Momentum -0.65851077E-13 -0.14548397E-13 0.36523879E-13
y-Momentum -0.90140882E-13 -0.31955860E-13 0.26774874E-13
z-Momentum 0.15271385E-12 0.89562192E-13 0.92071565E-13
Pressure aJ/Angstorm^3 -0.30974931E-05 -0.46256192E-05 0.75595203E-05
********** production Completed **********
property instant average standard deviation
Kinetic Energy (aJ) 0.66119487E+00 0.67063331E+00 0.20432851E-01
Potential Energy (aJ) -0.14387403E+01 -0.14482998E+01 0.20474032E-01
Total Energy (aJ) -0.77754540E+00 -0.77766651E+00 0.11492026E-03
Temperature (K) 0.14780793E+03 0.14991786E+03 0.45676962E+01
x-Momentum 0.33849764E-12 0.28152058E-12 0.18043265E-12
y-Momentum -0.47732644E-12 -0.22460318E-12 0.16430488E-12
z-Momentum -0.63552066E-12 -0.13384061E-12 0.27130997E-12
Pressure aJ/Angstorm^3 -0.10317413E-05 -0.40672303E-05 0.49255311E-05
 Program has used 664.876074671745 seconds of CPU time.

Program Output 1: liquid methane MD simulation results.

 initially we have 0 neighbor pairs
********** equilibration Completed **********
property instant average standard deviation
Kinetic Energy (aJ) 0.13330548E+01 0.13330548E+01 0.00000000E+00
Potential Energy (aJ) -0.26195503E-02 -0.25881818E-02 0.19531099E-02
Total Energy (aJ) 0.13304353E+01 0.13304667E+01 0.19531099E-02
Temperature (K) 0.29800000E+03 0.29800000E+03 0.00000000E+00
x-Momentum -0.98083446E-13 0.28504112E-13 0.88736947E-13
y-Momentum 0.93635610E-13 0.50912990E-14 0.35509657E-13
z-Momentum 0.23278933E-13 0.29206684E-13 0.42819568E-13
Pressure aJ/Angstorm^3 0.10350216E-06 0.10146422E-06 0.97710909E-09
********** production Completed **********
property instant average standard deviation
Kinetic Energy (aJ) 0.13375729E+01 0.13338900E+01 0.20282717E-02
Potential Energy (aJ) -0.71625785E-02 -0.34632438E-02 0.20315744E-02
Total Energy (aJ) 0.13304103E+01 0.13304268E+01 0.14073403E-04
Temperature (K) 0.29900999E+03 0.29818671E+03 0.45341344E+00
x-Momentum -0.90171208E-12 -0.36633471E-12 0.27337420E-12
y-Momentum -0.11067602E-12 0.29115486E-12 0.14100432E-12
z-Momentum -0.27495713E-12 -0.12811391E-12 0.16597744E-12
Pressure aJ/Angstorm^3 0.10153409E-06 0.10146684E-06 0.10622152E-08
 Program has used 144.187327086926 seconds of CPU time.

Program Output 2: vapor methane MD simulation results.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 7

 In order to obtain self-diffusion coefficients, we ran the code get_diff.f on the mean
square displacement output file of simulations 1-3, and generated the output given in get_diff.f
outputs 1-3.
 We do not know what value to set for the amount of data points to skip before the MSD
behavior is satisfactorily close to the long time limit. Therefore, we can set the low limit of time
origins, Nmin, to 1. This will include all the data. Using this value, we run get_diff.f. The
output for the self-diffusion coefficient is meaningless, but we have generated a data file,
get_diff.out, which has the mean square displacements as a function of time. We plot this data in
Figure 1. It appears linear. However, if we plot it on a log-log scale, we can get a better feeling
for the data.
 In Figure 2, we show the log-log behavior of the mean square displacement data in
Figure 1. We can see three regions of behavior. In region one, we have “free motion”. This
regime occurs at very short observations times before any collisions have occurred. Here the
mean square displacement is proportional to the observation time squared.
 The second regime shown in Figure 2, is an intermediate time regime, where the mean
square displacement is proportional to the observation time raised to some power between 1 and
2. The third regime is the long time behavior where the mean square displacement is
proportional to the observation time.
 In fitting the mean square displacement data to Einstein’s relation, we only want to use
data points in region 3. Thus we use a plot like Figure 2 to determine the value of Nmin.
 For program 1, where we simulated liquid methane, we see clearly that by 10,000 fs we
are in the long time limit. We ran our simulation for 50,000 steps @ 2 fs/step, or 100,000 fs. So
we see that 90% of our simulation can yield reasonable mean square displacements. It doesn’t
look like this from the plot but that is because the plot is on a log scale.
 We obtain Nmin by converting the minimum observation time to saved data intervals,
where

tk

timeN
msd

min
min ∆

= (5)

In this example, our time step was 2 fs and MSD were saved every 100 steps, so for a minimum
time of 10,000 fs, we have Nmin = 50. The output for the diffusivity calculation is shown below.

 ntime = 1001 ndata = 216216
 read all the data
x slope = 0.54545284E-02 y-intercept = -0.13798473E+02 A^2/fs
y slope = 0.48132025E-02 y-intercept = -0.10418087E+02 A^2/fs
z slope = 0.49110663E-02 y-intercept = -0.53264983E+01 A^2/fs
x diffusivity avg = 0.27272642E-07 stand dev = 0.18144673E-10 m^2/sec
y diffusivity avg = 0.24066012E-07 stand dev = 0.33133902E-10 m^2/sec
z diffusivity avg = 0.24555332E-07 stand dev = 0.10730716E-10 m^2/sec
avg diffusivity avg = 0.25297995E-07 stand dev = 0.17275064E-08 m^2/sec

get_diff.f Output 1.a: liquid methane diffusion results. Nmin = 50.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 8

0.0E+00

1.0E+02

2.0E+02

3.0E+02

4.0E+02

5.0E+02

6.0E+02

0.0E+00 2.0E+04 4.0E+04 6.0E+04 8.0E+04 1.0E+05
elapsed time (fs)

m
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2)

x-MSD (Å^2)
y-MSD (Å^2)
z-MSD (Å^2)

Figure 1. Mean square displacement as a function of observation time for liquid methane of program output 1.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 9

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+02 1.0E+03 1.0E+04 1.0E+05
elapsed time (fs)

m
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2)

x-MSD (Å^2)
y-MSD (Å^2)
z-MSD (Å^2)
linear asymptote
quadratic asymptote

collision
free
motion:
msd α ∆t2 long

time
motion:
msd α ∆t

intermediate
motion:
msd α ∆td,
1<d<2

.
Figure 2. Log-log plot of mean square displacement as a function of observation time for liquid methane of program output 1.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 10

 We can make several observations from this program output. The first observation is that
the average self-diffusion coefficient is 2.53x10-8 m2/sec. The standard deviation of the self-
diffusion coefficient is 1.7x10-9 m2/sec or 6.7 %.
 The second observation we can make is that the fluid is supposed to be isotropic.
Therefore, the x, y, and z components of the diffusion should all be equal. Their variation is
used to calculate the standard deviation.
 To determine the importance of the selection of Nmin, we can run the program where we
use all of the data points to generate the self-diffusion coefficient (e.g. Nmin = 1). This output is
shown below. In this case we find that the average self-diffusion coefficient is 2.51x10-8 m2/sec.
The standard deviation of the self-diffusion coefficient is 1.7x10-9 m2/sec. The difference in the
diffusion coefficients calculated using two different values of Nmin is 0.8 %. This difference is
not so big here but it can become larger for gases, as we shall see below.

 ntime = 1001 ndata = 216216
 read all the data
x slope = 0.54074507E-02 y-intercept = -0.10580693E+02 A^2/fs
y slope = 0.47705983E-02 y-intercept = -0.74992496E+01 A^2/fs
z slope = 0.48971462E-02 y-intercept = -0.43751128E+01 A^2/fs
x diffusivity avg = 0.27037254E-07 stand dev = 0.23114807E-10 m^2/sec
y diffusivity avg = 0.23852992E-07 stand dev = 0.31271477E-10 m^2/sec
z diffusivity avg = 0.24485731E-07 stand dev = 0.10210160E-10 m^2/sec
avg diffusivity avg = 0.25125325E-07 stand dev = 0.16857229E-08 m^2/sec

get_diff.f Output 1.b: liquid methane diffusion results. Nmin = 1.

 We can repeat these calculations for the gas phase methane. The mean square
displacement as a function of time is shown in Figure 3. The log-log plot is shown in Figure 4.
The MSD is clearly a nonlinear function of time in Figure 3. This difference is magnified in
Figure 4. The conclusion is that we need a longer time to capture the long time diffusive
behavior of a gas than we do for a liquid. This is because the mean free path of a gas is much
longer than that of a liquid.
 We can run get_diff.f on this simulation output, even though we know that it is not
meaningful. It may be useful to compare with longer simulations.

 ntime = 1001 ndata = 216216
 read all the data
x slope = 0.12306509E+01 y-intercept = -0.18700921E+05 A^2/fs
y slope = 0.12518016E+01 y-intercept = -0.19691092E+05 A^2/fs
z slope = 0.12775410E+01 y-intercept = -0.20132713E+05 A^2/fs
x diffusivity avg = 0.61532545E-05 stand dev = 0.58786747E-07 m^2/sec
y diffusivity avg = 0.62590082E-05 stand dev = 0.64033762E-07 m^2/sec
z diffusivity avg = 0.63877050E-05 stand dev = 0.65689699E-07 m^2/sec
avg diffusivity avg = 0.62666559E-05 stand dev = 0.11740431E-06 m^2/sec

get_diff.f Output 2: vapor methane diffusion results (short simulation).

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 11

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

0.0E+00 2.0E+04 4.0E+04 6.0E+04 8.0E+04 1.0E+05
elapsed time (fs)

m
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2)

x-MSD (Å^2)
y-MSD (Å^2)
z-MSD (Å^2)

Figure 3. Mean square displacement as a function of observation time for vapor methane of program output 2.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 12

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+02 1.0E+03 1.0E+04 1.0E+05
elapsed time (fs)

m
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2)

x-MSD (Å^2)
y-MSD (Å^2)
z-MSD (Å^2)
linear asymptote
quadratic asymptote

collision
free
motion:
msd α ∆t2

intermediate
motion:
msd α ∆td,
1<d<2

Figure 4. Log-log plot of mean square displacement as a function of observation time for vapor methane of program output 2.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 13

 We repeat the gas phase simulation for 2 ns instead of 0.2 ns. The mean square
displacement as a function of time is shown in Figure 5. The log-log plot is shown in Figure 6.
We see that the MSD has reached long time behavior at 500,000 fs. In this example, our time
step was 10 fs and MSD were saved every 200 steps, so for a minimum time of 500,000 fs, we
have Nmin = 250.

 ntime = 1001 ndata = 216216
 read all the data
x slope = 0.42801023E+01 y-intercept = -0.49714112E+06 A^2/fs
y slope = 0.43171521E+01 y-intercept = -0.47808680E+06 A^2/fs
z slope = 0.39884563E+01 y-intercept = -0.26316716E+06 A^2/fs
x diffusivity avg = 0.21400512E-04 stand dev = 0.23095574E-07 m^2/sec
y diffusivity avg = 0.21585761E-04 stand dev = 0.90838446E-08 m^2/sec
z diffusivity avg = 0.19942281E-04 stand dev = 0.44566287E-07 m^2/sec
avg diffusivity avg = 0.20976185E-04 stand dev = 0.90014598E-06 m^2/sec

get_diff.f Output 3: vapor methane diffusion results (long simulation).

 In this case we find that the average self-diffusion coefficient is 2.10x10-5 m2/sec. The
standard deviation of the self-diffusion coefficient is 9.0x10-7 m2/sec. The short duration run of
the same simulation produced a self-diffusion coefficient is 6.27x10-5 m2/sec. The relative error
is 199%. It is important to make sure that you run the simulations long enough to reach the long
time behavior. Moreover, it is important that you only include sufficiently long observation
times in the linear regression of the self-diffusion coefficient.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 14

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06
elapsed time (fs)

m
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2)

x-MSD (Å^2)
y-MSD (Å^2)
z-MSD (Å^2)

Figure 5. Mean square displacement as a function of observation time for vapor methane of program output 3.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 15

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+03 1.0E+04 1.0E+05 1.0E+06
elapsed time (fs)

m
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2)

x-MSD (Å^2)
y-MSD (Å^2)
z-MSD (Å^2)
linear asymptote
quadratic asymptote

collision
free
motion:
msd α ∆t2

long
time
motion:
msd α ∆t

intermediate
motion:
msd α ∆td,
1<d<2

Figure 6. Log-log plot of mean square displacement as a function of observation time for vapor methane of program output 3.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 16

References.

1. Kärger, J., Ruthven, D.M., “Diffusion in Zeolites and Other Microporous Solids”, John

Wiley & Sons, Inc., New York, 1992.
2. Haile, J.M., “Molecular Dynamics Simulation”, John Wiley & Sons, Inc., New York, 1992.
3. Allen, M.P., Tildesley, D.J., “Computer Simulation of Liquids”, Oxford Science

Publications, Oxford, 1987.
4. Frenkel, D., Smit B., “Understanding Molecular Simulation”, Academic Press, San Diego,

1996.
5. Keffer, D., “Applied Statistical and Numerical Methods for Engineers”, Course Website,

http://clausius.engr.utk.edu/che301, University of Tennessee, Knoxville, 1998-2001.
6. de Groot, S.R., Mazur, P., “Non-Equilibrium Thermodynamics”, North Holland Publishing

Co., Amsterdam, 1962.

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 17

Appendix A. Self Diffusion Code in Fortran

 program get_diff
c
c This program will calculate diffusivities
c from mean square displacement data
c
c author David Keffer
c Department of Chemical Engineering
c University of Tennessee, Knoxville
c last updated October 6, 2001
c
 integer, parameter :: maxstp = 100000 ! number of data production steps
 integer, parameter :: kmsd = 100 ! sampling interval
 integer, parameter :: N = 216 ! number of molecules
 double precision, parameter :: dt = 2.d0 ! timestep (fs)
 character*12 :: cmsd, cout ! character variables
 character*3, dimension(1:4) :: cname
 double precision, dimension(1:4) :: Dav, Dsd
 double precision, dimension(1:3) :: slope,slopesd,yinter,yintersd
 double precision, allocatable :: md_msd(:,:), time_vec(:),
 & xmsd(:,:)
c
 cout = 'get_diff.out'
 cmsd = 'md_msd.out'
c number of times represented in data
 ntime = maxstp/kmsd + 1
c number of rows of data
 ndata = N*ntime
 allocate (md_msd(1:ndata,1:3))
 open(unit=1,file=cout,form='formatted',status='unknown')
 open(unit=2,file=cmsd,form='formatted',status='old')
 print *, ' ntime = ', ntime, ' ndata = ', ndata
 do i = 1, ndata, 1
 read(2,*) md_msd(i,1:3)
 enddo
 print *, ' read all the data'
c number of origins is half number of time steps
 norigin = (ntime-1)/2
c minimum number of intervals to contribute to diffusivity
 nmin = 50
c maximum number of intervals to contribute to diffusivity
 nmax = norigin
c
 if (nmin .gt. nmax) then
 print *, ' We have a problem. '
 print *, ' nmin = ', nmin, ' nmax = ', nmax
 stop
 endif
c store mean square displacements in xmsd
 allocate (time_vec(1:norigin), xmsd(1:norigin,1:3))
 do i = 1, norigin, 1
 time_vec(i) = dfloat(i*kmsd)*dt
 enddo

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 18

 xmsd = 0.d0
 do i = 1, N, 1
 do j = 1, norigin, 1
 jstart = (j-1)*N + i
 do k = nmin, nmax, 1
 kend = jstart + k*N
 xmsd(k,1:3) = xmsd(k,1:3) +
 & (md_msd(kend,1:3) - md_msd(jstart,1:3))**2
 enddo
 enddo
 enddo
 xmsd = xmsd/dfloat(N*norigin)
c
c perform a linear least squares regression
c
 do i = 1, 3, 1
 call dllsr(slope(i), slopesd(i), yinter(i), yintersd(i),
 & nmax-nmin+1, time_vec(nmin:nmax), xmsd(nmin:nmax,i))
 enddo
c
c report results
c
 cname(1) = 'x '
 cname(2) = 'y '
 cname(3) = 'z '
 cname(4) = 'avg'
 do i = 1, 3, 1
 write(6,1007) cname(i), slope(i), yinter(i)
 write(1,1007) cname(i), slope(i), yinter(i)
 enddo
 1007 format(a3, ' slope = ', e16.8, ' y-intercept = ', e16.8,
 & ' A^2/fs')
 Dav(1:3) = 0.5d0*slope(1:3)*1.0d-5 ! convert to m^2/sec
 Dsd(1:3) = 0.5d0*slopesd(1:3)*1.0d-5 ! convert to m^2/sec
 Dav(4) = sum(Dav(1:3))/3.d0
c standard deviation of average diffusivity
 term1 = 3.d0*(Dav(1)*Dav(1) + Dav(2)*Dav(2) + Dav(3)*Dav(3))
 Dsd(4) = sqrt((term1 - Dav(4)*Dav(4)*9.d0) /6.d0)
 do i = 1, 4, 1
 write(6,1006) cname(i), Dav(i), Dsd(i)
 write(1,1006) cname(i), Dav(i), Dsd(i)
 enddo
 1006 format(a3, ' diffusivity avg = ', e16.8, ' stand dev = ', e16.8,
 & ' m^2/sec ')
c
c write xmsd vs time data for later plotting
c
 do i = 1, norigin, 1
 write(1,1008) time_vec(i), xmsd(i,1:3)
 enddo
 1008 format(4(e16.8,1x))
 close (unit=1,status='keep')
 close (unit=2,status='keep')
 stop
 end

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 19

 subroutine dllsr(slope, slopesd, yinter, yintersd, n, x, y)
 implicit double precision (a-h, o-z)
 double precision, intent(out) :: slope, slopesd, yinter, yintersd
 integer, intent(in) :: n
 double precision, intent(in), dimension(1:n) :: x, y
 xn = dfloat(n)
 xavg = sum(x)/xn
 yavg = sum(y)/xn
 sumxy = 0.d0
 sumxx = 0.d0
 sumx2 = 0.d0
 do i = 1, n, 1
 sumxy = sumxy + (x(i) - xavg)*(y(i) - yavg)
 sumxx = sumxx + (x(i) - xavg)*(x(i) - xavg)
 sumx2 = sumx2 + x(i)*x(i)
 enddo
 slope = sumxy/sumxx
 yinter = yavg - slope*xavg
 sse = 0.d0
 do i = 1, n, 1
 sse = sse + (y(i) - slope*x(i) - yinter)**2.d0
 enddo
 sig2 = sse/dfloat(n-2)
 slopesd = dsqrt(sig2/sumxx)
 yintersd = dsqrt(sig2/dfloat(n)*sumx2/sumxx)
 return
 end

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 20

Appendix B. Self Diffusion Code in MATLAB

function get_diff

maxstp = 2000; % number of data production steps
kmsd = 10; % sampling interval
N = 27; % number of molecules
dt = 1.0; % timestep (fs)

load('md_msd.out')
ndata = length(md_msd)

% number of times represented in data
ntime = ndata/N;

% number of origins is half number of time steps
norigin = floor(ntime-1)/2;

% minimum number of intervals to contribute to diffusivity
nmin = 50;
% maximum number of intervals to contribute to diffusivity
nmax = norigin;
if (nmin > norigin)
 nmin = nmax;
end

% store mean square displacements in xmsd
time_vec= [dt:dt:norigin*dt]';
xmsd = zeros(norigin,3);
for i = 1:1:N
 for j = 1:1:norigin
 jstart = (j-1)*N + i;
 for k = nmin:1:nmax
 kend = jstart + k*N;
 %term = (md_msd(kend,1) - md_msd(jstart,1)).^2;
 %fprintf(1, 'i %i j %i jstart %i k %i kend %i term %e %e %e\n',i,j,jstart,k,kend, term,
md_msd(kend,1), md_msd(jstart,1));
 xmsd(k,1:3) = xmsd(k,1:3) + (md_msd(kend,1:3) - md_msd(jstart,1:3)).^2;
 end
 end
end
xmsd = xmsd/(N*norigin);

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 21

[Px,Sx] = POLYFIT(time_vec(nmin:1:nmax),xmsd(nmin:1:nmax,1),1);
[Py,Sy] = POLYFIT(time_vec(nmin:1:nmax),xmsd(nmin:1:nmax,2),1);
[Pz,Sz] = POLYFIT(time_vec(nmin:1:nmax),xmsd(nmin:1:nmax,3),1);
fprintf(1, 'x: slope = %e intercept = %e \n',Px);
fprintf(1, 'y: slope = %e intercept = %e \n',Py);
fprintf(1, 'z: slope = %e intercept = %e \n',Pz);

D(1) = 0.5*Px(1)*1.0e-5; % convert to m^2/sec
D(2) = 0.5*Py(1)*1.0e-5; % convert to m^2/sec
D(3) = 0.5*Pz(1)*1.0e-5; % convert to m^2/sec
Dav = sum(D)/3;
sd = zeros(3,1);
sdav = 0.0;
fprintf(1, 'x: diffusivity average = %e stand dev = %e m^2/sec\n',D(1),sd(1));
fprintf(1, 'y: diffusivity average = %e stand dev = %e m^2/sec\n',D(2),sd(2));
fprintf(1, 'z: diffusivity average = %e stand dev = %e m^2/sec\n',D(3),sd(3));
fprintf(1, 'avg: diffusivity average = %e stand dev = %e m^2/sec\n',Dav,sdav);

xmod(:,1) = Px(2) + Px(1)*time_vec;
xmod(:,2) = Py(2) + Py(1)*time_vec;
xmod(:,3) = Pz(2) + Pz(1)*time_vec;
figure(1)
plot(time_vec,xmsd(:,1),'k-');
hold on;
plot(time_vec,xmsd(:,2),'r-');
hold on;
plot(time_vec,xmsd(:,3),'b-');
hold on;
plot(time_vec,xmod(:,1),'k:');
hold on;
plot(time_vec,xmod(:,2),'r:');
hold on;
plot(time_vec,xmod(:,3),'b:');
hold off;
legend('x: sim', 'y: sim', 'z: sim','x: mod', 'y: mod', 'z: mod');
ylabel('mean square displacement (Angstroms^2)');
xlabel('time (fs)');

figure(2)
time_vec2= [0:dt:(ntime-1)*dt]';
plot(time_vec2,md_msd(1:N:ndata,1),'k-');

D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001

 22

hold on;
plot(time_vec2,md_msd(1:N:ndata,2),'r-');
hold on;
plot(time_vec2,md_msd(1:N:ndata,3),'b-');
hold off;
legend('x ', 'y ', 'z ');
ylabel(' atom 1 position (Angstroms)');
xlabel('time (fs)');

