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I.  Introduction 
 
 The objective of these notes is to provide a method to obtain a self-diffusion coefficient 
from a molecular dynamics simulation. 
 Our molecular dynamics code, mddriver.f, periodically saves positions as a function of 
time.  From these positions we can obtain a self-diffusion coefficient.  The self-diffusivity is 
different than a transport-diffusivity, aka a Fickian diffusivity.  The self-diffusivity describes the 
random motion of a molecule in the absence of any gradients that would cause a mass flux.  The 
derivation of the self-diffusivity can be obtained from probability theory.[1]  I recommend that 
you check it out.  It is not too complicated.  In the next lecture packet, we are going to relate the 
self-diffusivity to the transport diffusivity.  Here, we simply obtain the self-diffusivity. 
 I learned the general algorithm for obtaining the self-diffusivity from Haile.[2]  Other 
references also discuss the numerical procedure to obtain the self-diffusivity.[3-4] 
 
II.  Theory 
 There are two common ways to obtain a self-diffusion coefficient.  The first is from 
molecule positions and the second is from velocities.  Theoretically, both methods yield the same 
result.  Obtaining the self-diffusivity from the velocities involve integrating the velocity auto-
correlation function, an example from what is called Green-Kubo relations.[2]  There is a “long-
time” tail to this integral that can cause numerical problems.  Therefore, in my experience, I have 
found that simulations have to be longer to obtain a reliable self-diffusivity form the velocity 
than from the positions.  In this hand-out we discuss only obtaining self-diffusion coefficients 
from position data. 
 Einstein related the self-diffusion coefficient to the mean square displacement of a 
particle as a function of observation time.  The mean square displacement is proportional to the 
observation time in the limit that the observation time goes to infinity.  The proportionality 
constant that relates the MSD to the observation time is called the self-diffusivity.  By 
convention, we  
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where D is the self-diffusion coefficient, and d is the dimensionality of the system.  The 
numerator of  equation (1) is the mean square displacement.  The angled brackets indicate an 
ensemble average has been taken.  The ensemble average is an average over all molecules in the 
simulation and all origins.  By origins we mean that any time step can be considered the time 
zero in equation (1), because equation (1) is only looking at observation times (relative times or 
elapsed times) rather than some absolute time. 
 We can see that by saving the positions as a function of time, we can calculate the mean 
square displacement and obtain a self-diffusion coefficient. 
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II.  Numerical Considerations 
 Our molecular dynamics codes saved positions of all particles every kmsd steps during the 
data production phase of the simulation.  The algorithm of the code which computes the self-
diffusion coefficients, get_diff.f, is as follows. 
 

1. Read necessary parameters 
2. Read positions 
3. Calculate mean square displacement 
4. Perform a linear least squares regression to obtain mean and variance of slope and 

intercept 
5. Report mean and standard deviations of self-diffusion coefficients 

  
 We now discuss each step. 
 
Read the Parameters 
 The code used to generate self-diffusion coefficients is called get_diff.f (FORTRAN 90) 
or get_diff.m (MATLAB).  In order to calculate the  self-diffusion coefficient, this code requires 
four parameters from the molecular dynamics simulation.  These parameters are the number of 
molecules in the simulation, N, the number of production steps, maxstp, the interval during 
which the mean square displacements were saved, kmsd, and the size of the time step, ∆t. 
 
 integer, parameter :: maxstp = 100000 ! number of data production steps 
 integer, parameter :: kmsd = 100  ! sampling interval 
 integer, parameter :: N = 216   ! number of molecules 
 double precision, parameter  :: dt = 2.d0 ! timestep (fs) 
 
The code also requires a data file which includes Ndata data points. 
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The only other parameter that needs to be specified is how long should we ignore the data before 
we consider that it has reached the “long time” asymptotical behavior of Einstein’s relation.  
This parameter is discussed in detail in the example. There is no general rule for how long a 
simulation has to be run before we reach the long time asymptotical behavior predicted by 
Einstein’s relation.  However, below we present two examples, where this determination is 
made.  In the code, this parameter is the number of time origin to ignore and is called, Nmin. 
 
Read the Positions 
 The second step in the algorithm is to read the positions from the data file.  There are a 
lot of positions because we stored the time, x, y, and z position for every molecule at every save 
interval.  If we have a machine with a lot of memory, then we can simply read in all the data in a 
huge matrix.  (This is what the code get_diff.f does.)  If we have more data than can fit in our 
computer’s RAM at a single time, then we need to read a part at a time, perform the mean square 
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displacement calculation on that data, read in more data, and continue in this fashion.  Haile 
provides a code which performs this piecewise reading of data.[2] 
 
Calculate the Mean Square Displacement 
 The mean square displacement is simply an average.  We know that for sample averages 
we simply use the formula 
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Since this is the definition of the sample average, we too will use this formula.  Our x is the 
square of the displacement.  In fact we will use this formula for every value of time, t, in 
equation (1).  In that way we can obtain the mean square displacement as a function of time. 
 The average is over both molecules and “time origins”.  Any point during the simulation 
can be considered a time origin.  However, we would like all times to be represented equally in 
terms of the number of data points used to generate the MSD vs. time plot. 
 Consider that we have saved positions of N molecules at Nt = 101 times.  We will only 
evaluate the MSD for ∆t = 1 to Nmax = int(Nt/2) = 50.  Only the first 50 points will be considered 
as time origins.  The number of data points for the MSD at each ∆t will be N*Nmax.  We stop 
with ∆t = Nmax because, when the elapsed time is half the total time, then all the MSD have the 
same number of data points contributing to them, and thus they are weighted equally.  It is true 
that we could have 100 time origins for ∆t = 1, 99 time origins for ∆t = 2, 98 time origins for ∆t 
= 3, … 2 time origins for ∆t = 99, and 1 time origins for ∆t = 100.  If we did this we have two 
problems.  First, you can’t get good statistics averaging over just a few time origins.  Therefore, 
you need to set Nmax substantially smaller than Nt; and Nmax = int(Nt/2) has proven to be a good 
choice.  Furthermore, if you select Nmax = int(Nt/2), then all of the ∆t has the same number of 
time origins, namely Nmax.  This is a bit confusing; it always is.  The discussion in Haile, has 
some graphics to illustrate the idea, but it is still somewhat confusing.[1]  The only solution is to 
examine the code yourself and see exactly what we are doing, in order to ensure good statistics 
in the results. 
 
Perform Linear Least Squares Regression 
 Once we have the MSD as a function of time, we simply need to perform a linear least 
squares regression to obtain the slope and intercept.  If we examine equation one, it would seem 
that the slope is 2dD and the intercept is zero.  However, this behavior is the long time behavior.  
Because there is some different (unknown) short time behavior, the linear portion of the curve is 
shifted so that the intercept is not zero.  So in fact we use linear least squares regression to fit the 
model 
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The value of b0 has no physical significance.  However, if we don’t include it in the regression, it 
changes the value of the slope. 
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 We have made it clear that the linear relationship is only true in long times.  Therefore, 
we don’t want to perform the regression over all our data, just data where the observation time is 
long enough that we have reached the long-time asymptotical behavior.  How long does this time 
have to be?  It depends on the particulars of the system.  In the examples below, we determine 
this minimum time. 
 In practice, we examine the x, y, and z diffusivities independently.  In that case d=1, and 
obtain a slope and intercept for each dimension.  If the system is isotropic, we can obtain the 
average diffusivity by averaging the values of the x, y, and z components of the diffusivity 
obtained independently.  
 
Report mean and standard deviations of self-diffusion coefficients 
 Once we have the slope of the curve, we can directly obtain the best fit values of the self-
diffusivity in the x, y, and z components.  We can also obtain variances and standard deviations 
of these coefficients, from basic statistics.  For a review on how to obtain the mean and variance 
of coefficients in a linear regression fit, visit the ChE 301 course website and check out the 
lecture packet on Regression.[5]  The equations are all given there. 
 In an isotropic medium, the x, y, and z diffusivities should all be the same.  One can 
calculate an average diffusivity by the arithmetic average of the three components.  In this way, 
one reclaims the 2d factor in equation (1).  The standard deviation of the self-diffusivity can be 
obtained by using the ordinary formula for a standard deviation from the three x, y, and z 
diffusivities.  (See the ChE 301 notes in the “Statistics and Sampling Estimation” lecture 
packet.[5])  
 
 
 



D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001 

 5

 
III.  Two Examples 
 
 In this section we calculate self-diffusion coefficients for pure methane in the isotropic 
bulk liquid and bulk vapor phases.  In runs 1 and 2, we ran a simulation of the liquid and vapor 
phase respectively, for 200,000 fs of production.  For program 3, we ran the vapor phase for 
2,000,000 fs (2 ns) of production.  The parameters for the molecular dynamics simulations that 
generated these results are given in Table 1.  The MD simulation program outputs are given in 
Program Outputs 1 & 2.  (The output of program 3 is not shown.) 
 

Table 1.  Molecular Dynamics Parameters 
Program 1: 
Liquid Methane 

 
 integer, parameter :: N = 216 ! Number of molecules 
 T = 150.0d0 ! Temperature (K) 
 Vn = 1.1323d+2 ! Ang^3/molecule (liq at 150 K & 1 atm) 
 maxeqb = 10000 ! Number of time steps during equilibration 
 maxstp = 100000 ! Number of time steps during data production 
 dt = 2.0d0   ! size of time step (fs) 
 sig = 3.884d0 ! collision diameter (Angstroms) 
 eps = 137.d0 ! well depth (K) 
 MW = 16.0420d0  ! molecular weight (grams/mole) 
 rcut = 15.d0 ! cut-off distance for potential (Angstroms) 
 ksamp = 1  ! sampling interval 
 knbr = 10  ! neighbor list update interval 
 kwrite = 5000 ! writing interval 
 kmsd = 100  ! position save for mean square displacement 
 rnbr = rcut + 3.d0 
 

Program 2: 
Vapor Methane 

 
              All parameters the same as program 1 except: 
 T = 298.0d0 ! Temperature (K) 
 Vn = 4.052d+4 ! Angstroms cubed / molecule (gas at 298 K & 1 atm) 
 
 

Program 3: 
Vapor Methane 

 
              All parameters the same as program 2 except: 
 maxstp = 200000 ! Number of time steps during data production 
 dt = 10.0d0   ! size of time step (fs) 
 kmsd = 200  ! position save for mean square displacement 
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  initially we have        17604 neighbor pairs 
**********          equilibration Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.67100076E+00   0.67100076E+00   0.00000000E+00 
Potential Energy (aJ)   -0.14486458E+01  -0.14455271E+01   0.31280345E-01 
Total Energy (aJ)       -0.77764502E+00  -0.77452638E+00   0.31280345E-01 
Temperature (K)          0.15000000E+03   0.15000000E+03   0.00000000E+00 
x-Momentum              -0.65851077E-13  -0.14548397E-13   0.36523879E-13 
y-Momentum              -0.90140882E-13  -0.31955860E-13   0.26774874E-13 
z-Momentum               0.15271385E-12   0.89562192E-13   0.92071565E-13 
Pressure aJ/Angstorm^3  -0.30974931E-05  -0.46256192E-05   0.75595203E-05 
**********          production    Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.66119487E+00   0.67063331E+00   0.20432851E-01 
Potential Energy (aJ)   -0.14387403E+01  -0.14482998E+01   0.20474032E-01 
Total Energy (aJ)       -0.77754540E+00  -0.77766651E+00   0.11492026E-03 
Temperature (K)          0.14780793E+03   0.14991786E+03   0.45676962E+01 
x-Momentum               0.33849764E-12   0.28152058E-12   0.18043265E-12 
y-Momentum              -0.47732644E-12  -0.22460318E-12   0.16430488E-12 
z-Momentum              -0.63552066E-12  -0.13384061E-12   0.27130997E-12 
Pressure aJ/Angstorm^3  -0.10317413E-05  -0.40672303E-05   0.49255311E-05 
 Program has used   664.876074671745     seconds of CPU time. 
 
Program Output 1:  liquid methane MD simulation results. 
  
 
  initially we have            0 neighbor pairs 
**********          equilibration Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.13330548E+01   0.13330548E+01   0.00000000E+00 
Potential Energy (aJ)   -0.26195503E-02  -0.25881818E-02   0.19531099E-02 
Total Energy (aJ)        0.13304353E+01   0.13304667E+01   0.19531099E-02 
Temperature (K)          0.29800000E+03   0.29800000E+03   0.00000000E+00 
x-Momentum              -0.98083446E-13   0.28504112E-13   0.88736947E-13 
y-Momentum               0.93635610E-13   0.50912990E-14   0.35509657E-13 
z-Momentum               0.23278933E-13   0.29206684E-13   0.42819568E-13 
Pressure aJ/Angstorm^3   0.10350216E-06   0.10146422E-06   0.97710909E-09 
**********          production    Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.13375729E+01   0.13338900E+01   0.20282717E-02 
Potential Energy (aJ)   -0.71625785E-02  -0.34632438E-02   0.20315744E-02 
Total Energy (aJ)        0.13304103E+01   0.13304268E+01   0.14073403E-04 
Temperature (K)          0.29900999E+03   0.29818671E+03   0.45341344E+00 
x-Momentum              -0.90171208E-12  -0.36633471E-12   0.27337420E-12 
y-Momentum              -0.11067602E-12   0.29115486E-12   0.14100432E-12 
z-Momentum              -0.27495713E-12  -0.12811391E-12   0.16597744E-12 
Pressure aJ/Angstorm^3   0.10153409E-06   0.10146684E-06   0.10622152E-08 
 Program has used   144.187327086926     seconds of CPU time. 
 
Program Output 2:  vapor methane MD simulation results. 
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 In order to obtain self-diffusion coefficients, we ran the code get_diff.f on the mean 
square displacement output file of simulations 1-3, and generated the output given in get_diff.f 
outputs 1-3. 
 We do not know what value to set for the amount of data points to skip before the MSD 
behavior is satisfactorily close to the long time limit.  Therefore, we can set the low limit of time 
origins, Nmin, to 1.  This will include all the data.  Using this value, we run  get_diff.f.  The 
output for the self-diffusion coefficient is meaningless, but we have generated a data file, 
get_diff.out, which has the mean square displacements as a function of time.  We plot this data in 
Figure 1.  It appears linear.  However, if we plot it on a log-log scale, we can get a better feeling 
for the data. 
 In Figure 2, we show the log-log behavior of the mean square displacement data in 
Figure 1.  We can see three regions of behavior.  In region one, we have “free motion”.  This 
regime occurs at very short observations times before any collisions have occurred.  Here the 
mean square displacement is proportional to the observation time squared.   
 The second regime shown in Figure 2, is an intermediate time regime, where the mean 
square displacement is proportional to the observation time raised to some power between 1 and 
2.  The third regime is the long time behavior where the mean square displacement is 
proportional to the observation time. 
 In fitting the mean square displacement data to Einstein’s relation, we only want to use 
data points in region 3.  Thus we use a plot like Figure 2 to determine the value of Nmin. 
 For program 1, where we simulated liquid methane, we see clearly that by 10,000 fs we 
are in the long time limit.  We ran our simulation for 50,000 steps @ 2 fs/step, or 100,000 fs.  So 
we see that 90% of our simulation can yield reasonable mean square displacements.  It doesn’t 
look like this from the plot but that is because the plot is on a log scale. 
 We obtain Nmin by converting the minimum observation time to saved data intervals, 
where 
 

 
tk

timeN
msd

min
min ∆

=          (5) 

 
In this example, our time step was 2 fs and MSD were saved every 100 steps, so for a minimum 
time of 10,000 fs, we have Nmin = 50.  The output for the diffusivity calculation is shown below. 
  
 
  ntime =         1001 ndata =       216216 
  read all the data 
x   slope =   0.54545284E-02 y-intercept =  -0.13798473E+02 A^2/fs 
y   slope =   0.48132025E-02 y-intercept =  -0.10418087E+02 A^2/fs 
z   slope =   0.49110663E-02 y-intercept =  -0.53264983E+01 A^2/fs 
x   diffusivity avg =   0.27272642E-07 stand dev =   0.18144673E-10 m^2/sec 
y   diffusivity avg =   0.24066012E-07 stand dev =   0.33133902E-10 m^2/sec 
z   diffusivity avg =   0.24555332E-07 stand dev =   0.10730716E-10 m^2/sec 
avg diffusivity avg =   0.25297995E-07 stand dev =   0.17275064E-08 m^2/sec 
 
get_diff.f Output 1.a:  liquid methane diffusion results. Nmin = 50. 
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Figure 1.  Mean square displacement as a function of observation time for liquid methane of program output 1. 
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Figure 2.  Log-log plot of mean square displacement as a function of observation time for liquid methane of program output 1.
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 We can make several observations from this program output.  The first observation is that 
the average self-diffusion coefficient is 2.53x10-8 m2/sec.  The standard deviation of the self-
diffusion coefficient is 1.7x10-9 m2/sec or 6.7 %.   
 The second observation we can make is that the fluid is supposed to be isotropic.  
Therefore, the x, y, and z components of the diffusion should all be equal.  Their variation is 
used to calculate the standard deviation. 
 To determine the importance of the selection of Nmin, we can run the program where we 
use all of the data points to generate the self-diffusion coefficient (e.g. Nmin = 1).  This output is 
shown below.  In this case we find that the average self-diffusion coefficient is 2.51x10-8 m2/sec.  
The standard deviation of the self-diffusion coefficient is 1.7x10-9 m2/sec.  The difference in the 
diffusion coefficients calculated using two different values of  Nmin is 0.8 %.  This difference is 
not so big here but it can become larger for gases, as we shall see below. 
 
 
  ntime =         1001 ndata =       216216 
  read all the data 
x   slope =   0.54074507E-02 y-intercept =  -0.10580693E+02 A^2/fs 
y   slope =   0.47705983E-02 y-intercept =  -0.74992496E+01 A^2/fs 
z   slope =   0.48971462E-02 y-intercept =  -0.43751128E+01 A^2/fs 
x   diffusivity avg =   0.27037254E-07 stand dev =   0.23114807E-10 m^2/sec 
y   diffusivity avg =   0.23852992E-07 stand dev =   0.31271477E-10 m^2/sec 
z   diffusivity avg =   0.24485731E-07 stand dev =   0.10210160E-10 m^2/sec 
avg diffusivity avg =   0.25125325E-07 stand dev =   0.16857229E-08 m^2/sec 
 
get_diff.f Output 1.b:  liquid methane diffusion results. Nmin = 1. 
 
 
 We can repeat these calculations for the gas phase methane.  The mean square 
displacement as a function of time is shown in Figure 3.  The log-log plot is shown in Figure 4.  
The MSD is clearly a nonlinear function of time in Figure 3.  This difference is magnified in 
Figure 4.  The conclusion is that we need a longer time to capture the long time diffusive 
behavior of a gas than we do for a liquid.  This is because the mean free path of a gas is much 
longer than that of a liquid. 
 We can run get_diff.f on this simulation output, even though we know that it is not 
meaningful.  It may be useful to compare with longer simulations. 
  
 
  ntime =         1001 ndata =       216216 
  read all the data 
x   slope =   0.12306509E+01 y-intercept =  -0.18700921E+05 A^2/fs 
y   slope =   0.12518016E+01 y-intercept =  -0.19691092E+05 A^2/fs 
z   slope =   0.12775410E+01 y-intercept =  -0.20132713E+05 A^2/fs 
x   diffusivity avg =   0.61532545E-05 stand dev =   0.58786747E-07 m^2/sec 
y   diffusivity avg =   0.62590082E-05 stand dev =   0.64033762E-07 m^2/sec 
z   diffusivity avg =   0.63877050E-05 stand dev =   0.65689699E-07 m^2/sec 
avg diffusivity avg =   0.62666559E-05 stand dev =   0.11740431E-06 m^2/sec 
 
get_diff.f Output 2:  vapor methane diffusion results (short simulation).
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Figure 3.  Mean square displacement as a function of observation time for vapor methane of program output 2. 
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Figure 4.  Log-log plot of mean square displacement as a function of observation time for vapor methane of program output 2. 
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 We repeat the gas phase simulation for 2 ns instead of 0.2 ns.    The mean square 
displacement as a function of time is shown in Figure 5.  The log-log plot is shown in Figure 6.  
We see that the MSD has reached long time behavior at 500,000 fs.  In this example, our time 
step was 10 fs and MSD were saved every 200 steps, so for a minimum time of 500,000 fs, we 
have Nmin = 250.  
 
 
  ntime =         1001 ndata =       216216 
  read all the data 
x   slope =   0.42801023E+01 y-intercept =  -0.49714112E+06 A^2/fs 
y   slope =   0.43171521E+01 y-intercept =  -0.47808680E+06 A^2/fs 
z   slope =   0.39884563E+01 y-intercept =  -0.26316716E+06 A^2/fs 
x   diffusivity avg =   0.21400512E-04 stand dev =   0.23095574E-07 m^2/sec 
y   diffusivity avg =   0.21585761E-04 stand dev =   0.90838446E-08 m^2/sec 
z   diffusivity avg =   0.19942281E-04 stand dev =   0.44566287E-07 m^2/sec 
avg diffusivity avg =   0.20976185E-04 stand dev =   0.90014598E-06 m^2/sec 
 
get_diff.f Output 3:  vapor methane diffusion results (long simulation). 
 
  In this case we find that the average self-diffusion coefficient is 2.10x10-5 m2/sec.  The 
standard deviation of the self-diffusion coefficient is 9.0x10-7 m2/sec.  The short duration run of 
the same simulation produced a self-diffusion coefficient is 6.27x10-5 m2/sec. The relative error 
is 199%.  It is important to make sure that you run the simulations long enough to reach the long 
time behavior.  Moreover, it is important that you only include sufficiently long observation 
times in the linear regression of the self-diffusion coefficient.



D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, November, 2001 

 14

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06
elapsed time (fs)

m
ea

n 
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2 )

x-MSD (Å^2)
y-MSD (Å^2)
z-MSD (Å^2)

 
Figure 5.  Mean square displacement as a function of observation time for vapor methane of program output 3. 
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Figure 6.  Log-log plot of mean square displacement as a function of observation time for vapor methane of program output 3. 
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Appendix A.  Self Diffusion Code in Fortran 
 
 program get_diff 
c 
c This program will calculate diffusivities 
c     from mean square displacement data 
c 
c author  David Keffer 
c Department of Chemical Engineering 
c University of Tennessee, Knoxville 
c last updated  October 6, 2001 
c 
 integer, parameter :: maxstp = 100000 ! number of data production steps 
 integer, parameter :: kmsd = 100  ! sampling interval 
 integer, parameter :: N = 216   ! number of molecules 
 double precision, parameter  :: dt = 2.d0 ! timestep (fs) 
 character*12 :: cmsd, cout  ! character variables 
 character*3, dimension(1:4) :: cname 
 double precision, dimension(1:4) :: Dav, Dsd 
 double precision, dimension(1:3) :: slope,slopesd,yinter,yintersd 
 double precision, allocatable :: md_msd(:,:), time_vec(:),  
     & xmsd(:,:) 
c 
 cout = 'get_diff.out' 
 cmsd = 'md_msd.out' 
c number of times represented in data  
 ntime = maxstp/kmsd + 1 
c number of rows of data  
 ndata = N*ntime 
 allocate (md_msd(1:ndata,1:3)) 
 open(unit=1,file=cout,form='formatted',status='unknown') 
 open(unit=2,file=cmsd,form='formatted',status='old') 
 print *, ' ntime = ', ntime, ' ndata = ', ndata 
 do i = 1, ndata, 1 
  read(2,*) md_msd(i,1:3) 
 enddo 
 print *, ' read all the data' 
c number of origins is half number of time steps 
 norigin = (ntime-1)/2 
c minimum number of intervals to contribute to diffusivity 
 nmin = 50 
c maximum number of intervals to contribute to diffusivity 
 nmax = norigin 
c 
 if (nmin .gt. nmax) then 
  print *, ' We have a problem. ' 
  print *, ' nmin = ', nmin, ' nmax = ', nmax 
  stop 
 endif 
c store mean square displacements in xmsd 
 allocate (time_vec(1:norigin), xmsd(1:norigin,1:3)) 
 do i = 1, norigin, 1 
  time_vec(i) = dfloat(i*kmsd)*dt 
 enddo 
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 xmsd = 0.d0 
 do i = 1, N, 1 
  do j = 1, norigin, 1 
   jstart = (j-1)*N + i 
   do k = nmin, nmax, 1 
    kend = jstart + k*N 
    xmsd(k,1:3) = xmsd(k,1:3) +  
     &    (md_msd(kend,1:3) - md_msd(jstart,1:3) )**2 
   enddo 
  enddo 
 enddo 
 xmsd = xmsd/dfloat(N*norigin) 
c 
c perform a linear least squares regression 
c 
 do i = 1, 3, 1 
  call dllsr(slope(i), slopesd(i), yinter(i), yintersd(i), 
     &    nmax-nmin+1, time_vec(nmin:nmax), xmsd(nmin:nmax,i)) 
 enddo 
c 
c report results 
c 
 cname(1) = 'x  ' 
 cname(2) = 'y  ' 
 cname(3) = 'z  ' 
 cname(4) = 'avg' 
 do i = 1, 3, 1 
  write(6,1007) cname(i), slope(i), yinter(i) 
  write(1,1007) cname(i), slope(i), yinter(i) 
 enddo 
 1007 format(a3, ' slope = ', e16.8, ' y-intercept = ', e16.8,  
     & ' A^2/fs') 
 Dav(1:3) = 0.5d0*slope(1:3)*1.0d-5 ! convert to m^2/sec 
 Dsd(1:3) = 0.5d0*slopesd(1:3)*1.0d-5 ! convert to m^2/sec 
 Dav(4) = sum(Dav(1:3))/3.d0 
c     standard deviation of average diffusivity 
 term1 = 3.d0*(Dav(1)*Dav(1) + Dav(2)*Dav(2) + Dav(3)*Dav(3) ) 
 Dsd(4) = sqrt( (term1 - Dav(4)*Dav(4)*9.d0) /6.d0 ) 
 do i = 1, 4, 1 
  write(6,1006) cname(i), Dav(i), Dsd(i) 
  write(1,1006) cname(i), Dav(i), Dsd(i) 
 enddo 
 1006 format(a3, ' diffusivity avg = ', e16.8, ' stand dev = ', e16.8,  
     & ' m^2/sec ') 
c 
c write xmsd vs time data for later plotting 
c 
 do i = 1, norigin, 1 
  write(1,1008) time_vec(i), xmsd(i,1:3) 
 enddo 
 1008 format(4(e16.8,1x)) 
 close (unit=1,status='keep') 
 close (unit=2,status='keep') 
 stop 
 end 
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 subroutine dllsr(slope, slopesd, yinter, yintersd, n, x, y) 
 implicit double precision (a-h, o-z) 
 double precision, intent(out) :: slope, slopesd, yinter, yintersd 
 integer, intent(in) :: n 
 double precision, intent(in), dimension(1:n) :: x, y 
 xn = dfloat(n) 
 xavg = sum(x)/xn 
 yavg = sum(y)/xn 
 sumxy = 0.d0 
 sumxx = 0.d0 
 sumx2 = 0.d0 
 do i = 1, n, 1 
  sumxy = sumxy + (x(i) - xavg)*(y(i) - yavg) 
  sumxx = sumxx + (x(i) - xavg)*(x(i) - xavg) 
  sumx2 = sumx2 + x(i)*x(i) 
 enddo 
 slope = sumxy/sumxx 
 yinter = yavg - slope*xavg 
 sse = 0.d0 
 do i = 1, n, 1 
  sse = sse + (y(i) - slope*x(i) - yinter)**2.d0 
 enddo 
 sig2 = sse/dfloat(n-2) 
 slopesd = dsqrt(sig2/sumxx) 
 yintersd = dsqrt(sig2/dfloat(n)*sumx2/sumxx) 
 return 
 end 
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Appendix B.  Self Diffusion Code in MATLAB  
 
function get_diff 
 
maxstp = 2000; % number of data production steps 
kmsd = 10;  % sampling interval 
N = 27;   % number of molecules 
dt = 1.0;   % timestep (fs) 
 
load('md_msd.out') 
ndata = length(md_msd) 
 
% number of times represented in data 
ntime = ndata/N; 
 
% number of origins is half number of time steps 
norigin = floor(ntime-1)/2; 
 
% minimum number of intervals to contribute to diffusivity 
nmin = 50; 
% maximum number of intervals to contribute to diffusivity 
nmax = norigin; 
if (nmin > norigin)  
   nmin = nmax; 
end 
 
% store mean square displacements in xmsd 
time_vec= [dt:dt:norigin*dt]'; 
xmsd = zeros(norigin,3); 
for i = 1:1:N 
   for j = 1:1:norigin 
      jstart = (j-1)*N + i; 
      for k = nmin:1:nmax 
         kend = jstart + k*N; 
         %term = (md_msd(kend,1) - md_msd(jstart,1) ).^2; 
         %fprintf(1, 'i %i j %i jstart %i k %i kend %i term %e  %e %e\n',i,j,jstart,k,kend, term, 
md_msd(kend,1), md_msd(jstart,1)); 
         xmsd(k,1:3) = xmsd(k,1:3) + (md_msd(kend,1:3) - md_msd(jstart,1:3) ).^2; 
      end 
   end 
end 
xmsd = xmsd/(N*norigin); 
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[Px,Sx] = POLYFIT(time_vec(nmin:1:nmax),xmsd(nmin:1:nmax,1),1); 
[Py,Sy] = POLYFIT(time_vec(nmin:1:nmax),xmsd(nmin:1:nmax,2),1); 
[Pz,Sz] = POLYFIT(time_vec(nmin:1:nmax),xmsd(nmin:1:nmax,3),1); 
fprintf(1, 'x:  slope = %e intercept = %e \n',Px); 
fprintf(1, 'y:  slope = %e intercept = %e \n',Py); 
fprintf(1, 'z:  slope = %e intercept = %e \n',Pz); 
 
D(1) = 0.5*Px(1)*1.0e-5; % convert to m^2/sec 
D(2) = 0.5*Py(1)*1.0e-5; % convert to m^2/sec 
D(3) = 0.5*Pz(1)*1.0e-5; % convert to m^2/sec 
Dav = sum(D)/3; 
sd = zeros(3,1); 
sdav = 0.0; 
fprintf(1, 'x: diffusivity  average = %e stand dev = %e  m^2/sec\n',D(1),sd(1)); 
fprintf(1, 'y: diffusivity  average = %e stand dev = %e  m^2/sec\n',D(2),sd(2)); 
fprintf(1, 'z: diffusivity  average = %e stand dev = %e  m^2/sec\n',D(3),sd(3)); 
fprintf(1, 'avg: diffusivity  average = %e stand dev = %e  m^2/sec\n',Dav,sdav); 
 
 
xmod(:,1) = Px(2) + Px(1)*time_vec; 
xmod(:,2) = Py(2) + Py(1)*time_vec; 
xmod(:,3) = Pz(2) + Pz(1)*time_vec; 
figure(1) 
plot(time_vec,xmsd(:,1),'k-'); 
hold on; 
plot(time_vec,xmsd(:,2),'r-'); 
hold on; 
plot(time_vec,xmsd(:,3),'b-'); 
hold on; 
plot(time_vec,xmod(:,1),'k:'); 
hold on; 
plot(time_vec,xmod(:,2),'r:'); 
hold on; 
plot(time_vec,xmod(:,3),'b:'); 
hold off; 
legend('x: sim', 'y: sim', 'z: sim','x: mod', 'y: mod', 'z: mod'); 
ylabel('mean square displacement (Angstroms^2)'); 
xlabel('time (fs)'); 
 
 
figure(2) 
time_vec2= [0:dt:(ntime-1)*dt]'; 
plot(time_vec2,md_msd(1:N:ndata,1),'k-'); 
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hold on; 
plot(time_vec2,md_msd(1:N:ndata,2),'r-'); 
hold on; 
plot(time_vec2,md_msd(1:N:ndata,3),'b-'); 
hold off; 
legend('x ', 'y ', 'z '); 
ylabel(' atom 1 position (Angstroms)'); 
xlabel('time (fs)'); 
 
 


