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I.  Introduction 
 
 The objective of these notes is to provide a self-contained tutorial for people who wish to 
learn the basics of molecular dynamics simulations.  The final goal of these notes is that the 
student be able to sit down at a machine and execute a molecular dynamics code describing a 
single-component fluid at a specified temperature and density. 
 
 These notes are intended for people who have the following characteristics: 
 

• a basic understanding of classical mechanics, 
• a basic understanding of the molecular nature of matter, 
• a sound understanding of calculus and ordinary differential equations, 
• an understanding of the basic concepts underlying the numerical methods involved in 

computationally solving ordinary differential equations, 
• a working familiarity with a structured programming language, such as FORTRAN, and 
• a fundamental drive to understand the world from a methodical point of view. 

 
 Molecular Dynamics (MD) is a method for computationally evaluating the 
thermodynamic and transport properties of materials by solving the classical equations of motion 
at the molecular level.  Molecular Dynamics is not the only method available for achieving this 
task.  Nor is MD the most accurate, nor in some instances, the most efficient.  However, MD is 
the most conceptually straightforward method, and an altogether very utilitarian method for 
obtaining thermodynamic and transport properties. 
 
 The purpose of these notes is to provide a brief hands-on introduction to the molecular 
dynamics.  Several textbooks to aid in this endeavor have been published.  Haile’s “Molecular 
Dynamics Simulation” provides a good basic introduction to molecular dynamics.[1]  It is the 
text from which I learned molecular dynamics.  Allen and Tildesley’s “Computer Simulation of 
Liquids” provides an excellent introduction to both molecular dynamics and Monte Carlo 
methods, including brief exposure to more advanced methods, such as the treatment of internal 
degrees of freedom.[2]  Frenkel and Smit’s “Understanding Molecular Simulation” has also 
proven to be a useful resource, supplementing gaps in the other two texts.[3]
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II.  Classical Mechanics:  Newton’s Equation of Motion 
 
 The classical mechanics that we need to know is due to Sir Isaac Newton.  The physical 
world is described by classical mechanics when things move slow enough and are small enough 
that we don’t have to worry about relativity and things move fast enough and are large enough 
that we don’t have to worry about quantum effects.  From one point of view, classical mechanics 
describes an infinitely large set of problems.  From another point of view, classical mechanics 
fail to describe an infinitely large set of problems. 
  Newton’s equations of motion, generally thought of as equating force, F, to the product 
of mass, m, and acceleration, a, 
 
 maF =           (1) 
 
is one statement of the classical equations of motion.  A second and completely equivalent 
statement can be obtained from a function called the Lagrangian.  In this case, we start with the 
Lagrangian, which is the difference between the kinetic and potential energy. 
 
 ( ) ( ) ( )rUrTr,rL −= &&          (2) 
 
where L is the Langrangian, T is the kinetic energy and U is the potential energy.   We have 
assumed that the kinetic energy is only a function of velocity and the potential energy is only a 
function of position.  We don’t have to assume this, but this is how it usually turns out.  The 
Lagrangian is a function of position, r , and velocity, r& .  The equation of motion is obtained by 
evaluating 
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If we consider a spherical particle with mass m, then the translational kinetic energy is  
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By definition the force is the negative of the gradient of the potential, 
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Substituting equation (4) and (5) into equation (3) and evaluating the derivatives, we have 
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Equation (6) is just a restatement of Newton’s second law in terms of the kinetic energy and 
potential energy.  This reformulation is necessary, since generally, we are given the potential 
energy function, rather than the force. 
 We recognize that equation (6) is a system of second-order (generally nonlinear) ordinary 
differential equation.  It is a system because the equation is a vector equation, with an equation 
for each dimension of three-dimensional space, i.e. 3 equations, one each for x, y, and z.  As 
such we can solve it if we have two initial conditions per dimension,  
 
 ( ) oo rttr ==   and   ( ) oo rttr && ==      (7) 
 
In other words, we need to know the position and velocity in each dimension at an initial time. 
 Newton’s equations of motion are called “deterministic”, because given the position and 
velocity at a given time, all past and future positions and velocities can be uniquely determined. 
 Generally, we solve this system of ordinary differential equations for N molecules.  In 
this case, we have 3N second-order ordinary differential equations and 6N initial conditions.  In 
typical molecular dynamics simulations, N can vary from 102 to 109, depending upon the 
computational resources available. 
 
 A good and time-tested reference for brushing up on your classical mechanics is 
reference 4. 
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III.  Intermolecular Potentials 
 
 The only piece of information that is lacking in equation (6) is a functional form of the 
potential energy function, U.  The functional form of the potential energy has to be derived from 
a subatomic theory of physics and chemistry based on the specific identity of the molecule.  
Invariably, the potential includes parameters that are fit either to (1) experimental data or (2) 
quantum calculations.  Both procedures are used.   
 The potential energy is generally split up into intermolecular and intramolecular 
components.  Intermolecular interactions include (i) electron cloud repulsion, (ii) attractive van 
der Waal’s dispersion, and (iii) Coulombic interactions between distinct molecules or atoms of 
the same molecule separated by a substantial distance (such as atoms in different parts of a 
polymer chain).  Intramolecular forces include (i) chemical bond-stretching, (ii) bond-bending, 
and (iii) bond torsion around a dihedral angle.  We only need to consider intramolecular forces 
when the molecules have non-negligible internal degrees of freedom.  Internal degrees of 
freedom include vibration and rotation about a chemical bond.  Monatomic fluids like Ar have 
no internal degrees of freedom.  Polyatomic fluids like O2, N2, and CH4 can be considered as 
“pseudo-atoms” or “united atoms”, that is we can neglect the internal degrees of freedom.  For 
larger atoms, we cannot neglect the internal degrees of freedom and must include an 
intramolecular potential energy.  In this introduction to molecular dynamics, we concern 
ourselves only with species for which we can neglect internal degrees of freedom. 
 For simple fluids, we are interested only in the intermolecular potential.  These potentials 
are generally characterized as pair-wise potentials or many-body potentials.  Pair-wise potentials 
assume that the total potential energy can be obtained by summing up the interactions between 
all combinations of pairs of atoms.  Fluids can be well described by pair-wise potentials. 
 Many-body potentials include, in addition to pair-wise terms, contributions stemming 
from the interaction of three or more atoms.  The Embedded-atom model, used to describe Cu 
and many other metals, is one example of a many-body potential, because it included 3-body 
terms.  Without the inclusion of these higher-body terms, a potential cannot correctly predict the 
crystal structure of Cu and other metals.   
 In this hand-out, we are going to restrict ourselves to materials which can be described by 
pair-wise potentials.  There are a wide variety of pair-wise potentials in the literature.  One that 
is commonly used is the Lennard-Jones potential, defined as 
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where rij is the magnitude of the distance between the centers of atom i and j,  
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and where ε is the well-depth of the interaction potential, and σ is the collision diameter.  A plot 
of the Lennard Jones potential for Argon (ε/kb= 119.8 K and σ = 3.405 Å) is shown in Figure 1.   
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Figure 1.  The Lennard-Jones pair-wise potential for Argon. 
 
The Lennard Jones potential has the correct qualitative features.  At infinite separation, the 
interaction potential is zero, because the atoms are too far away to interact appreciably.  As the 
atoms approach each other, “van der Waal’s dispersion forces” cause a attractive interaction (as 
indicated by a negative energy).  As the atoms get too far, electron cloud repulsion causes a steep 
repulsive interaction.  The minimum in the energy has a value of ε. 
 This potential is only for a single pair of atoms.  The entire potential energy is given by 
the sum over all pairs of atoms, given by 
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where N is the total number of atoms (or pseudo-atoms).  The second formulation of the 
summation yields the same result but is computationally more efficient. 
 The force on an atom due to the pairwise interaction is determined by the definition of 
the force in equation (5). 
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The force on particle j for the same pairwise interaction is the opposite of the force on particle I,  
 
 ij,LJji,LJ FF −=          (11) 
 
The total force on a particle i is simply given by applying the gradient in equation (10) through 
the entire summation in equation (9), yielding 
 

 ∑
≠
=

=
N

ij
1j

ij,LJi FF           (12) 

 
Thus we have the force necessary to complete the ordinary differential equations which state the 
classical equations of motion. 
 
 The calculation of the force and the potential energy is performed in the subroutine 
funk_force.f (FORTRAN 90) and the function funk_force.m (MATLAB) included in the 
appendices at the end of this hand-out . 
 
 An old and well-loved resource for obtaining parameters for the Lennard-Jones potential 
is “Molecular Theory of Gases and Liquids” by Hirschfelder, Curtis, and Bird.[5]  Bird, Stewart, 
& Lightfoot has some Lennard-Jones parameters as well.[6] 
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IV. Initial Conditions 
 
 In order to solve the ordinary differential equations, we need to have an initial condition 
for the position and velocity of each atom (or pseudo-atom) in each dimension, typically 3 for 3-
dimensional simulations.  One can begin the simulations in any old configuration.  By 
configuration, we mean combination of 3N positions and 3N velocities.  The equilibrium state of 
the system will not depend on the initial conditions unless there are local minima in the Gibbs 
Free Energy (metastable states).  However, there are some standard initial conditions that 
simulators use to initialize molecular dynamics simulations. 
 For the simulation of fluids, generally we begin with the system in a perfect simple cubic 
(SC) or face-centered-cubic (FCC) lattice.  The lattice constants of this fictitious crystalline 
structure are such that the atoms are equally distributed through-out the entire simulation 
volume.  As long as the temperature of the simulation is above the melting temperature of the 
material, the material will gradually “melt” out of this initial configuration.  This initial 
configuration is commonly used for two reasons.  First, it is a well-defined and easily 
reproducible configuration.  Second, it has an advantage over random initial placement in that it 
makes sure not to overlap atoms.  Such overlap in an initial configuration can give rise to highly 
repulsive forces which cause the simulation to “blow up” in the first few time steps. 
 The subroutine funk_ipos.f (FORTRAN 90) and the function funk_ipos.m (MATLAB) 
included in the appendices at the end of this hand-out place the atoms in a simple cubic lattice. 
 
 We also need the velocities of each particle defined at the starting time.  Generally, we 
randomly initialize velocities and enforce two or three stipulations on the velocities. The first 
stipulation is that the translation momentum must be conserved.   The second stipulation is that 
the kinetic energy must be related to the thermodynamic equipartition theorem, namely 
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α        (13) 

 
where the T is specified by the user. 
 These first two constraints are required.  The third stipulation is optional and says that the 
velocity distribution should follow the Maxwell-Boltzmann distribution.  As the system 
equilibrates from the original configuration, this last stipulation will be automatically fulfilled.  
Satisfying it initially might speed up the process of equilibration. 
 The subroutine funk_ivel.f (FORTRAN 90) and the function funk_ivel.m (MATLAB) 
included in the appendices at the end of this hand-out assign initial velocities generated from a 
random number generator, then scaled to have zero net momentum and scaled again to the 
equilibrium temperature. 
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V.  Boundary Conditions 
 
 In general, ordinary differential equation do not require boundary conditions.  They only 
require initial conditions, which we have just stipulated above.  The boundary conditions 
discussed here provide a way to simulate an infinite system (at least on the molecular scale) with 
a few hundred or thousand atoms.  If we consider our simulation volume to be the unit cell of a 
system that is periodically replicated in all three dimensions, then our simulation could be 
considered as an infinite system.   
 This periodicity of the system is implemented by what are called periodic boundary 
conditions.  Periodic boundary conditions are manifested in two ways.  First they are manifested 
in the trajectories of particles.  Second they are manifested in the “minimum image convention”, 
in the computation of pair-wise separation distances used to evaluate the energy and forces.  
References [1] and [2] have good discussions of periodic boundary conditions and the minimum 
image convention.   
 If we consider our simulation volume as a cube in space, with all the N atoms inside the 
cube, then during the course of the simulation, some of the atoms will follow trajectories that 
take it outside the simulation cube.  In order to maintain a constant number of particles, a new 
particle must enter the simulation volume.  In order to ensure conservation of momentum and 
kinetic energy, the new particle must have the same velocity and potential energy as the old 
particle.  Periodic boundary conditions satisfy all of these constraints.   
 Assume our simulation volume is a cube centered (x,y,z) = (L/2,L/2,L/2) with sides of 
length L.  When a particle leaves through a face of the cube at length x=L, a new particle enters 
at x=0 with the same value of y and z positions and the same velocity in all 3 components.  
Analogous statements hold for the y and z dimensions.  Since we only care about the particles in 
our cube, we forget about the old particle and only follow the new particle now.  See Figure 2. 
 Periodic boundary conditions are applied at the end of each time step by the routine pbc.f 
or pbc.m.   
  
 The minimum image convention is a procedure that ensures that the potential energy of 
the new particle is the same as the potential energy of the old particle, thus ensuring the 
conservation of energy.  Because our simulation volume is periodically repeated, the nearest 
image of an atom j to an atom i, may not be the atom j lying in the simulation volume.  Rather, it 
may be an image of j lying in a nearby periodic cell.  See Figure 3. 
 In the computation of the energy and the forces (per equations 8-12), one needs to use the 
separation distance between atom I and the nearest image of atom j, in order to conserve energy.  
The minimum image convention is implemented directly in the evaluation of the energy and 
forces.  It does not require an explicit call to pbc.f. 
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Figure 2.  Periodic Boundary Conditions.  When a molecule leaves the simulation volume, an 
image of the molecule enters the simulation volume. 
 
 

 
 

Figure 3.  Minimum Image Convention.  Here we have a central simulation volume with 
replicated images.  N=3 and there are N(N-1)/2 = 3 neighbor pairs.  The separation of these pairs 
is defined by the minimum separation between atom i and any image of atom j. 
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VI.  Gear Predictor Corrector 
 
 We could use any method we want to numerically solve the system of coupled second-
order nonlinear ordinary differential equations with initial conditions.  For example, we could 
use a method we are already familiar with, like the Euler method or the Classical Fourth-Order 
Runge-Kutta method.  However, we do not use these methods for reasons of accuracy, stability, 
and computational efficiency.  In order to solve a second-order ODE using one of these methods, 
it must be rewritten as a system of 2 first order ODEs.  Also, in order to obtain the higher-order 
accuracy of the Classical Fourth-Order Runge-Kutta, we have to evaluate the ODE (in this case 
the forces) four times.  There are better methods than these, in terms of accuracy, stability, and 
computational efficiency.  Allen & Tildesley provide a good discussion of the most common 
methods used in molecular dynamics.[2]  Here we discuss only one such method. 
 The Gear predictor-corrector (GPC) method is a method that allows us to numerically 
solve a second-order ODE without converting it into a system of first order ODEs.  Moreover, 
the GPC method requires only one evaluation of the forces per time step.  This is of chief 
importance because we will find that the evaluation of forces is the most computationally 
expensive part of the molecular dynamics simulation. 
 Here we describe a fifth-order Gear Predictor-Corrector method appropriate for solving a 
second-order ODE.  The ODE is second order because it has a second derivative in time.  The 
order is fifth order because it is based on a Taylor series that includes all terms out to the fifth 
derivative. 
 Consider a vector of the position and its first five time derivatives, multiplied by the 
factor that will appear before it in a Taylor Series Expansion, 
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where i runs over all molecules from 1 to N, and α can be x, y, or z.  This vector gives the 
position and each derivative so that they all have units of length.  It is not necessary to write the 
equations in this form, but it is a common convention.[1,2,7,8] A Taylor series expansion of α,iq  

is used to predict new values, p
,iq α ,  of the position and the derivatives based on the old values, 

o
,iq α .  This Taylor series expansion can be written in matrix form as 
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The matrix in equation (15) is a Pascal triangle.  One should note that equation (15) has no 
information from the ODE in it.  It is purely a Taylor series expansion based on what the 
position and its derivatives were previously doing. 
 The forces are evaluated at the predicted positions using equations (8)-(12).  These forces 
are used to correct the position and its derivatives, c

iq α  based on the predicted positions. 
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The vector c is simply a vector of constant corrector coefficients.  This vector is multiplied by 
the difference between the acceleration obtained from the evaluation of the forces and the 
predicted acceleration, which is the third element of the vector p

,iq α . 

 The values of the corrector coefficients in c depend upon the order of the ODE, the order 
of the GPC method, and the functional form of the ODE.  They are selected so as to maximize 
stability and minimize error.  For a second-order ODE with a fifth-order GPC method, where the 
forces are strictly a function of position (and not velocity) the corrector coefficients are 
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If the velocity does appear explicitly in the ODE (i.e. the force is a function of velocity), then the 
factor of 3/20 should be replaced by a factor of 3/16. 
 
 The subroutines predictor.f and corrector.f (FORTRAN 90) and the functions predictor.m 
and corrector.m  (MATLAB) included in the appendices at the end of this hand-out perform the 
prediction and correction steps outlined above. 
 
 The family of methods to which the Gear predictor-corrector method belongs is 
rigorously derived in the following two references by Gear.[7,8]  You should be warned that 
these references are not for the faint of heart.  Even repeating Gear’s derivation of the corrector 
coefficients is an extremely nontrivial task.  The values of the corrector coefficients are also 
available elsewhere.[2] 
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VII.  Force Evaluation and Neighbor Lists 
 
 The calculation of the force and the potential energy is performed in the subroutine 
funk_force.f (FORTRAN 90) and the function funk_force.m (MATLAB) included in the 
appendices at the end of this hand-out . 
 There are two main points in which the implementation of the force and potential energy 
evaluation differ from the expressions in equations (8) to (12). 
 The first difference is that equation (9) contains a double summation but the subroutines 
contain a single summation over a neighbor list.  The use of a neighbor list increases 
computational efficiency.  The basic idea is as follows.  For interactions between pairs of 
molecules separated by less than a distance rcut, we calculate the forces and energies explicitly.  
For molecules separated by a distance of rcut or greater, we assume a mean-field.  Thus the 
potential energy is a sum of the short-range intermolecular forces and the long-range 
approximation. 
 

 ( ) LR
N

1i

N

cutrijr
ij
1j

ijLJLRSR UrU
2
1UUU +=+= ∑ ∑

=

≤
≠
=

      (18) 

 
The long-range contribution to the potential energy of the entire system can be explicitly 
calculated if we assume that the fluid is isotropic,  
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For given values of N and V, this long-range term is a constant.  As such, there is no force 
associated with it.   
 Since we have already taken into account the long-range forces, we can now reduce the 
force and energy calculation only to those pairs with a separation within rcut.  In order to use a 
neighbor list, we need a scalar, Nnbr, which is the total number of pairs with separation within 
rcut. Second, we need a matrix, Nnbrlist, which has Nnbr rows and 2 columns.  The first column 
gives the identification number of one molecule which forms the pair and the second column 
gives the identification number of the other molecule in the pair.  In this way, by evaluating the 
forces and energies of the pairs in the Nbrlist, we have all the forces and energies we need to 
integrate the ODEs.  Again, the motivation behind doing this is based on computational 
efficiency. 
 Since it takes some time to generate the neighbor list, we don’t want to do it every step.  
instead, we define a distance rnbr, which is generally a few Angstroms larger than rcut.  We 
include the molecules in the neighbor list if the separation is less than  rnbr, but we don’t include 
them in the force evaluation unless their separation is less than rcut.  Then we only create a new 
neighbor list every knbr time steps.  The idea is that every pair that could possibly be inside a 
distance rcut within the next knbr time steps is included in the neighbor list.  As the simulation 
system becomes large, this neighbor list is much smaller than the total number of possible 
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neighbors, which is N(N-1)/2.  (We will see that using the neighbor list, the number of neighbors 
scales with N rather than N2.) 
 The particular values of  rcut, rnbr, knbr and  are chosen by experience so that the 
approximation of a mean field potential at long-range is not a bad one.  Sample values are given 
in the code below.  
 The neighbor list is created by the subroutine funk_mknbr.f (FORTRAN 90) and the 
function funk_mknbr.m (MATLAB) included in the appendices at the end of this hand-out . 
  
 The second difference between the implementation of the energy and force evaluation 
given in the codes below and the equations is the presence of the minimum image convention.  
We have explained the purpose of the minimum image convention above.  The following lines 
implement the minimum image convention in FORTRAN 90, where our simulation volume is a 
cube with sides of length, side, and where sideh is half of side. 
 
  dis(1:3) = r(i,1:3) - r(j,1:3) 
  do k = 1, 3, 1 
        if (dis(k) .gt.  sideh) dis(k) = dis(k) - side  
   if (dis(k) .lt. -sideh) dis(k) = dis(k) + side 
  enddo 
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VIII.  Sampling and Property Evaluation 
 
 We all know that the solution to a system of N mth-order ODEs is Nm functions of time.  
These functions represent particle positions and velocities in time.  However, this is too much 
data for us to make sense of.  All we want are familiar functions of the data, that we can make 
sense of.  Therefore, we calculate these functions at every ksamp time step and compute average 
values and standard deviations of the functions. 
 These functions can be whatever we want.  In the code below, we sample nprop = 8 
properties:  kinetic energy, potential energy, total energy, temperature, total x-, total y-, total z-
momentum, and pressure.  We choose these properties because they will help us identify whether 
the system is at equilibrium and whether the conservation of energy and momentum are being 
obeyed. 
 The kinetic energy of the system is simply the sum of the individual kinetic energies.  
The potential energy is the sum of pairwise potential energies, plus the long-range correction as 
shown in equation (18).  The total energy is the sum of the kinetic and potential.  The 
temperature is determined from the kinetic energy, using the equipartition function given in 
equation (13).  The total momenta are simply the sum of the individual momenta.  The pressure 
is the only property which is not obvious.  The pressure can be calculated by  
 

 





 −−ρ=






 −ρ=

N3
W

N3
WTk

N3
WTkP LRSR

bb      (20) 

 
where W is the virial coefficient, WSR is the short-range component of the virial coefficient and 
WLR is the long-range component of the virial coefficient.  The short-range component of the 
virial coefficient is given by[1] 
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and the long-range component of the virial coefficient is given by[1]  
 

 





















 σ
−

σπε
−= 3

cut

6

9
cut

122
LR

r
3

r
2

9
96

V
N

2
1W       (22) 

 
 Because we want both the average value and the standard deviation of the properties, we 
need to keep track not only of the cumulative sum of the properties, but also the cumulative sum 
of the squares of the properties, because we will use the following “mean of the square less the 
square of the mean” formula to calculate the standard deviation of the property 
 

 ( )2x2x
2
xx µ−µ=σ=σ         (23) 
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For simplicity, we store the properties in a matrix that is  dimensioned nprop by 6.  The six 
columns correspond to (i) the instantaneous value of the property, (ii) the current cumulative 
sum, (iii) the current cumulative sum of the squares, (iv) the average, (v) the variance, and (vi) 
the standard deviation. 
 The properties are cumulative sums are updated every  ksamp time steps by the subroutine 
funk_getprops.f (FORTRAN 90) and the function funk_getprops.m (MATLAB) included in the 
appendices at the end of this hand-out.  At the end of the equilibration stage (explained in the 
next section) and at the end of the data production stage, we use the subroutine funk_report.f 
(FORTRAN 90) and the function funk_report.m (MATLAB) to calculate the averages and the 
standard deviations of each of the  nprop properties.   
 
Diffusion Coefficients 
 If we would like to calculate diffusion coefficients from this data, then we need mean 
square displacement (MSD) data as a function of time.  The MSD vs time data can be calculated 
from molecule positions.  Of course, we don’t generally have enough memory to save the 
positions every time step, nor is it statistically necessary.  We only need to save the positions 
every kmsd time steps.  A separate code will be used to calculate a self diffusion coefficient from 
this data, after the simulation is finished. 
 The MSD calculations have to be generated from positions that have never had periodic 
boundary conditions (PBCs) applied to them.  Therefore, in the code below, we save the 
positions in two vectors.  The first is r, which has  the PBCs applied.  The second vector is 
rwopbc and stores positions WithOut PBCs. 
 The rwopbc positions are regularly written to a file by the subroutine funk_msd.f 
(FORTRAN 90) and the function funk_msd.m (MATLAB) included in the appendices at the end 
of this hand-out. 
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IX.  Initialization, Equilibration and Data Production 
 
 The main program to run a molecular dynamics simulation is called mddriver.f or 
mddriver.m.  It is divided up into three main sections:  initialization, equilibration, and data 
production. 
 
Initialization 
 
 The portion of the code labeled initialization performs 5 tasks: 
 
1. Define all simulation parameters, such as thermodynamic conditions (N, V, T), Lennard-

Jones parameters (σ, ε), numerical integration constants (∆t, c), various intervals (ksamp, knbr, 
kmsd), and any other necessary parameters. 

2. Assign initial positions. 
3. Assign initial velocities. 
4. Generate initial neighbor list. 
5. Calculate initial potential energy and forces. 
 
These tasks are only performed once. 
 
Equilibration 
 
 The initial positions (some kind of lattice presumable) and the initial velocities (random) 
are not representative of the equilibrium state.  The second part of the program solves the ODEs 
but in order to move from the initial state to an equilibrium state.  The program functions during 
equilibration are for the most part the same as the functions during data production, with a 
couple exceptions.  The main exception is that this data is not equilibrated.  Therefore, we do not 
want to use any of these properties to calculate average properties of the equilibrium system. 
 The Equilibration portion of the code contains a loop which performs the following task 
for maxeqb time steps:  
 
1. Predict new positions. 
2. Calculate potential energy and forces. 
3. Correct new positions. 
4. Apply periodic boundary conditions. 
5. Scale velocities. 
6. Update neighbor list every knbr steps. 
7. Sample properties every ksamp steps. 
8. Generate report of equilibration results when equilibration is over. 
 
 We have discussed each of these steps before, with the exception of step 5.  We still 
sample the properties and report them, even though we will not use them to calculate our 
equilibrium properties, because they can be used to determine if the system has become 
equilibrated. 
 Step 5 is where we scale the velocities.  Scaling the velocities is a non-rigorous way to 
maintain a constant temperature.  In this ensemble, we conserve N, V, and E.  The temperature 
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may change at each step.  If our initial configuration has a higher potential energy than the 
equilibrium state, then as we equilibrate the potential energy drops, but due to the conservation 
of energy, the kinetic energy (and consequently the temperature) increases.  The opposite is also 
true; if our initial configuration yields a very low potential energy, then the temperature will 
drop as we equilibrate.  If we would like to simulate about a particular temperature, then we need 
to scale the velocities so that the temperature is constant.  If we scale velocities, we do not 
conserve energy.  But that is okay, we will only scale during equilibration.  We are not going to 
use the equilibration steps for anything anyway. 
 The subroutine funk_scalev.f (FORTRAN 90) and the function funk_scalev.m 
(MATLAB) included in the appendices at the end of this hand-out perform this velocity scaling. 
 
Data Production 
 
 After we have equilibrated the system, we solve the ODEs and collect those properties of 
interest, which we will use to compute the equilibrium properties of the system.  Since total 
energy (not kinetic energy) is conserved, the temperature will fluctuate.  However, it will 
fluctuate about whatever temperature we scaled to during the equilibration of the system. 
 The data production portion of the code contains a loop which performs the following 
task for maxstp time steps:  
 
1. Predict new positions. 
2. Calculate potential energy and forces. 
3. Correct new positions. 
4. Apply periodic boundary conditions. 
5. Update neighbor list every knbr steps. 
6. Sample properties every ksamp steps. 
7. Save positions to a file every kmsd steps. 
8. Generate report of data production results when the simulation is over. 
 
The only differences between data production and equilibration is that we do not scale the 
velocities during data production and we now save the positions for the calculation of the self-
diffusion coefficient. 
 



D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, October, 2001 

 18

 
 
X.  Checking the Code 
 
 Everyone makes typographical errors.  When typographical or logical errors occur in 
code, they are called bugs.  Every code must go through a process of debugging before you can 
trust the results.  In this section of the code, we outline a couple suggestions for checking that the 
code is trustworthy. 
 The most important check of an MD code is conservation of energy during the data 
production step.  A code can fail to conserve energy for several reasons: 
 

• a bug in the code 
• rcut is too small 
• rnbr is too small or knbr is too large 
• the time step ∆t is too large 

 
 In order to determine if we have a bug in the code, we must make sure that the last three 
problems do not occur.  We can do this by  looking at a small system, say 125 molecules.  In this 
case, the number of pairs is reasonable 125*124/2 = 7750 and we don’t need to use a long range 
approximation.  If our simulation volume is a cube with sides of length side, then we set rcut 
and to rnbr something larger than the maximum possible separation in the system.  The maximum 

possible separation for two points in a cube with periodic boundary conditions is 
2
3  side.  In 

this way, every possible pair is included in the neighbor.  Then the interval of updating the 
neighbor list, knbr, is irrelevant.  We run the code and examine the standard deviations of the 
kinetic energy, potential energy, and total energy for the data production part of the code.  We 
rerun the code for at least two values of ∆t, say 1.0 and 0.1 fs.  
 Because the total energy is conserved,  the standard deviation should ideally be zero.  
Since all energy is either kinetic or potential, as one decreases the other must increase and vice 
versa, so the standard deviations of the kinetic energy and potential energy must ideally be the 
same. 
 Due to the fact that we are using a numerical algorithm to approximate the solution, we 
will have some error from these ideal results.  However, there are a couple features which we can 
check for the conservation of energy.  First the standard deviation of the total energy, E, should 
be much lower than the standard deviation of the kinetic, T, or potential, U, energy (which 
should be about the same).  How much lower depends upon the particular system.  We will give 
a couple examples shortly.   
 
 TUE σ≈σ<<σ          (24) 
 
When we say much less, typically we mean at least two orders of magnitude smaller. 
 IF EQUATION (24) IS NOT SATISFIED, THERE IS A BUG IN THE CODE.  That’s 
all there is to it.  You may try to convince yourself that there is some other problem, but you are 
just covering up a bug in the code.  Every simulation you run with a code that does not satisfy 
equation (24) is a bogus simulation.   
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 This is not to imply that a code which satisfies equation (24) is bug free.  On the contrary, 
there can be other bugs.  But a wide variety of bugs can be discovered by checking the criteria in 
equation (24). 
 
 Further checking can be performed by simulating a system (like a relatively low density 
gas) that you have experimental data or a reliable theory for.  Then checking the particular 
values of the energy, pressure, and heat capacity can confirm that the simulation is running well. 
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XI.  An Example 
 
Simulate Pure Gas-Phase Methane at T=298 K and P=1 atm 
 In a standard (microcanonical:  specify N, V, & E) molecular dynamics simulation, we do 
not specify the pressure.  Therefore, the best we can do here is specify a density that is close to a 
pressure of 1 atm.  To do this we can, for example, use the van der Waal’s equation of state to 
predict the vapor density (units of molecules per Å3) for methane at T=298K and P = 1atm.  Our 
friend vdW EOS yields ρ =  2.468x10-5 molecules/Å3 which for a system of N = 125 molecules 
yields a system volume =  5.065x106 Å3.  The side of the cube is 171.7 Å and the max separation 
between pairs is 148.8 Å. 
 We equilibrate this system for 10 ps (5000 equilibrium steps @ 2 fs time steps) and 
produce data for 100 ps (50,000 data production steps @ 2 fs time steps).  
 
 Let’s examine program output 1.  First we see that we have 7750 neighbor pairs, as we 
knew that we should, since we have made rcut large enough to include every one of the N*(N-
1)/2 possible molecule pairs.  We are periodically printing out the kinetic energy, potential 
energy, and total energy every 5000 steps.  If we look at the summary of the data for the 
equilibration period, we see that the average temperature was 298 K and the standard deviation 
was zero.  This is because we scaled the temperature during equilibration.  Energy is not 
conserved with velocity scaling.   
 Momentum however, should be conserved, even during velocity scaling.  The average 
velocity of a particle can be obtained from equation (13). 
 

 
m

Tkv b=           (25) 

 
This velocity is averaged not only over particles but also over x, y, and z.  In the natural units of 
the code, the average velocity is1.57x10-2 Å/fs.  The average momentum in natural units is 4.19 
aJ*fs/Å, where aJ is an attoJoule, or 10-18 Joules.  From the data output, we see that the total 
momentum is of the order of 10-12 .  Therefore, we have conserved momentum to 12 significant 
figures.  Excellent. 
 During production we see that the standard deviations of the kinetic energy and the 
potential energy are of the order of magnitude of 10-3 and the standard deviation of the total 
energy is of the order of magnitude of 10-7.  Thus we have satisfied equation (24). 
 Let’s check a thermodynamic property from the code.  From statistical mechanics, we 
know that the total energy of a van der Waal’s gas is given by: 
 

 aNTNk
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Theoretically, the constant volume heat capacity, Cv, is given by  
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One can obtain the heat capacity from the standard deviation of the potential energy  
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In Table 1, we compare the thermodynamic properties from the van der Waal’s theory and the 
simulation.  The result should be pretty good, because we are nearing the ideal gas limit, where 
the van der Waal’s equation of state should do well. 
 
Table 1.  Comparison of Theoretical and Simulation Thermodynamic Properties for gaseous 
Methane at T = 298 K and ρ = 40.98 mole/m3. 
 
property theory simulation (1) percent error 
kinetic energy (aJ) 7.714x10-1 7.717x10-1 3.913x10-2 
potential energy (aJ) -1.959x10-3 -1.927x10-3 1.612 
total energy (aJ) 7.695x10-1 7.695x10-1 4.334x10-2 
Cv (aJ/K) 2.589x10-3 2.591x10-3 7.293x10-2 
Pressure (aJ/Å3) 1.013x10-7 1.015x10-7 0.1872 
 
 The code checks out on all counts.   
 
Simulate Pure Liquid-Phase Methane at T=150 K and P=1 atm 
 
 Now let us repeat the example for a liquid.  Since the critical temperature of methane is 
190.6 K, in order to observe a liquid, we need a temperature less than 190.6 K.  We select a 
temperature of 150 K and a pressure of 1 atm.  (Whether the liquid is the stable phase at this 
combination of T and P is immaterial.  We can simulate it anyway.) 
 Again, in a standard molecular dynamics simulation, we do not specify the pressure.  
Therefore, the best we can do here is specify a density that is close to a pressure of 1 atm.  To do 
this we can, for example, use the van der Waal’s equation of state to predict the liquid density 
(units of molecules per Å3) for methane at T=150 K and P = 1 atm.  Our friend vdW EOS yields 
ρ =  8.832x10-3 molecules/Å3 which for a system of N = 125 molecules yields a system volume =  
1.415x104 Å3.  The side of the cube is 24.2 Å and the max separation between pairs is 21.0Å. 
 We equilibrate this system for 10 ps (5000 equilibrium steps @ 2 fs time steps) and 
produce data for 100 ps (50,000 data production steps @ 2 fs time steps).  
 In program output 2, we see that momentum is still conserved to the same degree that it 
was in the liquid simulation.  We see that equation (24) is satisfied because the standard 
deviation of the total energy is five orders of magnitude less than the standard deviation of the 
kinetic or potential energy.   
 We can also check the thermodynamic properties.  In Table 2, the percent errors are fairly 
large. This is not due to a problem with the simulation code.  Rather, this discrepancy is due to 
the fact that the van der Waal’s equation of state (from which we obtain our theoretical values) is 
not very accurate for liquid phases.  But we can see at least, that our values from the simulation 
are the right order of magnitude. 
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Table 2.  Comparison of Theoretical and Simulation Thermodynamic Properties for liquid 
Methane at T = 150 K and ρ = 1.467x104 mole/m3. 
 
property theory simulation (2) percent error 
kinetic energy (aJ) 3.883x10-1 3.825x10-1 1.508 
potential energy (aJ) -7.011x10-1 -8.325x10-1 18.75 
total energy (aJ) -3.127x10-1 -4.501x10-1 43.91 
Cv (aJ/K) 2.589x10-3 3.532x10-3 36.45 
Pressure (aJ/Å3) 1.013x10-7 -3.070x10-6 * 3131 
 
 The code checks out on all counts, except the pressure.  Here we have a negative 
pressure.  A negative pressure indicates that the liquid phase is not the stable phase at this 
temperature.  To validate this, we can resolve the vdW EOS for the  vapor phase at 150 K and 1 
atm.  We run the simulation at the vapor density predicted by the van der Waals equation of 
state, which is 2.020x104 Å3/molecule, and the simulation yields a pressure of 1.021x10-7 aJ/Å3. 
 We can calculate reasonable pressures for the liquid phase if the liquid phase is the stable 
phase.  In order to check that we were calculating the pressure correctly, we duplicated 
simulation results reported in reference 1. 
  
 
* The pressure has a great deal more fluctuations than the energy.  In order to obtain the pressure 
accurately, we reran the simulation with 512 molecules, 10,000 equilibration steps, and 100,000 
production steps.
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 initially we have         7750 neighbor pairs 
**********          equilibration Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.77144378E+00   0.77144378E+00   0.00000000E+00 
Potential Energy (aJ)   -0.16255502E-02  -0.10080020E-02   0.13536733E-02 
Total Energy (aJ)        0.76981822E+00   0.77043577E+00   0.13536733E-02 
Temperature (K)          0.29800000E+03   0.29800000E+03   0.00000000E+00 
x-Momentum              -0.48290790E-13   0.10353410E-12   0.60053346E-13 
y-Momentum              -0.31007770E-12  -0.10467888E-12   0.95734796E-13 
z-Momentum              -0.16936435E-12  -0.69707408E-13   0.85013246E-13 
**********          production    Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.77404763E+00   0.77174564E+00   0.15209792E-02 
Potential Energy (aJ)   -0.42294074E-02  -0.19274171E-02   0.15209793E-02 
Total Energy (aJ)        0.76981823E+00   0.76981823E+00   0.38857474E-06 
Temperature (K)          0.29900584E+03   0.29811661E+03   0.58753707E+00 
x-Momentum               0.50029489E-12   0.32658729E-12   0.21016618E-12 
y-Momentum              -0.71304008E-12  -0.31733669E-12   0.24665049E-12 
z-Momentum              -0.74065132E-12  -0.56415994E-12   0.26751536E-12 
 Program has used   427.074107870460     seconds of CPU time. 
 This includes   426.9840    seconds of user time and  9.0129599E-02 seconds of system time. 
 
Program Output 1:  Checking for conservation of energy in gaseous methane, ∆t = 2 fs. 
  
 
  initially we have         7750 neighbor pairs 
**********          equilibration Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.38831062E+00   0.38831063E+00   0.00000000E+00 
Potential Energy (aJ)   -0.83837819E+00  -0.82769051E+00   0.21438959E-01 
Total Energy (aJ)       -0.45006756E+00  -0.43937988E+00   0.21438959E-01 
Temperature (K)          0.15000000E+03   0.15000000E+03   0.00000000E+00 
x-Momentum              -0.27264656E-13  -0.32597504E-13   0.12824085E-13 
y-Momentum               0.51121231E-13   0.31560640E-13   0.16353686E-13 
z-Momentum              -0.84220061E-13  -0.41557694E-13   0.32067904E-13 
**********          production    Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.38532780E+00   0.38245442E+00   0.14656641E-01 
Potential Energy (aJ)   -0.83539469E+00  -0.83252270E+00   0.14656595E-01 
Total Energy (aJ)       -0.45006689E+00  -0.45006828E+00   0.77659571E-06 
Temperature (K)          0.14884777E+03   0.14773782E+03   0.56616947E+01 
x-Momentum               0.40521518E-13  -0.34630954E-13   0.37970081E-13 
y-Momentum               0.20800853E-12   0.21680954E-12   0.74560013E-13 
z-Momentum               0.18184139E-12  -0.12192550E-13   0.10744804E-12 
 Program has used   423.949600785971     seconds of CPU time. 
   This includes   423.8495    seconds of user time and  0.1001440 seconds of system time. 
 
Program Output 2:  Checking for conservation of energy in liquid methane, ∆t = 2.0 fs. 
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XII.  Benchmarking for Computational Efficiency and Numerical Accuracy 
 
Size of Time step 
 We want to run our simulation for a long time because the longer we run the simulation, 
the better our statistical averaging will be.  To this end, we wish to maximize the size of the time 
step.  On the other hand, we know that the numerical algorithm used to integrate the ODE will 
become inaccurate and unstable at large time steps.  The trick is to find the largest time step that 
still yields reasonable accuracy.  
 We will use the standard deviation of the total, kinetic, and potential energies to gauge 
the accuracy of the solution, since the first should be zero and the last two should be equal.  In 
Figures 4 and 5, we plot the standard deviations of the kinetic, potential, and total energy for the 
gas-phase and liquid-phase methane examples simulated above as a function of time step.  In all 
cases, we run 5000 equilibration steps and 50,000 production steps.  Also in all cases, we have 
125 molecules in the simulation.  Since the time step changes, the duration of the simulation 
changes.  For both the gas and the liquid, we see three regimes.   
 In Figure 4, we see that at very small time steps, the simulation does not run long enough 
to provide a good statistical representation of equilibrium.  There have been no collisions in the 
simulation so the standard deviation of the kinetic and potential energies are very small.  The 
code cannot report a standard deviation smaller than 10-8 because we only have sixteen digits of 
accuracy and are using the “the mean of the square less the square of the mean” formula to 
calculate the variance.  In the second region, the standard deviation of the total energy is several 
orders magnitude smaller than the standard deviation of the potential or kinetic energies.  
Therefore, these time steps provide good energy conservation and good simulations.  In the third 
region, the time step is simply too large to conserve energy. 
 In Figure 5, we just see regions 2 and 3.  We do not observe region 1 since collisions 
occur in a much shorter time span in the liquid than in the gas phase.  If we picked a ridiculously 
small value for the time step, we should see a region 1.   
 The ideal time step for computational efficiency is taken from the high side of region 2.  
Typical values are something like 2 fs. 
 All of these simulations took 350 to 450 seconds of cpu time on a Pentium III 600 MHz 
processor.  The variation in cpu time is due to other processes running in the background.  We 
will perform a more rigorous timing study shortly. 
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Figure 4.  Standard Deviations for total, kinetic, and potential energies as a function of step size for gas-phase methane.
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Figure 5.  Standard Deviations for total, kinetic, and potential energies as a function of step size for liquid-phase methane.
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Number of Time Steps 
 For a given size of time step, we need to know how long to run the simulation in order to 
get reasonable results.  The answer is system dependent.  One should run the simulation for 
various durations and examine the dependence on the thermodynamic properties.  One needs a 
long enough simulation such that the thermodynamic properties are not a function of the number 
of steps.  Both the equilibration and data production sections of the code need to be run for 
sufficiently long periods of time. 
 For a system of N = 125 methane molecules at the liquid phase conditions given in the 
example above, with a step size of ∆t = 2.0 fs, we run the simulation for various numbers of 
equilibrium steps and production steps.  In Figure 6, we present the potential energy as a 
function of the number of equilibrium steps and as a function of the number of data production 
steps. 
 
System Size 
 The number of molecules in the simulation affects not only the amount of CPU time 
required but also the accuracy of the results.  The number of molecules must be selected large 
enough that the intensive thermodynamic properties generated by the simulation are no longer a 
function of the number of molecules.  In Figure 8, we plot the potential energy per molecule as a 
function of the number of molecules in the simulation of liquid methane under conditions 
described above.  We observe that 512 and 1000 molecules yield the same result.  Therefore, we 
could use a simulation with 512 molecules. 
 The computational cost of increasing N is displayed in Figure 9.  As the system becomes 
large, we will see that the majority of the simulation time is spent evaluating the energy and 
forces.  Without the use of a neighbor list, we see from equation (9) that the number of neighbor 
pairs scales as N(N-1)/2, thus the computational expense of evaluating the energy scales as N2.  
The CPU time for evaluating the energy should be linearly proportional to the number of 
neighbors and quadratically proportional to N.   
 Using a neighbor list changes the scaling behavior of the computational time for the 
evaluation of the energy and forces to linear in both the number of neighbor pairs and N, by 
eliminating those neighbors too far away to have significant interaction. Figure 9 displays that 
the large system scaling behavior between the CPU time and the number of molecules in the 
simulation is indeed linear. 
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Figure 6.  Total, kinetic, and potential energies for a typical simulation of a liquid.  The simulation must last long enough to include 
many fluctuations in the properties. 
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Figure 7. Average potential energy as a function of number of production steps.  Here 5000 equilibration steps were run for all 
simulations with N=125 and ∆t = 2.0 fs. 
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Figure 8. Average potential energy as a function of number of molecules in the simulation.  Here 5000 equilibration and 50,000 
productino steps were run for all simulations with  ∆t = 2.0 fs. 
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Figure 9. CPU time as a function of number of molecules in the simulation (and corresponding number of neighbor pairs).  Here 5000 
equilibration and 50,000 production steps were run for all simulations with  ∆t = 2.0 fs.  The processor was a Pentium III at 600 MHz.
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CPU Time per subroutine 
 
 The time in a simulation is split between all of the subroutines.  In Table 3, we present 
the division of CPU time for a liquid methane simulation with 125 molecules, 5000 equilibrium 
steps, and 50,000 data production steps. 
 

Table 3:  Division of CPU Time 
 without optimization with optimization 
routine CPU Time (sec) fraction of time CPU Time (sec) fraction of time 
Total 410.37 1.000000 138.60 1.000000
Initialization 0.00 0.000000 0.00 0.000000
Predictor 11.20 0.027284 2.62 0.018930
Forces 364.02 0.887083 126.60 0.913440
Corrector 11.00 0.026796 1.40 0.010115
PBC 1.53 0.003734 0.73 0.005275
Scale Velocities 0.17 0.000415 0.07 0.000506
Make Neighbors 20.89 0.050906 6.50 0.046893
Get Properties 1.45 0.003539 0.54 0.003902
Write Report 0.00 0.000000 0.00 0.000000
Save MSD 0.04 0.000098 0.08 0.000578
Other 0.06 0.000146 0.05 0.000361
 
 We see that 88.7% of the CPU time is spent calculating the forces and energies.  This is 
generally the case.  All efforts at optimization of the code should be directed to this subroutine.  
The neighbor list, which was updated every 10 steps, consumed 5% of the time.  The predictor 
and corrector sum to about 5% of the CPU time.  Everything else is trace amounts. 
 
CPU Time and Compiler Optimization 
 Every decent compiler has the ability to optimize source code during compilation.  This 
optimization rearranges the order of the source lines in ways that allow them to be executed 
faster.  Ideally, optimization does not change the results of the simulation.  However, this always 
needs to be verified manually.  The code must be run without compiler optimization and with 
compiler optimization, before trusting the optimization.  MATLAB does not compile code; it 
does not have an optimizer. 
 The FORTRAN compiler that we are using in this package of notes is Compaq Visual 
Fortran Professional Edition Version 6.5.0 on a machine running Windows 2000 operating 
system.   
 We run our base case, N = 125, rcut = 15 Å, knbr = 10, ∆t = 2.0 fs, maxeqb = 5000, maxstp 
= 50,000.   Comparing program output 3 and program out 4,we see that every property is 
identical with the exception of the CPU time.  Optimization reduced the CPU time from 425 
seconds without optimization to 138 seconds.  In under three minutes, you can perform a 
complete molecular dynamics simulation of a liquid.  That is pretty fast.  The reduction is 67.5%.  
This sort of improvement is typical of good compilers. 
 In Table 4 we show the distribution of CPU time among the various subroutines when the 
optimization has been turned on.  The distribution is very similar to that in the unoptimized case. 
  



D. Keffer, Dept. of Chemical Engineering, University of TN, Knoxville, October, 2001 

 33

 
   
 funkipos: N =          125 ni =            5 
  initially we have         7750 neighbor pairs 
**********          equilibration Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.38831063E+00   0.38831063E+00   0.00000000E+00 
Potential Energy (aJ)   -0.84616792E+00  -0.82832938E+00   0.18538254E-01 
Total Energy (aJ)       -0.45785729E+00  -0.44001876E+00   0.18538254E-01 
Temperature (K)          0.15000000E+03   0.15000000E+03   0.00000000E+00 
x-Momentum              -0.51178995E-13  -0.16759738E-13   0.36509092E-13 
y-Momentum              -0.58283979E-13  -0.30791216E-13   0.19534002E-13 
z-Momentum               0.11333317E-12   0.54561265E-13   0.32809937E-13 
**********          production    Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.35736819E+00   0.37523125E+00   0.15218465E-01 
Potential Energy (aJ)   -0.81525473E+00  -0.83309273E+00   0.15223265E-01 
Total Energy (aJ)       -0.45788654E+00  -0.45786148E+00   0.40934097E-04 
Temperature (K)          0.13804729E+03   0.14494758E+03   0.58787209E+01 
x-Momentum               0.15844693E-12   0.33025018E-13   0.86964724E-13 
y-Momentum              -0.11391081E-12  -0.66959452E-13   0.65567218E-13 
z-Momentum              -0.38182072E-13   0.30401182E-13   0.64026361E-13 
 Program has used   425.551919668913     seconds of CPU time. 
   This includes   425.5319    seconds of user time and  2.0028800E-02 seconds of system time. 
 
Program Output 3: Output without optimization. 
 
 
 funkipos: N =          125 ni =            5 
  initially we have         7750 neighbor pairs 
**********          equilibration Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.38831063E+00   0.38831063E+00   0.00000000E+00 
Potential Energy (aJ)   -0.84616792E+00  -0.82832938E+00   0.18538254E-01 
Total Energy (aJ)       -0.45785729E+00  -0.44001876E+00   0.18538254E-01 
Temperature (K)          0.15000000E+03   0.15000000E+03   0.00000000E+00 
x-Momentum              -0.51178995E-13  -0.16759738E-13   0.36509092E-13 
y-Momentum              -0.58283979E-13  -0.30791216E-13   0.19534002E-13 
z-Momentum               0.11333317E-12   0.54561265E-13   0.32809937E-13 
**********          production    Completed ********** 
property               instant       average       standard deviation 
Kinetic Energy (aJ)      0.35736819E+00   0.37523125E+00   0.15218465E-01 
Potential Energy (aJ)   -0.81525473E+00  -0.83309273E+00   0.15223265E-01 
Total Energy (aJ)       -0.45788654E+00  -0.45786148E+00   0.40934097E-04 
Temperature (K)          0.13804729E+03   0.14494758E+03   0.58787209E+01 
x-Momentum               0.15844693E-12   0.33025018E-13   0.86964724E-13 
y-Momentum              -0.11391081E-12  -0.66959452E-13   0.65567218E-13 
z-Momentum              -0.38182072E-13   0.30401182E-13   0.64026361E-13 
 Program has used   138.619317531586     seconds of CPU time. 
   This includes   138.3690    seconds of user time and  0.2503600 seconds of system time. 
 
Program Output 4:  Output with optimization. 
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CPU Time :  Matlab vs FORTRAN 
 
 FORTRAN is a structured programming language, in which source code (understandable 
to humans but not to processors) is compiled into a format (the object file) which is 
understandable to the processor but not to the humans.  This compilation process allows the code 
to run  much faster. 
 Codes written in MATLAB are not compiled.  Rather the source code is interpreted from 
as is.  This results in slower code.  In fact the code is much slower.  To quantify this discrepancy, 
we can run the same molecular dynamics code in MATLAB and in FORTRAN.    We run the 
base case with N = 125, rcut = 15 Å, knbr = 10, ∆t = 2.0 fs, and maxeqb = 5000. We vary maxstp. 
 The results are summarized in Table Four. 
 

Table Four.  CPU Usage 
production steps equilibrium + 

production steps 
Fortran (with 
optimization) 

Matlab 

1000 6000 15 sec 4439 sec 
10000 15000 38 sec ~ 13 hours 
50000 55000 138 sec forget it. 

 
 
 We can note a few things from this table.  First,  we see that MATLAB runs about 1200 
times slower than FORTRAN.  1200 times!  Can you believe it?  MATLAB is not suitable for 
anything but very small problems. 
 Second we see that FORTRAN scales linearly with the total number (equilibration and 
production combined) of time steps.  Naturally it should scale this way.  Curiously MATLAB 
gets slower per time step as the number of steps increases.  This must be due to some RAM 
problem with MATLAB.  Unbelievable really.
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Appendix  A.  Molecular Dynamics Program in Fortran 
 
 program mddriver 
c 
c  This code performs molecular dynamics simulations  
c  in the canonical ensemble (specify T, V, and N) 
c 
c  Author:  David Keffer 
c  Department of Chemical Engineering, University of TN 
c  Last Updated:  October 6, 2001 
c 
cx global maxstp kmsd N dt 
c************************************************************ 
c  VARIABLE DEFINITIONS AND DIMENSIONS 
c************************************************************ 
 implicit double precision (a-h, o-z) 
 integer, parameter :: N = 512 ! Number of molecules 
 integer, parameter :: nprop = 8 ! number of properties 
 integer, parameter :: maxnbr = N*N/2 ! number of neighbors 
 logical :: lmsd, lscale   ! logical variables 
 character*12 :: cmsd, cout  ! character variables 
 double precision, dimension(1:nprop,1:6) :: props 
 double precision, dimension(1:N,1:3) :: r, v, a, d3, d4, d5 
 double precision, dimension(1:N,1:3) :: f, rwopbc 
 double precision, dimension(1:5) :: dtv 
 double precision, dimension(0:5) :: alpha 
 integer, dimension(1:maxnbr,1:2) :: Nnbrlist 
 double precision :: kb, MW 
 REAL(4), dimension(1:2) :: TA 
c************************************************************ 
c  PROGRAM INITIALIZATION 
c************************************************************ 
c 
c This code uses length units of Angstroms (1.0e-10 s) 
c time = fs (1.0e-15 s) 
c xmass = (1.0e-28 kg) 
c energy = aJ (1.0e-18 J) 
c Temperature = K 
c 
c Specify thermodynamic state 
c 
 T = 150.0d0 ! Temperature (K) 
 Vn = 1.1323d+2 ! Ang^3/molecule (liq at 150 K & 1 atm) 
c 
c Specify Numerical Algorithm Parameters 
c 
 maxeqb = 10000 ! Number of time steps during equilibration 
 maxstp = 100000 ! Number of time steps during data production 
 dt = 2.0d0   ! size of time step (fs) 
c 
c Specify pairwise potential parameters 
c 
 sig = 3.884d0 ! collision diameter (Angstroms) 
 eps = 137.d0 ! well depth (K) 
 MW = 16.0420d0  ! molecular weight (grams/mole) 
 rcut = 15.d0 ! cut-off distance for potential (Angstroms) 
c 
c Specify sampling intervals 
c 
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 ksamp = 1  ! sampling interval 
 knbr = 10  ! neighbor list update interval 
 kwrite = 5000 ! writing interval 
 kmsd = 100  ! position save for mean square displacement 
 rnbr = rcut + 3.d0 
c 
c     Logical Variables 
c 
 lmsd = .false.  ! logical variable for mean square displacement 
 lscale = .true.  ! logical variable for temperature scaling 
c 
c Character Variables 
c 
 cmsd = 'md_msd.out' 
 cout = 'md_sum.out' 
 open(unit=1,file=cout,form='formatted',status='unknown') 
 if (lmsd) then 
  open(unit=2,file=cmsd,form='formatted',status='unknown') 
 endif 
c 
c props 
c first index is property 
c property 1:  total kinetic energy 
c property 2:  total potential energy 
c property 3:  total energy 
c property 4:  temperature 
c property 5:  total x-momentum 
c property 6:  total y-momentum 
c property 7:  total z-momentum 
c property 8:  pressure 
c 
c second index is 
c 1:  instantaneous value 
c 2:  sum 
c 3:  sum of squares 
c 4:  average 
c 5:  variance 
c 6:  standard deviation 
c 
 props(:,:) = 0.d0 
c 
c  Initialize vectors 
c 
c   first index of r is over molecules 
c   second index of r is over dimensionality (x,y,z) 
 r(:,:) = 0.d0  ! position 
 v(:,:) = 0.d0  ! velocity 
 a(:,:) = 0.d0  ! acceleration 
 d3(:,:) = 0.d0  ! third derivative 
 d4(:,:) = 0.d0  ! fourth derivative 
 d5(:,:) = 0.d0  ! fifth derivative 
 f(:,:) = 0.d0  ! force 
 rwopbc(:,:) = 0.d0 ! position w/o pbc 
c 
c************************************************************ 
c  INITIALIZATION PART TWO 
c************************************************************ 
c 
c compute a few parameters 
c 
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 dt2 = dt*dt 
 dt2h = 0.5d0*dt2 
 Vol = dfloat(N)*Vn  ! total volume (Angstroms**3) 
 side = Vol**(1.d0/3.d0) ! length of side of simulation volume (Angstrom) 
 sideh = 0.5d0*side  ! half of the side 
 density = 1.d0/Vn  ! molar density 
 sig6 = sig**6.d0 
 sig12 = sig**12.d0 
 rcut2 = rcut*rcut 
 rnbr2 = rnbr*rnbr 
c stuff for long range energy correction 
 rcut3 = rcut**3.d0 
 rcut9 = rcut**9.d0 
 kb = 1.380660d-5 ! Boltzmann's constant (aJ/molecule/K) 
 eps = eps*kb 
 pi = 2.d0*dasin(1.d0) 
 ulongpre = dfloat(N)*8.d0*eps*pi*density  
 ulong = ulongpre*( sig12/(9.d0*rcut9) - sig6/(3.d0*rcut3) ) 
 vlongpre = 96.d0*eps*pi*density  
 vlong = -vlongpre*( sig12/(9.d0*rcut9) - sig6/(6.d0*rcut3) ) 
c temperature factor for velocity scaling 
 xNav = 6.0220d+23 ! Avogadro's Number 
 xmass = MW/xNav/1000.d0*1.0d+28 ! (1e-28*kg/molecule) 
 xmassi = 1.d0/xmass 
 tfac = 3.d0*float(N)*kb*T*xmassi  ! (Angstrom/fs)**2  
c correction factors for numerical algorithm 
 dtv = dt; 
 do i = 2, 5, 1 
  dtv(i) = dtv(i-1)*dt/dfloat(i) 
 enddo 
 alpha(0) = 3.d0/20.d0 
 alpha(1) = 251.d0/360.d0 
 alpha(2) = 1.d0 
 alpha(3) = 11.d0/18.d0 
 alpha(4) = 1.d0/6.d0 
 alpha(5) = 1.d0/60.d0 
 fact = 1.d0 
 do i = 1, 5, 1 
  fact = fact*dfloat(i) 
  alpha(i) = alpha(i)*dt**(-dfloat(i))*fact 
 enddo 
 alpha = alpha*dt2*0.5d0 
c 
c assign initial positions of  molecules in FCC crystal structure 
c 
 call funk_ipos(N, side, r, rwopbc) 
c 
c assign initial velocities 
c 
 call funk_ivel(N,v,T,tfac) 
c 
c create neighbor list 
c 
 call funk_mknbr(N,r,rnbr2,side,sideh, Nnbr, Nnbrlist, maxnbr) 
 print *, ' initially we have ', Nnbr, ' neighbor pairs' 
c 
c evaluate initial forces and potential energy 
c 
 call funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6,sig12,eps, 
     & f, U, virial, maxnbr) 
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 a = f*xmassi  ! initial acceleration 
 call funk_getprops(N,v,xmass,T,kb,U,props,nprop,density, 
     & virial,ulong,vlong) 
 write (6,1001) 0, props(1:4,1) 
 write (1,1001) 0, props(1:4,1) 
 1001 format(i7,' KE',e16.8,' PE',e16.8,' E',e16.8,' T',e14.7) 
 props = 0.d0 
c************************************************************ 
c  EQUILIBRATION 
c************************************************************ 
 do istep = 1, maxeqb, 1 
c  predict new positions  
  call predictor(N,r,rwopbc,v,a,d3,d4,d5,dtv) 
c  evaluate forces and potential energy 
  call funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6,sig12, 
     & eps, f, U, virial, maxnbr) 
c  correct new positions  
  call corrector(N,r,rwopbc,v,a,d3,d4,d5,f,dt2h,alpha,xmassi) 
c  apply periodic boundary conditions 
  call pbc(N,r,side) 
c  scale velocities 
  if (lscale) then 
   call funk_scalev(N,v,T,tfac) 
  endif 
c  update neighbor list 
  if (mod(istep,knbr) .eq. 0) then 
   call funk_mknbr(N,r,rnbr2,side,sideh,Nnbr,Nnbrlist,maxnbr) 
  endif 
c  sample properties 
  if (mod(istep,ksamp) .eq. 0) then 
      call funk_getprops(N,v,xmass,T,kb,U,props,nprop,density, 
     &        virial,ulong,vlong) 
  endif 
c  write periodic results 
  if (mod(istep,kwrite) .eq. 0) then 
   write (6,1001) istep, props(1:4,1) 
   write (1,1001) istep, props(1:4,1) 
  endif 
 enddo 
c 
c write equilibration results 
c 
 if (maxeqb .gt. ksamp) then 
  call funk_report(N,props,nprop,maxeqb,ksamp,'equilibration') 
 endif 
c************************************************************ 
c  PRODUCTION 
c************************************************************ 
 props = 0.d0 
 lscale = .false. 
 if (lmsd) then 
  call funk_msd(N,rwopbc) 
 endif 
 do istep = 1, maxstp, 1 
c  predict new positions  
  call predictor(N,r,rwopbc,v,a,d3,d4,d5,dtv) 
c  evaluate forces and potential energy 
  call funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6,sig12, 
     & eps, f, U, virial, maxnbr) 
c  correct new positions  
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  call corrector(N,r,rwopbc,v,a,d3,d4,d5,f,dt2h,alpha,xmassi) 
c  apply periodic boundary conditions 
  call pbc(N,r,side) 
c  scale velocities 
  if (lscale) then 
   call funk_scalev(N,v,T,tfac) 
  endif 
c  update neighbor list 
  if (mod(istep,knbr) .eq. 0) then 
   call funk_mknbr(N,r,rnbr2,side,sideh,Nnbr,Nnbrlist,maxnbr) 
  endif 
c  sample properties 
  if (mod(istep,ksamp) .eq. 0) then 
      call funk_getprops(N,v,xmass,T,kb,U,props,nprop,density, 
     &        virial,ulong,vlong) 
  endif 
c  write periodic results 
  if (mod(istep,kwrite) .eq. 0) then 
   write (6,1001) istep, props(1:4,1) 
   write (1,1001) istep, props(1:4,1) 
  endif 
c  save positions for mean square displacement 
  if (lmsd) then 
   if (mod(istep,kmsd) .eq. 0) then 
    call funk_msd(N,rwopbc) 
   endif 
  endif 
 enddo 
 
c 
c write equilibration results 
c 
 if (maxstp .gt. ksamp) then 
  call funk_report(N,props,nprop,maxstp,ksamp,'production   ') 
 endif 
c 
 ttot = ETIME(TA) 
 write(*,*) 'Program has used', ttot, 'seconds of CPU time.' 
 write(*,*) '  This includes', TA(1), 'seconds of user time and',  
     & TA(2), 'seconds of system time.' 
 write(1,*) 'Program has used', ttot, 'seconds of CPU time.' 
 write(1,*) '  This includes', TA(1), 'seconds of user time and',  
     & TA(2), 'seconds of system time.' 
c 
 close(unit=1,status='keep') 
 if (lmsd) then 
  close(unit=2,status='keep') 
 endif 
c 
 stop 
 end 
 
 
 
 
 
c************************************************************ 
c  SUBROUTINES 
c************************************************************ 
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c 
c  funk_ipos:  assigns initial positions 
c 
 subroutine funk_ipos(N,side,r,rwopbc) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N 
 double precision, intent(in) :: side 
 double precision, intent(out), dimension(1:N,1:3) :: r, rwopbc 
 xi = dfloat(N)**(1.d0/3.d0) 
 ni = int(xi) 
 if (xi - dfloat(ni) .gt. 1.d-14) then 
  ni = ni + 1 
 endif 
 print *, 'funkipos: N = ', N, ' ni = ', ni 
 ncount = 0 
 dx = side/dfloat(ni) 
 do ix = 1, ni, 1 
  do iy = 1, ni, 1 
   do iz = 1, ni, 1 
    ncount = ncount + 1 
    if (ncount .le. N) then 
     r(ncount,1) = dx*dfloat(ix)  
        r(ncount,2) = dx*dfloat(iy)  
        r(ncount,3) = dx*dfloat(iz)  
    endif 
   enddo 
  enddo 
 enddo 
 rwopbc = r 
 return 
 end 
 
 
c 
c  funk_ivel:  assigns initial velocities 
c 
 subroutine funk_ivel(N,v,T,tfac) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N 
 double precision, intent(in) :: T, tfac 
 double precision, intent(out), dimension(1:N,1:3) :: v 
 double precision, dimension(1:3) :: sumv 
c 
 call random_number(v) ! random velocities from 0 to 1 
 v = 2.d0*v - 1.d0  ! random velocities from -1 to 1 
c enforce zero net momentum 
 do i = 1, 3, 1 
  sumv(i) = sum(v(1:N,i)) 
  v(1:N,i) = v(1:N,i) - sumv(i)/dfloat(N) 
 enddo 
c scale initial velocities to set point temperature 
 sumvsq = sum(sum(v*v,1) ) 
 fac = dsqrt(tfac/sumvsq) 
 v = v*fac 
 return 
 end 
 
 
 
c 
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c  funk_mknbr:  create neighbor list 
c 
 subroutine funk_mknbr(N,r,rnbr2,side,sideh,Nnbr,Nnbrlist,maxnbr) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N, maxnbr 
 double precision, intent(in) :: side, sideh, rnbr2 
 double precision, intent(in), dimension(1:N,1:3) :: r 
 integer, intent(out) :: Nnbr 
 integer, intent(out), dimension(1:maxnbr,1:2) :: Nnbrlist 
 double precision, dimension(1:3) :: dis 
 Nnbr = 0 
 do i = 1, N, 1 
  do j = i+1, N, 1 
   dis(1:3) = r(i,1:3) - r(j,1:3) 
   do k = 1, 3, 1 
    if (dis(k) .gt.  sideh) dis(k) = dis(k) - side 
         if (dis(k) .lt. -sideh) dis(k) = dis(k) + side 
   enddo 
   dis2 = sum(dis*dis) 
   if (dis2 .le. rnbr2) then 
    Nnbr = Nnbr + 1 
    Nnbrlist(Nnbr,1) = i 
    Nnbrlist(Nnbr,2) = j 
   endif 
  enddo 
 enddo 
 return 
 end 
 
 
 
c 
c  funk_force:  evaluate forces 
c 
 subroutine funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6, 
     & sig12, eps, f, U, virial, maxnbr) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N, maxnbr, Nnbr 
 double precision, intent(in) :: side, sideh, rcut2 
 double precision, intent(in) :: sig6, sig12, eps 
 double precision, intent(in), dimension(1:N,1:3) :: r 
 integer, intent(in), dimension(1:maxnbr,1:2) :: Nnbrlist 
 double precision, intent(out), dimension(1:N,1:3) :: f 
 double precision, intent(out) :: U, virial 
 double precision, dimension(1:3) :: dis 
 f = 0.d0 ! forces 
 U = 0.d0 ! potential energy 
 virial = 0.d0 ! virial coefficient 
 do m = 1, Nnbr, 1 
  i = Nnbrlist(m,1) 
  j = Nnbrlist(m,2) 
  dis(1:3) = r(i,1:3) - r(j,1:3) 
  do k = 1, 3, 1 
        if (dis(k) .gt.  sideh) dis(k) = dis(k) - side  
   if (dis(k) .lt. -sideh) dis(k) = dis(k) + side 
  enddo 
  dis2 = sum(dis*dis) 
  if (dis2 .le. rcut2) then 
   dis2i = 1.d0/dis2 
   dis6i = dis2i*dis2i*dis2i 
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   dis12i = dis6i*dis6i 
   U = U + ( sig12*dis12i - sig6*dis6i ) 
   fterm = (2.d0*sig12*dis12i - sig6*dis6i )*dis2i 
   f(i,1:3) = f(i,1:3) + fterm*dis(1:3) 
   f(j,1:3) = f(j,1:3) - fterm*dis(1:3) 
   virial = virial - fterm*dis2 
  endif 
 enddo 
 f = f*24.d0*eps 
 U = U*4.d0*eps 
 virial=virial*24.d0*eps 
 return 
 end 
 
 
 
 
c 
c predict new positions 
c 
 subroutine predictor(N,r,rwopbc,v,a,d3,d4,d5,dtv) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N 
 double precision, intent(inout), dimension(1:N,1:3) :: 
     & r,rwopbc, v, a, d3, d4, d5 
      double precision, intent(in), dimension(1:5) :: dtv  
 rwopbc = rwopbc + v *dtv(1) + dtv(2)*a  + dtv(3)*d3 + dtv(4)*d4 +  
     &                                                      dtv(5)*d5 
 r      = r      + v *dtv(1) + dtv(2)*a  + dtv(3)*d3 + dtv(4)*d4 +  
     &                                                      dtv(5)*d5    
 v      = v      + a *dtv(1) + dtv(2)*d3 + dtv(3)*d4 + dtv(4)*d5    
 a      = a      + d3*dtv(1) + dtv(2)*d4 + dtv(3)*d5    
 d3     = d3     + d4*dtv(1) + dtv(2)*d5    
 d4     = d4     + d5*dtv(1)    
 return 
 end 
c 
c correct new positions 
c 
 subroutine corrector(N,r,rwopbc,v,a,d3,d4,d5,f,dt2h,alpha,xmassi) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N 
 double precision, intent(inout), dimension(1:N,1:3) :: 
     & r,rwopbc, v, a, d3, d4, d5 
 double precision, intent(in), dimension(1:N,1:3) :: f 
 double precision, intent(in) :: dt2h, xmassi 
      double precision, intent(in), dimension(0:5) :: alpha 
 double precision, dimension(1:3) :: errvec 
 do i = 1, N, 1 
  errvec(1:3) = ( f(i,1:3)*xmassi - a(i,1:3) ) 
  rwopbc(i,1:3) = rwopbc(i,1:3) + errvec(1:3)*alpha(0) 
  r(i,1:3)  = r(i,1:3)  + errvec(1:3)*alpha(0) 
  v(i,1:3)  = v(i,1:3)  + errvec(1:3)*alpha(1) 
  a(i,1:3)  = a(i,1:3)  + errvec(1:3)*alpha(2) 
  d3(i,1:3) = d3(i,1:3) + errvec(1:3)*alpha(3) 
  d4(i,1:3) = d4(i,1:3) + errvec(1:3)*alpha(4) 
  d5(i,1:3) = d5(i,1:3) + errvec(1:3)*alpha(5) 
 enddo 
 return 
 end   
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c 
c apply periodic boundary conditions 
c 
 subroutine pbc(N,r,side) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N 
 double precision, intent(inout), dimension(1:N,1:3) :: r 
 double precision, intent(in) :: side 
 do i = 1, N, 1 
  do j = 1, 3, 1 
       if (r(i,j) .gt.  side) r(i,j) = r(i,j) - side 
       if (r(i,j) .lt.  0.0)  r(i,j) = r(i,j) + side 
   enddo 
 enddo 
 return 
 end 
 
 
 
c 
c  funk_scalev:  scale velocities 
c 
 subroutine funk_scalev(N,v,T,tfac) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N 
 double precision, intent(inout), dimension(1:N,1:3) :: v 
 double precision, intent(in) :: T, tfac 
c scale velocities to set point temperature 
 sumvsq = sum(sum(v*v,1) ) 
 fac = sqrt(tfac/sumvsq) 
 v = v*fac 
 return 
 end 
 
 
c 
c calculate properties for sampling  
c 
 subroutine funk_getprops(N,v,xmass,T,kb,U,props,nprop,density, 
     & virial,ulong,vlong) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N, nprop 
 double precision, intent(in), dimension(1:N,1:3) :: v 
 double precision, intent(in) :: T, kb, xmass, U, density, virial 
 double precision, intent(in) :: ulong, vlong 
 double precision, intent(inout), dimension(1:nprop,1:6) :: props 
c props 
c first index is property 
c property 1:  total kinetic energy 
c property 2:  total potential energy 
c property 3:  total energy 
c property 4:  temperature 
c property 5:  total x-momentum 
c property 6:  total y-momentum 
c property 7:  total z-momentum 
c 
c second index is 
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c 1:  instantaneous value 
c 2:  sum 
c 3:  sum of squares 
c 4:  average 
c 5:  variance 
c 6:  standard deviation 
c 
 sumvsq = sum(sum(v*v,1) ) 
 xKE = 0.5d0*xmass*sumvsq ! (aJ) 
 Ti = 2.d0/(3.d0*dfloat(N)*kb)*xKE 
c 
c get instantaneous values 
c 
 props(1,1) = xKE 
 props(2,1) = U + ulong 
 props(3,1) = xKE + U + ulong 
 props(4,1) = Ti 
 props(5,1) = xmass*sum(v(:,1)) 
 props(6,1) = xmass*sum(v(:,2)) 
 props(7,1) = xmass*sum(v(:,3)) 
 props(8,1) = density*(kb*Ti - virial/(3.D0*dfloat(N)) -vlong/3.d0) 
c 
c     get the cumulative sum and the cumulative sum of the squares 
c 
 props(1:nprop,2) = props(1:nprop,2) + props(1:nprop,1) 
 props(1:nprop,3) = props(1:nprop,3) +  
     &                   props(1:nprop,1)*props(1:nprop,1)  
 return 
 end 
 
c 
c calculate and report simulation statistics  
c 
 subroutine funk_report(N,props,nprop,maxeqb,ksamp,csect) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N, nprop, maxeqb, ksamp 
 double precision, intent(inout), dimension(1:nprop,1:6) :: props 
 character*13, intent(in) :: csect 
 character*22, dimension(1:nprop) :: propname 
 den = dfloat(maxeqb/ksamp) 
 props(1:nprop,4) = props(1:nprop,2)/den 
 props(1:nprop,5) = props(1:nprop,3)/den - props(1:nprop,4)**2.d0 
 do i = 1, nprop, 1 
  if (props(i,5) .gt. 0.d0) then 
   props(i,6) = dsqrt(props(i,5)) 
  else 
   props(i,6) = 0.d0 
  endif  
 enddo 
 propname(1) = 'Kinetic Energy (aJ)   ' 
 propname(2) = 'Potential Energy (aJ) ' 
 propname(3) = 'Total Energy (aJ)     ' 
 propname(4) = 'Temperature (K)       ' 
 propname(5) = 'x-Momentum            ' 
 propname(6) = 'y-Momentum            ' 
 propname(7) = 'z-Momentum            ' 
 propname(8) = 'Pressure aJ/Angstorm^3' 
 write(6,1002) csect 
 write(1,1002) csect 
 1002 format ('********** ', a22 ' Completed **********')    
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 write(6,1003)  
 write(1,1003)  
 1003 format ('property               instant       average       s', 
     & 'tandard deviation')    
 do i = 1, nprop, 1 
  write(6,1004) propname(i), props(i,1),props(i,4),props(i,6) 
  write(1,1004) propname(i), props(i,1),props(i,4),props(i,6) 
 enddo 
 1004 format(a22,3(1x,e16.8)) 
 return 
 end 
c 
c  save positions for mean square displacement calculations 
c 
 subroutine funk_msd(N,rwopbc) 
 implicit double precision (a-h, o-z) 
 integer, intent(in) :: N 
 double precision, intent(in), dimension(1:N,1:3) :: rwopbc 
 do i = 1, N, 1 
  write(2,1005) rwopbc(i,1:3) 
 enddo 
 1005 format(3(e16.8,1x)) 
 return 
 end
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Appendix  B.  Molecular Dynamics Program in Matlab 
 
function mddriver 
% 
%  This code performs molecular dynamics simulations  
%  in the canonical ensemble (specify T, V, and N) 
% 
%  Author:  David Keffer 
%  Department of Chemical Engineering, University of TN 
%  Last Updated:  September 19, 2001 
% 
%global maxstp kmsd N dt 
 
%************************************************************ 
%  PROGRAM INITIALIZATION 
%************************************************************ 
 
% 
%  This code uses length units of Angstroms (1.0e-10 s) 
%  time = fs (1.0e-15 s) 
% mass = (1.0e-28 kg) 
% energy = aJ (1.0e-18 J) 
%  Temperature = K 
% 
 
% 
%  Specify thermodynamic state 
% 
T = 300;   % Temperature (K) 
Vn = 512.0; % Angstroms cubed / molecule 
N = 27;   % Number of molecules 
 
% 
%  Specify Numerical Algorithm Parameters 
% 
maxeqb = 2500; % Number of time steps during equilibration 
maxstp = 2000; % Number of time steps during data production 
dt = 1.0e-0;   % size of time step (fs) 
 
% 
%  Specify pairwise potential parameters 
% 
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sig = 3.884; % collision diameter (Angstroms) 
eps = 137;   % well depth (K) 
MW = 16.0;   % molecular weight (grams/mole) 
rcut = 15;   % cut-off distance for potential (Angstroms) 
 
% 
%  Specify sampling intervals 
% 
nprop = 7;  % number of properties 
ksamp = 1; % sampling interval 
knbr = 10;  % neighbor list update interval 
kwrite = 100;  % writing interval 
kmsd = 10; % position save for mean square displacement 
rnbr = rcut + 3.0; 
fid_msd = fopen('md_msd.out','w'); 
% 
%  props 
%  first index is property 
%  property 1:  total kinetic energy 
%  property 2:  total potential energy 
%  property 3:  total energy 
%  property 4:  temperature 
%  property 5:  total x-momentum 
%  property 6:  total y-momentum 
%  property 7:  total z-momentum 
% 
%  second index is 
%  1:  instantaneous value 
%  2:  sum 
%  3:  sum of squares 
%  4:  average 
%  5:  variance 
%  6:  standard deviation 
% 
props = zeros(nprop,6); 
 
% 
%  Initialize vectors 
% 
%   first index of r is over molecules 
%   second index of r is over dimensionality (x,y,z) 
r = zeros(N,3);  % position 
v = zeros(N,3);  % velocity 
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a = zeros(N,3);  % acceleration 
d3 = zeros(N,3);  % third derivative 
d4 = zeros(N,3);  % fourth derivative 
d5 = zeros(N,3);  % fifth derivative 
f = zeros(N,3);  % force 
rwopbc = zeros(N,3); % position w/o pbc 
 
% 
%  additional simulation parameters 
% 
lmsd = 1;   % logical variable for mean square displacement 
lscale = 1;   % logical variable for temperature scaling 
 
%************************************************************ 
%  INITIALIZATION PART TWO 
%************************************************************ 
 
% 
%  compute a few parameters 
% 
dt2 = dt*dt; 
dt2h = 0.5*dt2; 
Vol = N*Vn;            % total volume (Angstroms^3) 
side = Vol^(1.0/3.0);  % length of side of simulation volume (Angstrom) 
sideh = 0.5*side;    % half of the side 
density = 1/Vn;  % molar density 
sig6 = sig^6; 
sig12 = sig^12; 
rcut2 = rcut*rcut; 
rnbr2 = rnbr*rnbr; 
%  stuff for long range energy correction 
rcut3 = rcut^3; 
rcut9 = rcut^9; 
kb = 1.38066e-5; % Boltzmann's constant (aJ/molecule/K) CHECK 
eps = eps*kb; 
Ulong = N*8*eps*pi*density*( sig12/(9.0*rcut9) - sig6/(3.0*rcut3) ); % CHECK 
% temperature factor for velocity scaling 
Nav = 6.022e+23; % Avogadro's Number 
mass = MW/Nav/1000*1.0e+28; % (1e-28*kg/molecule) 
tfac = 3.0*N*kb*T/mass;  % (Angstrom/fs)^2  
% correction factors for numerical algorithm 
fv = [1 2 6 24 120];  % vector of factorials 
dtva = [dt dt*dt dt*dt*dt dt*dt*dt*dt dt*dt*dt*dt*dt]; 
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dtv = dtva./fv; 
%  corrector coefficients for Gear using dimensioned variables 
gear = [3.0/20.0 251.0/360.0 1.0 11.0/18.0 1.0/6.0 1.0/60.0]; 
dtv6 = [1 dt dt*dt dt*dt*dt dt*dt*dt*dt dt*dt*dt*dt*dt]; 
fv6 = [1 1 2 6 24 120];  % vector of factorials 
alpha(1:6) = gear(1:6)./dtv6(1:6).*fv6; 
alpha = alpha*dt^2/2; 
% 
%  assign initial positions of  molecules in FCC crystal structure 
% 
[r,rwopbc] = funk_ipos(N,side,r,rwopbc); 
% 
%  assign initial velocities 
% 
v = funk_ivel(N,v,T,tfac); 
% 
%  create neighbor list 
% 
[Nnbr,Nnbrlist] = funk_mknbr(N,r,rnbr2,side,sideh); 
% 
% evaluate initial forces and potential energy 
% 
[f,U] = funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6,sig12,eps); 
a = f/mass;  % initial acceleration 
 
[props] = funk_getprops(N,v,mass,T,kb,U,props,nprop); 
fprintf(1,'istep %i K %e U %e TOT %e  T %e \n',0,props(1:4,1)); 
props = zeros(nprop,6); 
%************************************************************ 
%  EQUILIBRATION 
%************************************************************ 
for istep = 1:1:maxeqb 
   % predict new positions  
   [r,v,a,d3,d4,rwopbc] = predictor(N,r,rwopbc,v,a,d3,d4,d5,dtv); 
   % evaluate forces and potential energy 
   [f,U] = funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6,sig12,eps); 
   % correct new positions  
 [r,v,a,d3,d4,d5,rwopbc] = corrector(N,r,rwopbc,v,a,d3,d4,d5,f,dt2h,alpha,mass); 
   %a = f/mass; 
   % apply periodic boundary conditions 
 r = pbc(N,r,side); 
   % scale velocities 
   if (lscale == 1) 
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  v = funk_scalev(N,v,T,tfac); 
   end 
   % update neighbor list 
   if (mod(istep,knbr) == 0) 
      [Nnbr,Nnbrlist] = funk_mknbr(N,r,rnbr2,side,sideh); 
   end 
   % sample properties 
   if (mod(istep,ksamp) == 0) 
      [props] = funk_getprops(N,v,mass,T,kb,U,props,nprop); 
   end 
   % save positions for mean square displacement 
   if (mod(istep,kwrite) == 0) 
    fprintf(1,'istep %i K %e U %e TOT %e  T %e \n',istep,props(1:4,1)); 
   end 
end 
% 
% write equilibration results 
% 
if (maxeqb > ksamp) 
 [props] = funk_report(N,props,nprop,maxeqb,ksamp); 
end 
%************************************************************ 
%  PRODUCTION 
%************************************************************ 
props = zeros(nprop,6); 
lscale = 0; 
if (lmsd) 
   funk_msd(N,rwopbc,fid_msd); 
end 
 
for istep = 1:1:maxstp 
   % predict new positions  
   [r,v,a,d3,d4,rwopbc] = predictor(N,r,rwopbc,v,a,d3,d4,d5,dtv); 
 % evaluate forces and potential energy 
   [f,U] = funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6,sig12,eps); 
   % correct new positions  
 [r,v,a,d3,d4,d5,rwopbc] = corrector(N,r,rwopbc,v,a,d3,d4,d5,f,dt2h,alpha,mass); 
%   % apply periodic boundary conditions 
 r = pbc(N,r,side); 
   % scale velocities 
   if (lscale == 1) 
%      v = scalev(); 
   end 
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   % update neighbor list 
   if (mod(istep,knbr) == 0) 
      [Nnbr,Nnbrlist] = funk_mknbr(N,r,rnbr2,side,sideh); 
   end 
   % sample properties 
   if (mod(istep,ksamp) == 0) 
      [props] = funk_getprops(N,v,mass,T,kb,U,props,nprop); 
   end 
   % save positions for mean square displacement 
   if (mod(istep,kwrite) == 0) 
    fprintf(1,'istep %i K %e U %e TOT %e  T %e \n',istep,props(1:4,1)); 
   end 
   if (lmsd) 
      if (mod(istep,kmsd) == 0) 
         funk_msd(N,rwopbc,fid_msd); 
      end 
   end 
end 
% 
if (maxstp > ksamp) 
 [props] = funk_report(N,props,nprop,maxstp,ksamp); 
end 
fclose(fid_msd); 
 
 
 
 
 
%************************************************************ 
%  SUBROUTINES 
%************************************************************ 
 
% 
%  funk_ipos:  assigns initial positions 
% 
function [r,rwopbc] = funk_ipos(N,side,r,rwopbc); 
ni = ceil(N^(1.0/3.0)); 
ncount = 0; 
dx = side/ni; 
for ix = 1:1:ni 
   for iy = 1:1:ni 
      for iz = 1:1:ni 
         ncount = ncount + 1; 
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         if (ncount <= N) 
      r(ncount,1) = dx*ix;  
      r(ncount,2) = dx*iy;  
      r(ncount,3) = dx*iz;  
         end 
      end 
   end 
end 
rwopbc = r; 
 
% 
%  funk_ivel:  assigns initial velocities 
% 
function v = funk_ivel(N,v,T,tfac); 
% 
v = rand(N,3);  % random velocities from 0 to 1 
v = 2*v - 1.0;    % random velocities from -1 to 1 
% enforce zero net momentum 
for i = 1:1:3 
   sumv(i) = sum(v(1:N,i)); 
   v(1:N,i) = v(1:N,i) - sumv(i)/N; 
end 
% scale initial velocities to set point temperature 
sumvsq = sum(sum(v.*v,1) ); 
fac = sqrt(tfac/sumvsq); 
v = v*fac; 
 
% 
%  funk_mknbr:  create neighbor list 
% 
function [Nnbr,Nnbrlist] = funk_mknbr(N,r,rnbr2,side,sideh); 
Nnbr = 0; 
for i = 1:1:N 
   for j = i+1:1:N 
      dis(1:3) = r(i,1:3) - r(j,1:3); 
      for k = 1:1:3 
       if (dis(k) >  sideh); dis(k) = dis(k) - side; end; 
       if (dis(k) < -sideh); dis(k) = dis(k) + side; end; 
      end 
      dis2 = sum(dis.*dis); 
      if (dis2 <= rnbr2) 
         Nnbr = Nnbr + 1; 
         Nnbrlist(Nnbr,1) = i; 
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         Nnbrlist(Nnbr,2) = j; 
      end 
   end 
end 
if (Nnbr == 0) 
   Nnbrlist = zeros(1,1); 
end 
 
% 
%  funk_force:  evaluate forces 
% 
function [f,U] = funk_force(N,r,rcut2,side,sideh,Nnbr,Nnbrlist,sig6,sig12,eps); 
f = zeros(N,3);  % force 
U = 0.0;     % potential energy  
for n = 1:1:Nnbr 
   i = Nnbrlist(n,1); 
   j = Nnbrlist(n,2); 
   dis(1:3) = r(i,1:3) - r(j,1:3); 
   for k = 1:1:3 
      if (dis(k) >  sideh); dis(k) = dis(k) - side; end; 
      if (dis(k) < -sideh); dis(k) = dis(k) + side; end; 
   end 
   dis2 = sum(dis.*dis); 
   if (dis2 <= rcut2) 
      dis2i = 1.0/dis2; 
      dis6i = dis2i*dis2i*dis2i; 
      dis12i = dis6i*dis6i; 
      U = U + ( sig12*dis12i - sig6*dis6i ); 
      fterm = (2.0*sig12*dis12i - sig6*dis6i )*dis2i; 
      %fprintf(1, 'n %i i %i j %i dis2 %e fterm %e %e %e\n',n,i,j,dis2,fterm); 
      f(i,1:3) = f(i,1:3) + fterm.*dis(1:3); 
      f(j,1:3) = f(j,1:3) - fterm.*dis(1:3); 
   end 
end 
f = f*24.0*eps; 
U = U*4.0*eps; 
 
% 
% predict new positions 
% 
function [r,v,a,d3,d4,rwopbc] = predictor(N,r,rwopbc,v,a,d3,d4,d5,dtv) 
rwopbc = rwopbc + v *dtv(1) + dtv(2)*a  + dtv(3)*d3 + dtv(4)*d4 + dtv(5)*d5; 
r      = r      + v *dtv(1) + dtv(2)*a  + dtv(3)*d3 + dtv(4)*d4 + dtv(5)*d5;    
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v      = v      + a *dtv(1) + dtv(2)*d3 + dtv(3)*d4 + dtv(4)*d5;    
a      = a      + d3*dtv(1) + dtv(2)*d4 + dtv(3)*d5;    
d3     = d3     + d4*dtv(1) + dtv(2)*d5;    
d4     = d4     + d5*dtv(1);    
    
% 
% correct new positions 
% 
function [r,v,a,d3,d4,d5,rwopbc] = corrector(N,r,rwopbc,v,a,d3,d4,d5,f,dt2h,alpha,mass); 
for i = 1:1:N 
 errvec(1:3) = ( f(i,1:3)/mass - a(i,1:3) ); 
   rwopbc(i,1:3) = rwopbc(i,1:3) + errvec(1:3)*alpha(1); 
   r(i,1:3)  = r(i,1:3)  + errvec(1:3)*alpha(1); 
   v(i,1:3)  = v(i,1:3)  + errvec(1:3)*alpha(2); 
   a(i,1:3)  = a(i,1:3)  + errvec(1:3)*alpha(3); 
   d3(i,1:3) = d3(i,1:3) + errvec(1:3)*alpha(4); 
   d4(i,1:3) = d4(i,1:3) + errvec(1:3)*alpha(5); 
   d5(i,1:3) = d5(i,1:3) + errvec(1:3)*alpha(6); 
end   
 
% 
% apply periodic boundary conditions 
% 
function r = pbc(N,r,side); 
for i = 1:1:N 
   for j = 1:1:3 
     if (r(i,j) >  side); r(i,j) = r(i,j) - side; end; 
     if (r(i,j) <  0.0); r(i,j) = r(i,j) + side; end; 
  end 
end 
 
% 
%  funk_scalev:  scale velocities 
% 
function v = funk_scalev(N,v,T,tfac); 
% scale velocities to set point temperature 
sumvsq = sum(sum(v.*v,1) ); 
fac = sqrt(tfac/sumvsq); 
v = v*fac; 
 
 
% 
% calculate properties for sampling  
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% 
function [props] = funk_getprops(N,v,mass,T,kb,U, props,nprop); 
%  props 
%  first index is property 
%  property 1:  total kinetic energy 
%  property 2:  total potential energy 
%  property 3:  total energy 
%  property 4:  temperature 
%  property 5:  total x-momentum 
%  property 6:  total y-momentum 
%  property 7:  total z-momentum 
% 
%  second index is 
%  1:  instantaneous value 
%  2:  sum 
%  3:  sum of squares 
%  4:  average 
%  5:  variance 
%  6:  standard deviation 
% 
sumvsq = sum(sum(v.*v,1) ); 
KE = 0.5*mass*sumvsq; % (aJ) 
T = 2/(3*N*kb)*KE; 
% 
% get instantaneous values 
% 
props(1,1) = KE; 
props(2,1) = U; 
props(3,1) = KE+U; 
props(4,1) = T; 
props(5,1) = mass*sum(v(:,1)); 
props(6,1) = mass*sum(v(:,2)); 
props(7,1) = mass*sum(v(:,3)); 
props(1:nprop,2) = props(1:nprop,2) + props(1:nprop,1); 
props(1:nprop,3) = props(1:nprop,3) + props(1:nprop,1).*props(1:nprop,1);  
 
% 
% calculate and report simulation statistics  
% 
function [props] = funk_report(N,props,nprop,maxeqb,ksamp); 
den = floor(maxeqb/ksamp); 
props(1:nprop,4) = props(1:nprop,2)/den; 
props(1:nprop,5) = props(1:nprop,3)/den - props(1:nprop,4).^2; 
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props(1:nprop,6) = sqrt(props(1:nprop,5)); 
propname{1} = 'Kinetic Energy (aJ)   '; 
propname{2} = 'Potential Energy (aJ) '; 
propname{3} = 'Total Energy (aJ)     '; 
propname{4} = 'Temperature (K)       '; 
propname{5} = 'x-Momentum            '; 
propname{6} = 'y-Momentum            '; 
propname{7} = 'z-Momentum            '; 
fprintf(1,' property               instant       average       standard deviation \n'); 
for i = 1:1:nprop 
   fprintf(1,' %s %e %e %e \n', propname{i}, props(i,1),props(i,4),props(i,6)) 
end 
 
% 
%  save positions for mean square displacement calculations 
% 
function funk_msd(N,rwopbc,fid_msd); 
for i = 1:1:N 
 fprintf(fid_msd,' %e %e %e \n',rwopbc(i,1:3));   
end 
 


