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Introduction 
 

The purpose of these notes is to provide a complete analysis of a very simple system, 
namely isothermal mass transfer in a binary mixture.  As engineers, we often think of a diffusion 
process as a membrane separating a reservoir with a high-concentration of solute from that with a 
low-concentration of solute.  We recall that the steady-state solution is a linear profile from one 
boundary concentration to the next.  This picture is over-simplified and contains numerous 
assuptions.  It is not the general case.   

A correct formulation of this problem is essential in obtaining a rigorous, generalized 
solution.  Part of the confusion associated with mass transfer is that there are many degrees of 
freedom in formulating the problem, resulting in potentially an infinity of problem formulations.  
Each of these formulations, if solved in a manner consistent with the arbitrary choices that went 
into the problem formulation will yield results consistent with any other formulation.  In sections I 
and II of this hand-out, we present two common formulations of isothermal mass transfer in a 
binary mixture.  In section III, we present a third, uncommon formulation to illustrate the arbitrary 
nature of the choices as well as the ability to rectify the results from different formulations. 

In section IV, we examine the steady-state solution of the evolution equations for a simple 
system (an inviscid, ideal gas) under the assumption that the center-of-mass velocity is constant.  
We would like to make this assumption because it allows us to decouple the momentum balance 
and the mass balances.  If this assumption is not true then we have to solve the momentum and 
mass balances simultaneously.  In the solution of the evolution equations, we come upon a 
contradiction that indicates that the assumption that the center-of-mass velocity is constant is an 
unphysical assumption. 

In section V, we examine the steady-state solution of the evolution equations for a simple 
system (an inviscid, ideal gas) without the assumption that the center-of-mass velocity is constant.  
We find that the coupled mass and momentum balances cannot be solved analytically but can be 
solved numerically.  We provide plots of the numerical solution for different conditions. 

In this hand-out, we attempt to follow the notation used in “Transport Phenomena” by Bird, 
Stewart & Lightfoot, Second Edition,  in terms of nomenclature, capitalization, subscripts, and 
asterisks. 
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I.  Problem Formulation in Terms of Mass 
 
 In this section of the document, we formulate the problem of isothermal mass transfer in a 
binary system completely in terms of mass and mass related variables, such as the mass density, 
mass fraction, mass-averaged velocity, and mass fluxes.  We provide (A) variable definitions, (B) 
evolution equations, (C) constitutive relations, (D) assumptions, and (E) conclusions.  Parts of the 
text refers back to Molecular Dynamics (MD) simulations because this work was initially 
prompted by a desire to have a macroscopic description that would serve as a coarse-grained 
theory upon which molecular simulations could be mapped. 
 
I.A.  variable definitions 
 
mass density 
 ρ 
 In an MD simulation ρ has an unambiguous definition: 
 

 
V

mNmN BBAA +
=ρ          (I.1) 

 
where NA and NB are the number of molecules of A and B in the simulation, and  mA and mB are 
the masses of a molecule of A and B respectively. 
 
mass fractions 
 wA and wB 
 In an MD simulation wA and wB have unambiguous definitions: 
 

 
BBAA

AA
A mNmN

mNw
+

=     
BBAA

BB
B mNmN

mNw
+

=    (I.2) 

 
component mass densities  
 ρA and ρB 
 In an MD simulation ρA and ρB have unambiguous definitions: 
 
 ρρ AA w=      ρρ BB w=     (I.3) 
 
component velocities relative to stationary laboratory frame of reference 
 vA and vB  
 In an MD simulation vA and vB have unambiguous definitions: 
 

 ∑
=

=
AN

i
iA

A
A N 1

,
1 vv     ∑

=

=
BN

i
iB

B
B N 1

,
1 vv    (I.4) 

 
where vA,i  is the velocity of the ith molecule of component A relative to the laboratory frame of 
reference. 
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total mass flux of each component relative to stationary laboratory frame of reference 
 nA and nB  
 The total flux of each component can be unambiguously determined as 
 
 AAA w vn ρ=      BBB w vn ρ=     (I.5) 
 
mass-averaged (or center-of-mass) velocity relative to laboratory frame of reference 
 v 
 The mass-averaged velocity is defined as 
 
 BBAA ww vvv +=          (I.6) 
 
convective mass flux of each component relative to stationary laboratory frame of reference 
 χA and χB  
 The convective flux of each component (carried by the mass-averaged velocity) can be 
unambiguously determined as 
 
 vAA wρ=χ      vBB wρ=χ     (I.7) 
 
diffusive flux of each component relative to mass-averaged velocity 
 jA and jB  
 The diffusive flux of each component can be unambiguously determined because the total 
flux is defined as the sum of the convective and diffusive flux. 
 
 AAA χ−= nj      BBB χ−= nj     (I.8) 
 
Substituting equations (5) and (7) into equation (8) yields 
 
 ( )vvj −= AAA wρ     ( )vvj −= BBB wρ    (I.9) 
 
Substituting equations (6) into equation (9) yields 
 
 ( )BABAA ww vvj −= ρ     ( )ABBAB ww vvj −= ρ    (I.10) 
 
Comments: 
 
 1.  You can see that the diffusive mass flux is defined without ever introducing any 
constitutive relation such as Fick’s law.   
 2.  You can also see from equation (10) that there is no total center of mass motion due to 
the diffusive fluxes. 
  
 0=+ BA jj           (I.11) 
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I.B.  evolution equations 
 
We assume here that there is no reaction. 
 
evolution equation on total mass (continuity equation) 
 

 ( )BAt
nn +⋅−∇=

∂
∂ρ          (I.12) 

 

 
( ) ( ) ( )

( )v

vvjj

ρ

ρρρ

⋅−∇=

+⋅−∇=+⋅−∇=+++⋅−∇=
∂
∂

BABABBAA ww
t

χχχχ
  (I.13) 

 
Because the diffusive flux has no net mass transport, it drops out of the overall mass balance. 
 
evolution equation on mass of component A 
 

 A
A

t
w n⋅−∇=

∂
∂ρ          (I.14) 

 

 ( ) ( ) AAAA
A w

t
w jvj ⋅∇−⋅−∇=+⋅−∇=

∂
∂ ρρ

χ       (I.15) 

 
We can use the product rule on the accumulation term and the convection term in equation (15) 
and we can substitute in equation (13) into (15) to obtain 
 

 ( ) AAA
A

A ww
t

w
t

w jvv ⋅∇−⋅∇−∇⋅−=
∂

∂
+

∂
∂ ρρρρ      (I.16) 

 

 AA
A w

t
w jv ⋅∇−∇⋅−=
∂

∂ ρρ         (I.17) 

 
Equation (17) is the expression typically used as the evolution equation for the mass of component 
A.  It is only true in the absence of reaction.  An analogous expression can be written for 
component B. 
 
I.C.  constitutive relations 
 

One can write Fick’s law in a virtual infinity of forms.  However, given our decisions to (i) 
define material transport in terms of mass fluxes and (ii) define diffusion relative to the mass-
averaged velocity, there is only one intelligent choice for Fick’s law, namely one where (iii) the 
driving force is given in terms of the gradient of the mass fraction. 
 
 AABA wD ∇−= ρj     BBAB wD ∇−= ρj    (I.18) 
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Given this choice  
  
 DDD BAAB ==          (I.19) 
 
Comments: 
1.  For any other choice of driving force, these two diffusivities will not be the same.   
2.  Since there is only one independent variable in an isothermal binary diffusion process, 
regardless of the choice of gradient, there will always be some relation between DAB and DBA.    
 
 With this constitutive relation, the evolution equation for the mass fraction of A, equation 
(17) becomes 
 

 ( )AA
A wDw

t
w

∇⋅∇+∇⋅−=
∂

∂ ρρρ v        (I.20) 

 
We can use the triple product rule on the diffusive term. 
 

 AAAA
A wDwDwDw

t
w

∇⋅∇+∇⋅∇+∇+∇⋅−=
∂

∂ ρρρρρ 2v     (I.21) 

 
If the diffusivity is not a function of ρ and wA, then equation (21) drops one term and becomes 
 

 AAA
A wDwDw

t
w

∇⋅∇+∇+∇⋅−=
∂

∂ ρρρρ 2v   for constant D   (I.22) 

 
If in addition to a constant diffusivity, we also have an incompressible fluid, equation (22) 
becomes 
 

 AA
A wDw

t
w 2∇+∇⋅−=
∂

∂ v   for constant D and incompressible fluid (I.23) 
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I.D.  assumptions 
 

Aside from the definition of the system being binary, isothermal, and free of chemical 
reaction, there are three important assumptions in this derivation. 
 
1.  We assumed that we would work the problem with mass fluxes. 
2.  We assumed that we would measure the diffusive flux relative to the mass-averaged velocity.  
This assumption was totally arbitrary, but is a good choice because equation (11) is not satisfied 
without other choices of reference velocity. 
3.  We assumed that the driving force in Fick’s was expressed as a gradient in mass fraction. 
 
These three assumptions define our diffusivity.  If we change any of these assumptions, then we 
will have to compute a different numerical value of the diffusivity. 
 
I.E. conclusions 
 
There is no ambiguity in a well-defined description of isothermal binary mass transport.   
It is important to realize what assumptions are made. 
There is only one independent diffusivity in this system. 
The diffusive flux is defined before the introduction of the constitutive relation, Fick’s law.  All 
Fick’s law does is define the diffusivity. 
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II.  Problem Formulation in Terms of Moles 
 
 In this section of the document, we formulate the problem of isothermal mass transfer in a 
binary system completely in terms of moles and mole-related variables, such as the molar density, 
mole fraction, molar-averaged velocity, and molar fluxes.  In a precisely analogous procedure to 
what was done in section I., we provide (A) variable definitions, (B) evolution equations, (C) 
constitutive relations, (D) assumptions, and (E) conclusions.  Additionally, we relate the diffusivity 
from section I to the diffusivity from section II. 
 
II.A.  variable definitions 
 
molar density 
 c 
 In an MD simulation c has an unambiguous definition: 
 

 
V

NNc BA +
=           (II.1) 

 
where NA and NB are the number of molecules of A and B in the simulation. 
 
mole fractions 
 xA and xB 
 In an MD simulation xA and xB have unambiguous definitions: 
 

 
BA

A
A NN

N
x

+
=     

BA

B
B NN

N
x

+
=    (II.2) 

 
component molar densities  
 cA and cB 
 In an MD simulation cA and cB have unambiguous definitions: 
 
 cxc AA =      cxc BB =     (II.3) 
 
component velocities relative to stationary laboratory frame of reference 
 vA and vB  
 In an MD simulation vA and vB have unambiguous definitions: 
 

 ∑
=

=
AN

i
iA

A
A N 1

,
1 vv     ∑

=

=
BN

i
iB

B
B N 1

,
1 vv    (II.4) 

 
where vA,i  is the velocity of the ith molecule of component A. relative to the laboratory frame of 
reference.  These are the same definitions as were used in the mass-referenced case. 
 



D. Keffer, Department of Chemical Engineering, University of Tennessee 

 9

total molar flux of each component relative to stationary laboratory frame of reference 
 NA and NB  
 The total flux of each component can be unambiguously determined as 
 
 AAA cx vN =      BBB cx vN =     (II.5) 
 
molar-averaged (or center-of-moles) velocity relative to laboratory frame of reference 
 v* 
 The molar-averaged velocity is defined as 
 
 BBAA xx vvv* +=          (II.6) 
 
convective molar flux of each component relative to stationary laboratory frame of reference 
 ΧA and ΧB  
 The convective flux of each component (carried by the molar-averaged velocity) can be 
unambiguously determined as 
 
 *vAA cx=Χ      *vBB cx=Χ     (II.7) 
 
diffusive molar flux of each component relative to  molar-averaged velocity 
 J*A and J*B  
 The diffusive flux of each component can be unambiguously determined because the total 
flux is defined as the sum of the convective and diffusive flux. 
 
 AAA Χ−= N*J     BBB Χ−= N*J    (II.8) 
 
Substituting equations (5) and (7) into equation (8) yields 
 
 ( )*vv*J −= AAA cx     ( )*vv*J −= BBB cx    (II.9) 
 
Substituting equations (6) into equation (9) yields 
 
 ( )BABAA xcx vv*J −=    ( )ABBAB xcx vv*J −=   (II.10) 
 
Comments: 
 
 1.  You can see that the diffusive molar flux is defined without ever introducing any 
constitutive relation such as Fick’s law.   
 2.  You can also see from equation (10) that there is no total molar-averaged motion due to 
the diffusive fluxes. 
  
 0=+ BA *J*J          (II.11) 
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II.B.  evolution equations 
 
We assume here that there is no reaction. 
 
evolution equation on total moles (continuity equation) 
 

 ( )BAt
c NN +⋅−∇=

∂
∂          (II.12) 

 

 
( ) ( ) ( )

( )*v

*v*v*J*J

c

cxcx
t
c

BABABBAA

⋅−∇=

+⋅−∇=+⋅−∇=+++⋅−∇=
∂
∂

ΧΧΧΧ
 (II.13) 

 
Because the diffusive flux has no net mass transport, it drops out of the overall mass balance. 
 
evolution equation on moles of component A 
 

 A
A

t
cx N⋅−∇=
∂

∂          (II.14) 

 

 ( ) ( ) AAAA
A cx

t
cx *J*v*J ⋅∇−⋅−∇=+⋅−∇=
∂

∂
Χ      (II.15) 

 
We can use the product rule on the accumulation term and the convection term in equation (15) 
and we can substitute in equation (13) into (15) to obtain 
 

 ( ) AAA
A

A cxxc
t

x
c

t
cx *J*v*v ⋅∇−⋅∇−⋅∇−=

∂
∂

+
∂
∂      (II.16) 

 

 AA
A xc
t

x
c *J*v ⋅∇−⋅∇−=

∂
∂         (II.17) 

 
Equation (17) is the expression typically used as the evolution equation for the moles of 
component A.  It is only true in the absence of reaction.  An analogous expression can be written 
for component B. 
 
II.C.  constitutive relations 
 
One can write Fick’s law in a virtual infinity of forms.  However, given our decisions to (i) define 
material transport in terms of molar fluxes and (ii) define diffusion relative to the molar-averaged 
velocity, there is only one intelligent choice for Fick’s law, namely one where (iii) the driving 
force is given in terms of the gradient of the mole fraction. 
 
 AABA xcD ∇−= **J     BBAB xcD ∇−= **J    (II.18) 
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Given this choice  
  
 *** DDD BAAB ==          (II.19) 
 
Comments: 
1.  For any other choice of driving force, these two diffusivities will not be the same.   
2.  Since there is only one independent variable in an isothermal binary diffusion process, 
regardless of the choice of gradient, there will always be some relation between D*AB and D*BA.    
 
 With this constitutive relation, the evolution equation for the mole fraction of A, equation 
(17) becomes 
 

 ( )AA
A xcDxc
t

xc ∇⋅∇+⋅∇−=
∂

∂ **v        (II.20) 

 
We can use the triple product rule on the diffusive term. 
 

 AAAA
A xcDxDcxcDxc
t

xc ∇⋅∇+⋅∇∇+∇+⋅∇−=
∂

∂ ****v 2    (II.21) 

 
If the diffusivity is not a function of c and xA, then equation (21) drops one term and becomes 
 

 AAA
A xcDxcDxc
t

x
c ∇⋅∇+∇+⋅∇−=

∂
∂ ***v 2  for constant *D   (II.22) 

 
If in addition to a constant diffusivity, we also have a fluid with constant molar density, equation 
(22) becomes 
 

 AA
A xDx
t

x 2∇+⋅∇−=
∂

∂ **v     for constant *D  and c (II.23) 

 
II.D.  assumptions 
 
Aside from the definition of the system being binary, isothermal, and free of chemical reaction, 
there are three important assumptions in this derivation. 
 
1.  We assumed that we would work the problem with molar fluxes. 
2.  We assumed that we would measure the diffusive flux relative to the molar-averaged velocity.  
This assumption was totally arbitrary, but is a good choice because equation (11) is not satisfied 
without other choices of reference velocity. 
3.  We assumed that the driving force in Fick’s was expressed as a gradient in mole fraction. 
 
These three assumptions define our diffusivity.  If we change any of these assumptions, then we 
will have to compute a different numerical value of the diffusivity. 



D. Keffer, Department of Chemical Engineering, University of Tennessee 

 12

 
II.E. conclusions 
 
We have the same conclusions as those for the mass-referenced system. 
 
II.F.  relationship between diffusivities  
 
In Case I, we had a single diffusivity, D, and in Case II, we had a single diffusivity, *D .  These 
diffusivities are related.  The easiest way to see the relation is to recall that the definitions of vA 
and vB are the same in both cases.  As a result, if we can express, each diffusivity in terms of these 
velocities, then we can obtain a relation between the two diffusvities. 
 First combine equations (10), (18), and (19) for both cases: 
 

( ) ABABAA wDww ∇−=−= ρρ vvj   ( ) BABBAB wDww ∇−=−= ρρ vvj   (II.24) 
 
 

( ) ABABAA xcDxcx ∇−=−= *vv*J   ( ) BABBAB xcDxcx ∇−=−= *vv*J   (II.25) 
 
In each case (for either species) solve for the difference in velocities and equate. 
 

( )
BA

A

BA

A
BA xx

xD
ww

wD ∇−
=

∇−
=−

*vv        (II.26) 

 
Solving for the ratio of diffusivities we have: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∇
∇

=
A

A

BA

BA

A

A

BA

BA

w
x

xx
ww

w
x

xx
ww

D
D

*
       (II.27) 

 
We can analytically evalute the partial derivative 
 

BA

BA

A

A

ww
xx

w
x

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂          (II.28) 

 
As a result,  
 

*DD =           (II.29) 
 
The diffusivity from the mass-referenced case and the diffusivity from the molar-referenced case 
turn out to be the same diffusivity. 
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III.  Problem Formulation in terms of hybrid mass/moles reference 
 
 The purpose of this demonstration is to indicate that one can choose any arbitrary 
formulation of a diffusive process.  It also demonstrates that some choices are more easy to live 
with than others.  In this case we again limit ourselves to a binary, isothermal system free of 
reaction.  Additionally, we assume that our description of mass transport will use mass fluxes.  
These mass fluxes will be references relative to the mass-average velocity.  As a result our 
derivation, will be the same up to equation (I.17).  Now we choose a different form of Fick’s law, 
which employs the gradient of the mole fraction. 
 
 AABA xD ∇−= •ρj     BBAB xD ∇−= •ρj    (III.1) 
 
The fluxes are still equal and opposite, so we can solve for the relationship between the two 
diffusivities, •

ABD  and •
BAD . 

 
 ••• == DDD BAAB          (III.2) 
 
We can equate the fluxes in equation (I.18) and (III.1) to obtain 
 
 AAA xDwD ∇−=∇−= •ρρj    BBB xDwD ∇−=∇−= •ρρj   (III.3) 
 
Solving either species for the ratio of diffusivities, we have: 
 

 
BA

BA

A

A

xx
ww

x
w

D
D

=
∂
∂

=
•

         (III.4) 

 
Therefore, if we know either of the diffusivities, we can obtain the other. 
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IV.  Problem Formulation in terms of a density driving force  
 
 One commonly sees Fick’s law written where the driving force is not the gradient of the 
mass fraction but rather the gradient of the mass density,  
 
 AABA D ρ∇−= oj     BBAB D ρ∇−= oj    (IV.1) 
 
The fluxes are still equal and opposite, so we can solve for the relationship between the two 
diffusivities, o

ABD  and o
BAD .   

 
 BBAAAB DD ρ∇=ρ∇− oo          (IV.2) 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂
ρ∂

−=
A

B
BAAB DD oo          (IV.3) 

 
The partial derivative that appears in equation (IV.3) does not vanish as it did in case I, which is 
because BA ww −∇=∇  but, in general, BA ρ∇≠ρ∇ .  We will further discuss this factor 
momentarily.  Regardless, we can can equate the fluxes in equation (I.18) and (IV.1) to obtain 
 
 AABAA DwD ρ∇−=∇ρ−= oj    BBABB DwD ρ∇−=∇ρ−= oj   (IV.4) 
 
Solving for the ratio of diffusivities, we have: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
ρ=

A

AAB w
D

D o

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
ρ=

B

BBA w
D

D o

  (IV.5) 

 
Therefore, if we knew the diffusivity, D, and had a thermodynamic description of the fluid, we 
could obtain the diffusivities, o

ABD  and o
BAD .  In other words, they are not independent. 

 


