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CBE 548:  Advanced Transport Phenomena II 
Spring, 2010 
Final Exam 

 
Problem 1. Arbitrary Formulation of the Description of Mass Transfer 
The multicomponent Fick diffusivities, 

D , are defined with the following equations and 

constraints (BSL2, p. 767) 
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to be used in the generalized Fick equations, constitutive equations for the mass diffusive flux of 
component  relative to the center of mass velocity, of the form (BSL2 eq (24.2-3), p. 767) 
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where the diffusional driving forces are given by (BSL2 eq (24.1-8), p. 766) 
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For binary, isothermal diffusion, we frequently write Fick’s law as  

   wDj           (1.6) 

where  vvj   w  and  vvv ww  . 

 
Rigorously derive the relationship between D  and 

D .  State all assumptions made.  The 

relationship should be expressed exclusively in terms of mole fractions, mass fractions and 
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Some of the following relations may be useful to you. 
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Solution: 
For isothermal binary diffusion in the absence of external forces and pressure diffusion, the 
generalized Fick equations, eq. (1.4), become 
 
    ddj   DD         (1.7) 

 
Equation (1.3) becomes for a binary system 
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which can be rearranged as 
 

   








 D

w

w
D

w

w
D         (1.9) 

 
Substitution of equation (1.9) into equation (1.7) yields 
 

    







 




  DwwDD

w

w
ddddj     (1.10) 

 
The diffusional driving forces for this system 
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Substitution of equation (1.11) into equation (1.10) yields 
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We can equate eq. (1.12) and (1.6) to yield 
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Simplification yields 
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Further simplification yields 
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Remember that for a binary system, 
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So that equation (1.15) becomes 
 

 
 
 

 
 






















 












 D
x

a
w

x

a
w

ww

xx
D

ln

ln

ln

ln
      (1.17) 

 
From equilibrium thermodynamics, under constant temperature and pressure conditions, the 
Gibbs Duhem equation states 
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The partial molar Gibbs free energy can be related to the activity via  
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where 1G is the molar enthalpy of component 1 in the pure state.  The derivative of the partial 
molar Gibbs free energy with respect to composition is 
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Substitution of (1.21) into (1.18) yields, 
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Substitution equation (1.22) into (1.17) is 
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You can see that equation (1.23) is symmetric with respect to interchange of  and  subscripts, 
as it must be. 
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Problem 2. Chemical Potential Gradient Driven Diffusion 
Consider the steady state behavior of a three component fluid located in an isothermal and 
isobaric system between two boundaries.  The thermodynamic state of the boundary at z = 0 is 
defined by the mole fraction of 1, x1 = 0.15, mole fraction of 2, x2 = 0.84, temperature T = 300 
K, and pressure p = 1 bar. The thermodynamic state of the boundary at z = 1 m is defined by the 
mole fraction of 1, x1 = 0.10, mole fraction of 3, w3 = 0.89, temperature T = 300 K, and pressure 
p = 1 bar. 
 
The chemical potential of component i in a multicomponent van der Waals gas is given by 
 























cN

j
ijj

mmixm

i

ii

mixm
i ax

VbV

RTb

x

bV
RT

1
3

2
ln      (1) 

 
where R is the gas constant, Vm is the molar volume, i is the thermal de Broglie wavelength.  
For this example, we will set all of the van der Waal b parameters (all bi and bmix) to zero.  The 
values of a are as follows:  a11 = a22 = a33 = a13 = a23= a31 = a32 = 0, a12 = a21 = 20 Joules-m3/mole.  
Consider the molar volume to be constant at Vm = 2.35x10-2 m3/mole.   
 
Tasks. 
(a) Using a finite difference formula, determine the average mole fraction gradients for each 
component, based on the boundary values. 
 (b)  Based on the sign of the mole fraction gradients, in which direction would you expect the 
diffusive flux of each species to be? 
 (c)  Using a finite difference formula, determine the average chemical potential gradients for 
each component, based on the boundary values. 
 (d)  Based on the sign of the chemical potential gradients, in which direction would you expect 
the diffusive flux of each species to be? 
 (e)  Based on your conclusions in parts (b) and (d), which fluxes will one actually observe, those 
given in part (b) or part (d)?  Why? 
 (f)  What is the common term given to the transport phenomena exhibited by one of the 
components? 
 (g)  Name a  chemical engineering unit operation in which this transport phenomena is 
frequently exploited. 
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Solution: 
Consider the steady state behavior of a three component fluid located in an isothermal and 
isobaric system between two boundaries.  The thermodynamic state of the boundary at z = 0 is 
defined by the mole fraction of 1, x1 = 0.15, mole fraction of 2, x2 = 0.84, temperature T = 300 
K, and pressure p = 1 bar. The thermodynamic state of the boundary at z = 1 m is defined by the 
mole fraction of 1, x1 = 0.10, mole fraction of 3, w3 = 0.89, temperature T = 300 K, and pressure 
p = 1 bar. 
 
The chemical potential of component i in a multicomponent van der Waals gas is given by 
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where R is the gas constant, Vm is the molar volume, Li is the thermal de Broglie wavelength.  
For this example, we will set all of the van der Waal b parameters (all bi and bmix) to zero.  The 
values of a are as follows:  a11 = a22 = a33 = a13 = a23= a31 = a32 = 0, a12 = a21 = 20 Joules-m3/mole.  
Consider the molar volume to be constant at Vm = 2.35x10-2 m3/mole.   
 
Tasks. 
(a) Using a finite difference formula, determine the average mole fraction gradients for each 
component, based on the boundary values. 
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(b)  Based on the sign of the mole fraction gradients, in which direction would you expect the 
diffusive flux of each species to be? 
 One would expect that species diffuse from high mole fraction to low mole fraction. 
 Component 1 would move to the boundary at z = 1. 
 Component 2 would move to the boundary at z = 1. 
 Component 3 would move to the boundary at z = 0. 
 
(c)  Using a finite difference formula, determine the average chemical potential gradients for 
each component, based on the boundary values. 
 
The chemical potential expressions are 
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The average chemical potential gradients are 
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Numerical evaluation yields 
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(d)  Based on the sign of the chemical potential gradients, in which direction would you expect 
the diffusive flux of each species to be? 
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 One would expect that species diffuse from high chemical potential to low chemical 
potential. 
 Component 1 would move to the boundary at z = 0. 
 Component 2 would move to the boundary at z = 1. 
 Component 3 would move to the boundary at z = 0. 
 
(e)  Based on your conclusions in parts (b) and (d), which fluxes will one actually observe, those 
given in part (b) or part (d)?  Why? 
 
One will observe the fluxes predicted in part (d), because part (d) is based on the thermodynamic 
driving force for diffusion.  Following the chemical potential gradient will lead the system to a 
lower free energy.  Here, because component 1 interacts more favorably with component 2 than 
it does with component 3, the advantage of the energetic driving force outweighs the 
disadvantage of the entropic driving force associated with going up a concentration gradient. 
 
(f)  What is the common term given to the transport phenomena exhibited by one of the 
components? 
 
Component one will display “uphill diffusion”, where it diffuses up the concentration gradient. 
 
(g)  Name a chemical engineering unit operation in which this transport phenomena is frequently 
exploited. 
 
In liquid-liquid extraction, a good solvent is used to extract a solute from a less good solvent.  
The goodness of a solvent is really an indicator of the chemical potential of the solute in that 
solvent.  Thus, one can extract a solute to a higher concentration in the good solvent than was 
originally present in the less good solvent, due to the overall reduction in free energy. 
 
A code showing the calculations is given below. 
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close all; 
clear all; 
format long e; 
% 
%  parameters 
% 
R = 8.314; % J/mol/K 
T = 300; % K 
p = 101325; % Pa 
a12 = 20.0; % J-m^3/mole^2 
a21 = a12; 
bmix = 0; 
% 
% boundary one (z=0) 
% 
x10 = 0.15; 
x20 = 0.84; 
x30 = 1 - x10 - x20; 
amix = x10*x20*a12 + x20*x10*a21; 
Vm0 = (R*T + sqrt( (R*T)^2 - 4*p*amix) )/(2*p) 
%Vm2 = (kB*T - sqrt( (kB*T)^2 - 4*p*amix) )/(2*p) 
% 
% boundary two (z=1) 
% 
x11 = 0.1; 
x31 = 0.89; 
x21 = 1 - x11 - x31; 
amix = x11*x21*a12 + x21*x11*a21; 
Vm1 = (R*T + sqrt( (R*T)^2 - 4*p*amix) )/(2*p) 
%Vm2 = (kB*T - sqrt( (kB*T)^2 - 4*p*amix) )/(2*p) 
% 
%  assume molar volume is constant 
%  (to make the problem easier for the exam) 
%  This number is given. 
% 
Vmavg = (Vm0 + Vm1)/2 
Vm0 = Vmavg; 
Vm1 = Vmavg; 
% 
%  mole fraction gradients 
% 
gradx1 = x11 - x10 
gradx2 = x21 - x20 
gradx3 = x31 - x30 
% 
%  chemical potential gradients 
% 
gradmu1 = R*T*log( (Vm0*x11)/(Vm1*x10) ) + 2*a12*( x20/Vm0 - x21/Vm1 ) 
gradmu2 = R*T*log( (Vm0*x21)/(Vm1*x20) ) + 2*a21*( x10/Vm0 - x11/Vm1 ) 
gradmu3 = R*T*log( (Vm0*x31)/(Vm1*x30) )  
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Problem 3.  Differential balances 
(a) Derive the continuity equation for a conical pipe, where the cross sectional area is a function 
of axial position and there is only spatial variation in properties in the axial dimension. 
(b) Derive the mass balance for component A for a conical pipe, where the cross-sectional area is 
a function of axial position and there is only spatial variation in properties in the axial dimension. 
(c)  What is the equation for the mass fraction of A for an isothermal, binary system in the 
absence of convection and the presence of a first order reaction A  B, where   ox AbzzA   

and Ficks law is given as 
z

w
Dj A

A 


   and the reaction rate is given as AA kwr  .  Assume 

the density, diffusivity and reaction rate constant are all constant.  Put this equation in the 
simplest form possible. 
(d) What does the steady state profile of the mass fraction of A look like in a pipe of constant 
cross-sectional area and the absence of reaction? 
(e) Comparing the results for the constant cross-sectional area pipe and the varying cross-
sectional area pipe for the case without reaction, which will yield a higher composition of A at 
the outlet for the same inlet conditions? 
 
Solution 
(a) Derive the continuity equation for a conical pipe, where the cross-sectional area is a function 
of axial position and there is only spatial variation in properties in the axial dimension. 
 
accumulation = in – out + generation 
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where the differential volume is zAV x .  The in and out terms are  
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Substitute into the balance equation 
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Divide by the volume 
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Take the limit as the differential length goes to zero. 
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Use the product rule to split terms.  
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The second term disappears if the cross-sectional area is constant.   
 
(b) Derive the mass balance for component A for a conical pipe, where the cross-sectional area is 
a function of axial position and there is only spatial variation in properties in the axial dimension. 
 
accumulation = in – out + generation 
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where the differential volume is zAV x .  The in and out terms for convection and diffusion 

are  
 
 

zAxzzAx jAvwAin            (3.2) 

 
 

zzAxzzzAx jAvwAout


          (3.3) 

 
The generation term is  
 
 AVrgen            (3.4) 
 
Substitute into the balance equation 
 

 
 

AzzAxzAxzzzAxzzAx
A

x VrjAjAvwAvwA
t

w
zA 










   (3.5) 

 
Divide by the volume 
 

 
 

A
zzAxzAxzzzAxzzAx

x

A r
z

jAjAvwAvwA

At

w








 

 1
   (3.6) 

 
Take the limit as the differential length goes to zero. 
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 

A
Ax

x

zAx

x

A r
z

jA

Az

vwA

At

w


























 11 
      (3.7) 

 
Use the product rule to split terms.  
 

 
 

A
x

A
Ax

zA
zAA r

z

A
j

z

j

z

A
vw

z

vw

t

w















































 lnln



   (3.8) 

 
You can simplify this by subtracting the continuity equation from this equation. 
 

 
 

A
x

A
AA

z
A r

z

A
j

z

j

z

w
v

t

w



































 ln
      (3.9) 

 
(c)  What is the equation for the mass fraction of A for an isothermal, binary system in the 
absence of convection and the presence of a first order reaction A  B, where   ox AbzzA   

and Ficks law is given as 
z

w
Dj A

A 


   and the reaction rate is given as AA kwr  .  Assume 

the density, diffusivity and reaction rate constant are all constant.  Put this equation in the 
simplest form possible. 
 

 A
x

A
A r

z

A
j

z

j























ln

0         (3.10) 

 

 
z

w
Dj A

A 


            (3.11) 

 
 AA kwr             (3.12) 
 
Substitution of the diffusive flux, reaction rate and cross-sectional area into equation (3.10) 
yields 
 

 A
A

o

A kw
z

w

Abz

b
D

z

w
D 










 
2

2

0        (3.13) 

 
This can be further simplified as 
 

 A
A

o

A w
D

k

z

w

Abz

b

z

w














2

2

0        (3.14) 

 
(d) What does the steady state profile of the mass fraction of A look like in a pipe of constant 
cross-sectional area and the absence of reaction? 
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2

2

0
z

wA




            (3.15) 

 
This solution of this ODE is a straight line. 
 

   z
z

w
wzw

oz

A
oAA 


 ,          (3.16) 

 
(e) What does the steady state profile of the mass fraction of A look like in the pipe with linearly 
varying cross-sectional area and the absence of reaction? 
 

 
z

w

Abz

b

z

w A

o

A











2

2

0          (3.17) 

 

Let 
z

w
X A




  

 

 X
Abz

b

z

X

o





0          (3.18) 

 

 z
Abz

b

X

X

o







         (3.19) 

 
Integrate. 
 

 



















oo

o

o Abz

Abz

X

X
lnln         (3.20) 

 

 o
o

oo X
Abz

Abz
X




           (3.21) 

 
Substitute in for X. 
 

 
oz

A

o

ooA

z

w

Abz

Abz

z

w











         (3.22) 

 

 z
z

w

Abz

Abz
w

oz

A

o

oo
A 







          (3.23) 

 
Integrate 
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 














oo

o

z

Aoo
oAA Abz

Abz

z

w

b

Abz
ww

o

ln,       (3.24) 

 
(e) Comparing the results for the constant cross-sectional area pipe and the varying cross-
sectional area pipe for the case without reaction, which will yield a higher composition of A at 
the outlet for the same inlet conditions? 
 

The question is whether the quantity 










oo

ooo

Abz

Abz

b

Abz
ln , which is the factor in front of the 

initial slope in equation (3.24), is greater than or less than 1.   
 
If b is positive and the pipe is diverging, then the composition of A at the outlet will be lower 
than the constant cross-sectional area pipe.  If b is negative and the pipe is converging, then the 
composition of A at the outlet will be higher than the constant cross-sectional area pipe. 
 
Typical Plot (not required) shown below 
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The following equations are provided for the exam.  The continuity equation is  
 

  v





t
  ,         (A.1) 

 
where  is the mass density, v is the center-of-mass velocity, and t is time.  In BSL2, this is 
equation (3.1-4) on page 77 [1]. 
 The mass balance on component A is   
 

 







RN

i
AiAA

A rw
t

w

1
,jv   ,      (A.2) 

 
where wA is the mass fraction of component A, jA is the diffusive mass flux of component A 
relative to the center-of-mass velocity, NR is the number of independent chemical reactions in the 
system, and ri,A is the rate of production of component A in reaction i, in units of 
mass/volume/time.  In BSL2, this is equation (19.1-14) on page 584. 

The momentum balance is  
 

   



 ˆp
t

vv
v

  ,      (A.3) 

 

where p is the pressure,  is the extra stress tensor, and ̂  is the specific external field imposed 
by, for example, gravity.  This equation is a the difference of equation (3.2-9) on page 80 of 
BSL2 and the continuity equation , equation(1). 
 The energy balance is  
 

  vvqvvv2

2







 









 

pUv
t

Uv
ˆˆ

2

1
ˆˆ

2

1

  ,  (A.4) 

 

where Û  is the specific (per mass) internal energy, ̂  is the specific potential energy due to an 
external field, and q is the heat flux due to conduction.  This is equation (11.1-9) on page 336 in 
BSL2. 
 


