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ChE 548 
Advanced Transport Phenomena II 

Final Exam 
Friday, May 1, 2009 

8:00-10:00 AM 
 

Problem 1.  Mass Transfer 
Consider diffusion of through a reactive membrane of component A, which can react to form B 
via the first order, irreversible reaction, A  B.  The rate constant is given by  
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where the rate of reaction is given by  
 

Akrate            (1.b) 
 
The heat of reaction for this reaction is small and the system can be assumed to be isothermal.  

The prefactor is 
s

xko

1
100.1 2 , the activation energy is 

mol

J
xEa

4100.1 , R is the ideal gas 

constant, 
Kmol

J
R


 314.8 , and the temperature is KT 300 .  There is no convection in the 

membrane.  The Fickian diffusivity is 
s

m
xD

2
5100.1   and can be considered independent of 

composition.  The membrane is of thickness mL 05.0 .  One of boundaries of the membrane is 

fixed at 
3

7.0
m

kg
A   and 

3
0.0

m

kg
B  . 

 
(a) Write the transient total mass balance and mass of A balance. 
 
The total mass balance in general is  
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Since the velocity is zero, we have 
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In other words, the density is constant. 
 
The balance on A is in general 
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which for this specific case becomes 
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(b) Determine the mass fraction of component A at the far side of the membrane at steady state.   
 
At steady state, the mass balance becomes 
 

 A
A kw

z

w
D 





2

2

0          (5) 

 

 A
A w

D

k

dz

wd


2

2

          (6) 

 
The solution is of the form 
 

     
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Numerically,   10 zwA , 
s

xk
1

108146.1 4 , and 
s

m
xD

2
5100.1  , so that  

 
  8082.0 LzwA  

 

(c) If you want the conversion to be 90%, how thick would the membrane have to be? 
 

   







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   m
k

D
L 54.01.0ln          (9) 

 
Possibly Useful Information: 
 

The solution to an ODE of the form, )(
)(

2

2

xky
x

xy





, is   xkcxy  exp)( . 
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Problem 2.  Reference States in Energy Balances 
The enthalpy of component i can be written as  
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where ifH ,  is the enthalpy of formation at the reference state.  Typically we ignore the pressure 

dependence of the enthalpy.  It can be ignored in this problem as well. 
 
Consider a system with accumulation, convection and diffusion of a binary mixture, in which the 
mixture enthalpy is ideal 
 
      pTHwpTHwpTH BBAAmix ,,,         (2) 

 
The total conduction in the system is due to thermal conduction and enthalpy carried by 
diffusion, 
 
 BBAAc HHk jjTq          (3) 

 
(a)  If the system is non-reactive, show that the enthalpy of formation drops out of the energy 
balance. 
 
We have the general energy balance, 
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We can use the product rule on the accumulation and convection term. 
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Based on the continuity equation, two of the terms cancel, leaving 
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The enthalpy that appears in this balance is the mixture enthalpy.   
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We now concern ourselves only with the enthalpy of formation terms in equation (8).  We 
substitute these terms into the accumulation term of equation (6) to obtain 
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Similarly, the convection term in equation (6) becomes for the enthalpy of formation terms, 
 

  ABfAfmix wHHH  ,,vv    .      (10) 

 
The portion of the heat conduction term in equation (6) that contains the enthalpies of formation 
is 
 
     ABfAfBBfAAf HHHH j-jjq  ,,,,      (11) 

 
Substituting all of the enthalpy of formation terms into the energy balance in (6) yields 
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This simplifies to 
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which is identically zero, since it is the mass balance for component A in the absence of 
chemical reaction. 
 
(b) If there is a chemical reaction term, show that the enthalpy of formations terms in the energy 
balance become the heat of reaction term. 
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If there is a chemical reaction with reaction rate, r, then the mass balance on component A is  
 

 rw
t

w
AA

A 



jv        (14) 

 

 





 




 AA
A w

t

w
r jv        (15) 

 
Equation (12) can be rewritten as  
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At this point, we see that the sum of all of the terms in equation (12) is in fact the negative of the 
heat generated by the reaction, as it should be, rHr . 
 
Problem 3.  Adsorption 
Consider a fluid adsorbing on a surface via the Langmuir Adsorption isotherm, 
 
Consider a system where an ideal gas adsorbs onto a surface via the Langmuir adsorption 
isotherm. 
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where ic  is the molar concentration of component i (mole/m3), i  is the fractional occupancy of 

the surface, and iK is the adsorption/desorption equilibrium coefficient with units of m3/mole.  

The equilibrium coefficient is given in terms of the entropy and enthalpy of adsorption as 
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(a) As the temperature increases, what happens to the amount of material adsorbed?  Why? 
 
As the temperature increases, the amount of material adsorbed decreases, because adsorption is 
an exothermic process, 0 iH .  An increase in temperature weakens the energetic contribution 

to the free energy, resulting in a redistribution of material to the higher energy (bulk) state. 
 
(b) As the pressure increases, what happens to the amount of material adsorbed?  Why? 
 
As the pressure increases, the bulk concentration will increase (significantly for a gas and just a 
little for a liquid) and the amount of material adsorbed increases, as can be seen through direct 
inspection of the Langmuir adsorption isotherm. 
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(c) For a binary system, will the selectivity, s, (defined below), will the selectivity increase or 
decrease with temperature?  Why? 
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If the selectivity is based on differences in the enthalpy of adsorption, then the selectivity will 
decrease as temperature increases because, as mentioned in part (a), an increase in temperature 
results in a weakened influence of energetic contributions, moving the system toward a more 
random (less segregated) state. 
 
 


