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Problem 1. 
 
Consider an isothermal binary mixture of A and B with molecular weights, MA and MB, at a 
thermodynamic state specified by density, ρ, temperature, T, and composition, wA.  We 
experimentally measure the average velocity of component A and component B along the axis of 
a cylindrical tube relative to laboratory frame of reference, vA and vB, which are constant over 
the length of the cylinder.  Answer the following questions.  Assume we choose to measure 
diffusion relative to the center of mass velocity.  Also assume that we will use a form of Fick’s 
law that gives mass flux as a function of gradient in mass fraction. 
 
a.  What is the center of mass velocity, v, in this system? 
 
 BBAA vwvwv +=  
 
b.  What is the total flux of component A in this system? 
 
 AAA vwn ρ=  
 
c.  What is the convective flux of component A in this system? 
 
 ( )BBAAAA vwvwwvw +ρ=ρ  
 
d.  What is the diffusive flux of component A in this system, given in terms of the variables listed 
in the problem statement?  Give it in the most simplified form. 
 
 vwnj AAA ρ−=  
 
 ( )BBAAAAAA vwvwwvwj +ρ−ρ=  
 
 [ ]BBAAAAA vwvwvwj −−ρ=  
 
 [ ]BBABAA vwvwwj −ρ=  
 
 ( )BABAA vvwwj −ρ=  
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e.  What form of Fick’s law is appropriate for the assumptions listed in the problem statement? 
 
When we assume that (i) diffusion is measured relative to the center-of-mass velocity and that 
Fick’s law relates (ii) a mass flux to (iii) a gradient in the mass fraction, we know that Fick’s law 
must have a form. 
 
 AA wDj ∇ρ−=  
 
 BB wDj ∇ρ−=  
 
Moreover, under these assumptions, we know that the D that appears in the diffusive flux of A is 
the same D as appears in the diffusive flux of B. 
 
f.  Assuming we know the diffusivity, D, of this system, what is the gradient of the mass fraction 
of component A in this system? 
 
 ( )BABAAA vvwwwDj −ρ=∇ρ−=  
 

 ( )
D

vvwww ABBA
A

−
=∇  

 
g.  Using symmetry relations, answer parts (d) and (f) for component B. 
 
 Interchanging A and B indices, 
 
 ( )ABABB vvwwj −ρ=  
 

 ( )
D

vvwww BAAB
B

−
=∇  

 
h.  Do your results satisfy the constraint that the sum of the diffusive fluxes must be zero?  Why 
or why not? 
 
 ( )BABAA vvwwj −ρ=    ( )ABABB vvwwj −ρ=  
 
 0jj BA =+  
 
Yes, the fluxes sum to zero as they must since our frame of reference is the center-of-mass 
velocity. 
 
i.  Do your results satisfy the constraint that the gradient of the mass fraction of A must be equal 
in magnitude and opposite in sign to the gradient of the mass fraction of B?   
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 ( )
D

vvwww ABBA
A

−
=∇    ( )

D
vvwww BAAB

B
−

=∇  

 
 0ww BA =∇+∇  
 
Yes, the results satisfy the constraint that the gradient of the mass fraction of A must be equal in 
magnitude and opposite in sign to the gradient of the mass fraction of B. 
 
j.  What is the profile of the mass fraction of A along the cylinder axis? 
 

 ( ) ( )( )
D

vvw1w
D

vvww
dz
dw ABAAABBAA −−

=
−

=  

 

 ( )
( )dz

D
vv

w1w
dw AB

AA

A −
=

−
 

 

 ( )
( )
∫∫

−
=

−

z

0

AB
Aw

0,Aw
AA

A dz
D
vv

w1w
dw  

 
Use the method of partial fraction expansions to evaluate the integral on left hand side. 
 

 ( )
∫∫

−
=








−

+
z

0

AB
A

Aw

0,Aw
AA

dz
D
vvdw

w1
1

w
1  

 

 ( ) z
D
vv

w1
w1

ln
w
wln AB

A

0,A

0,A

A −
=

−

−
+  

 

 ( )




 −

−
=

−
z

D
vvexp

w1
w

w1
w AB

0,A

0,A

A

A  

 
Solve for the mass fraction.  Define a new variable 
 

 
( )






 −
−

= z
D
vvexp

w1
w

)z(C AB

0,A

0,A  

 

 )z(C
w1
w

A

A =
−

 

 
 ( )AA w1)z(Cw −=  
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 ( ) )z(C)z(C1wA =+  
 

 
)z(C1
)z(CwA +

=  

 

 

( )

( )
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


 −
−

+




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 −
−
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z

D
vvexp

w1
w
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z
D
vvexp

w1
w

)z(w
AB

0,A

0,A
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0,A

0,A

A  

 
Simplify 
 

 
( ) ( )

0,A
BA

0,A

0,A
A

wz
D
vvexpw1

w
)z(w

+




 −
−

=  
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Problem 2.   
You have performed a molecular dynamics simulation in the microcanonical ensemble, which 
maintains a constant number of molecules, N, system volume, V, and total energy, E.  You have 
simulated a relatively dilute gas.  You use an initial configuration of a simple cubic lattice.  In 
this initial configuration, there are no molecules within the interaction cut-off distance of each 
other.   You equilibrate using velocity scaling to maintain a constant set temperature for maxeqb 
steps.  
 
a.  What is the initial potential energy? 
 
The short-range contribution to the initial potential energy will be zero since there are no 
molecules within the interaction cut-off distance of each other.   The initial potential energy will 
consist only of the mean field long-range correction. 
 
b.  If at the beginning of the data production stage, your temperature increases beyond the set 
temperature, what is causing the increase?  
 
Since the potential energy starts off at zero (neglecting the long-range correction which is a 
constant at all times), it will decrease to some negative value for a dilute gas.  If you don’t 
equilibrate long enough, then the potential energy won’t reach its equilibrium value.  In which 
case, once you start the microcanonical data production, the total energy will be constant, the 
potential energy will continue to decrease to its equilibrium value, and the kinetic energy (and 
the temperature) will be forced to increase, since energy is conserved. 
 
c.  How can you fix this problem? 
 
You have to equilibrate longer. 
 
d.  You wanted to simulate at a given pressure (say 10 atm) and temperature.  You fed that 
pressure and temperature into an equation of state, and obtained an estimate of the molar density, 
N/V.  You simulated at that N and V and calculated from the simulation a negative pressure.  
List and explain with text or plots possible reasons for the negative pressure.  What does it 
mean? 
 
A negative pressure indicates an unstable phase.  If you consider even the van der Waals 
equation of state, an isotherm plotted on P-V plot can have negative pressures in the unstable 
region.  The problem with the simulation is that the simulation doesn’t agree all that well with 
your approximate equation of state.  In the liquid phase, small differences in density can cause 
huge differences in pressure.  This sort of result is routinely observed.  A negative pressure just 
means that you are simulating an unstable phase, which is possible in an MD simulation.  If you 
really wanted to simulated at a given T and P, then you should simulate in the isobaric-
isothermal ensemble. 


