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I. Adsorption Isotherms
I.A. Single-Component Langmuir Isotherm (simplest model):

Consider adsorption as a kind of elementary reaction: A+S &2AS

Adsorption is the forward reaction. The rate of adsorption per unit volume of reactor is given by
L = kapAeS = kapA(l_e)

where 6 is the fractional occupancy of adsorption sites by component A, Os is the fraction of
empty sitesand 6 +64 =1.

At equilibrium r, =1y
kg0 =KypA(1-0)

0=Kpa(l-96)

where the equilibrium coefficient, K = E—a Solving for 6, you arrive at the Langmuir Isotherm
d

for a single component:

K
= A &)
1+ Kpy

I.B. Binary Langmuir Isotherm (simplest model):
aa =KaaPaBs = kA,apA(l_eA - 65)
Fad =KagBa

at equilibrium r, , =r, 4
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kA,deA = kA,apA(l_eA _eB)

We can write this as

0, =Kpall-0,—-65) forA (2.A)
k
where K, =24
d,A

We can repeat the analogous derivation for component B

05 =Kgpg(l-0,-65)  forB (2.B)
k
where Kg = —22
d,B

We have two equations in (1.A) and (1.B) and we have two unknowns. Solving simultaneously,
yields

0 =KBPB(1_9A)
® 1+Kgpe

K 1-6
05 = KApA[l_eA _%A)J
+ Kgps

Kgps n Kgpg

eA:KApA_KApAeA_KApAl+K 5 1+ Ky p Kapa0a
B8P BPB
Kgp
Kapa —Kapa .
0. — 1+Kgpg Kapa (B.A)
A= = )
1+KApA_&KA A 1+ Kgpg +Kppa
+Kgpp
K
eB BpB (3B)

1+ Kgpg + Kapa

I.C. For n-component Langmuir isotherm:

Based on the pattern of the adsorption isotherm in the single-component and two-component
case, we can use inductive reasoning to arrive at the expression for the n-component system:
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0. — Kipi

P N, 4)
1+ Z Kipi
j=L

I.D. assumptions of Langmuir isotherm
1. energetically homogeneous surface
2. no adsorbate-adsorbate (lateral) interactions — no phase transitions
3. only one adsorbate per adsorption site
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I1. Material Balances
II.LA. Parameter Definitions

We have a packed bed. The void fraction is the volume fraction of the reactor that is not
occupied by the solid particles.

€ void fraction [dimensionless]

These particles are defined by several parameters. Let us for the time being assume spherical
particles. Then the following parameters are relevant.

Dp pellet diameter [length]
Ps site density on surface of pellet [sites/area]
These parameters must be known.

Given these parameters, the surface area per particle and the volume per particle are

A, =7D}
T3

V. =—D
p 6 P

The number of adsorption sites per particle is
N, = Apps

The number of particles per volume of reactor is

(L-¢)

PP=T

The density of sites per volume of reactor is thus

A l-¢
pr =Nspp =psf(l—8)=6ps(D—P)
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I1.B. ““Lever-Rule”” Material Balance between adsorbed and bulk phases (1 component)

Consider a given differential volume element of the reactor containing a single component.
Within this volume, we have void fraction, €, and fractional occupancy, 64, and bulk density,
pba. The lowercase b stands for bulk and the uppercase A stands for component A. The volume
of the element is Vi, where the t stands for total. The total mass of A in the differential volume
element is

Mia=Maa+Mya (%)

We can define the total density of component A in the system to be

Mt A
= d 6
Pt,A v, (6)
Let’s make it clear that this is the total mass of A per total volume.
We can define the bulk density of component A to be
M b,A
= . 7
Pb,A v, (7

Let’s make this clear that this is the mass of A in the bulk phase per bulk volume. We see that
the bulk volume is related to the total volume through the void fraction

g=—- (8)

We can define the adsorbed density of A as being the mass of A per total volume.

M
%ZeApRmA ©

pa,A =
where mj is the molecular weight of component A.

We divide equation (5) by the total volume, V.

Mia Maa N Mp A

Vi Vi Vi

We substitute the densities in equations (6), (7) and (9) to obtain

Pt,A =Pa,a TPpaE (10)
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This equation can also be written as

l1-¢
Pra =0aPrMA +Pp a8 =0,6p; —( D )mA +Pp A€
P

This is a “lever-rule” type of mass balance that relates the fractional occupancy of A in the
adsorbed phase to the bulk density of A through the total density of A in the system.

I1.C. Differential Material Balances (1 component)
We perform a differential balance on the total mass of A.
accumulation = in — out + generation

The accumulation term is given by

oM bl
accumulation = —2A =V, Pt.A
ot ot

where we used equation (6) and assumed the volume was constant in time.
The total volume of the differential element is the differential width of the element multiplied by
the cross-sectional area, V, = AZA, .

A can only enter and leave the differential volume element via convection. (There is no
diffusion since it is single component.) Adsorption and desorption moves the material from the
bulk phase to the adsorbed phase, but it does not move it out of the differential volume element.
The convective terms accounts for fluid flowing in the bulk phase. There is no convection of the
particles; they are assumed to be fixed. As a result the density that appears in the convection
term must be the bulk density. Moreover, the convection occurs not through the entire cross-
sectional area, but only through that portion of the cross-sectional area that is open to flow, A, ¢,

where A, ; =¢€A,

in—out = [pb,AAx,sz ]z - [pb,AAx, V2 ]Z+AZ
There is no generation of the total mass of A. If we put all the terms into the balance, we have

6pt,A
bt

= [pb,AAx, iV, ]z - [pb,AAx, Vs ]z+Az

This can also be written as

apt,A

AZA,
ot

= [pb,ASAsz ]z - [pb,ASAsz 74AZ
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For constant cross-sectional area, we can divide by the volume and take the limit as Az goes to
zero, obtaining,

aPt,A
ot

= —%[pb,Asvz] (11)

This total mass balance on A is a little curious because in the accumulation term we have the
total density and in the convection term, we have the bulk density. Additionally, the convection
term has the void fraction in it.

We now proceed to derive the balance on the mass of A in the bulk phase.

accumulation = in — out + generation
The accumulation term is given by

oM 0
accumulation = —2A =V, Po.
ot ot

where we used equation (7) and assumed the volume was constant in time. Note that this time in
the accumulation term, we have had to use the bulk volume. Again, A can only enter and leave
the differential volume element via convection. The in and out terms are therefore unchanged.

in—out = [pb,AAX,sz ]z - [pb,AAx,fVZ ]z+Az

A in the bulk phase is generated by desorption and consumed by adsorption. In Section I, we
have assumed that the reaction rates are given per volume of the reactor, so the generation term
[

generation = (— Fads. A T rdes‘A)\/t
If we put all the terms into the balance, we have

aPb,A
ot

Vb - [pb,AAx, tVy ]z - [pb,AAx,sz ]Z+AZ + (_ Vads,a + rdes,A)‘/t

This can also be written as

0
&V, Pb,A
ot

= [pb,A‘c'Asz ]z - [pb,ASAsz ]2+Az + (_ Fads, A 1 Tdes, A )\/t
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For constant cross-sectional area, we can divide by the volume and take the limit as Az goes to
zero, obtaining,

8Pb,A

ot B _g[pb,AVz ]""%(_ Fads,a t rdes,A) 12

This equation provides the evolution of the bulk density of component A. It can also be written
as

6Pb,A
ot

= _g[Pb,AVZ ]+%(— Kads,aPb,A(L=0)+ kdes,AeA)

We now proceed to derive the balance on the mass of A in the adsorbed phase.

The accumulation term is given by

oM 00
accumulation = —2A —V. p.m, —A
at tPRMA ot

where we used equation (9) and assumed the volume was constant in time. There is no
convection of the adsorbed phase, thus no in and out terms. A in the bulk phase is generated by
desorption and consumed by adsorption. In Section I, we have assumed that the reaction rates
are given per volume of the reactor, so the generation term is

generation = (rads,A - r-des,A )‘/t
If we put all the terms into the balance, we have

00
thRmA 6_tA = (rads,A - rdes,A )‘/t

This can also be written as

00 1
WA = M(rads,A - rdes,A) (13)

This equation provides the evolution of the adsorbed fractional occupancy of component A. It
can also be written as

00 » 1
—A - 1k 1-0,)-k 0
ot pRmA( ads,Apb,A( A) des, A A)

So, if we collect the relevant evolution equations we have:
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Py 0
A__ Y v total A 14.t
op 0 1
DA :__[pb,AVz]+_(_ kads,Apb,A(l_eA)+kdes,AeA) bulk A (14'b)
ot oz €
D _ L(kads’Apva(l— 04)—Kges 0n) adsorbed A (14.3)
ot pgrMpu

In order to solve this system of equations, you require the parameters, K. o+ Kges o+ € Pr. and

the molecular weight m,. You also either need to be given the velocity, v,, or add a momentum
balance to this set of equations to solve for it.

Vs superficial velocity [length/time]
v true velocity [length/time]
yoVs

€

I1.D. Thermodynamic Equilibrium (1 component)

What happens if we don’t know the adsorption rate constants? We can assume adsorption is fast
and that the system is at thermodynamic equilibrium. In this case, we can use the adsorption
isotherm to relate the fractional occupancy to the bulk density. For example, we can use the
Langmuir isotherm.

Kpy,
A= (1)
1+ Kpb’A

This requires that we know the equilibrium coefficient, which is much easier to estimate than the
adsorption rate constants, because it can be estimated from physical chemistry. We also have the
lever rule mass balance from equation (10).

l-¢
Pra =O0APrMA +Pp a€=0,6p; —( D )mA + Pp A€
P

If we differentiate both of these equations we have,

GOA: Ko szb,A OPp,a
ot |1+Kpya (+Kp, S| ot
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5/ N m 59A+ OPp A

ot PRUATG T

We can rearrange these equations as

Opoa _ 1 Pr,a
ot K szbA ot
1+Kpya  (1+Kpy a)
00 5 Ko K Poa  [0PbA
ot |1+Kpya (+Kp, )| et

Analogous equations can be written for spatial derivatives.

OPp,a _ 1 P+
RYIA o
1+Kppa  (1+Kpya)
0, | K K’pa |ppa
0z [1+Kpya (1+Kpyaf | @2

So that, when we couple these equations to equation (11), the total mass balance, we have

0P A 0
— = v 15.t

OPp,a _ 1 0Pt A (15.b)

ot K K?pp. ot

prM - : +&
AL KPo,a (1+ KPb,A)2

Bp _ Ko szb,A OPp.A (15.2)

ot |1+Kpya ([+Kp, )| ot

So the solution procedure is as follows. Given p, 5, solve the following set of 2 coupled
algebraic equations (the isotherm and lever rule)

10
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KPb,A

—_ FbA 1
1+ Kpb,A @)

A

Pra = OAPRMA + Py AE
for 6, and p, 4. Once you have 0, and py 5, you can solve all of the spatial derivatives that

appear in the evolution equations. Once you have the spatial derivatives, you can evaluate
equation (15) for all of the time derivatives.

11
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I11. Multicomponent Systems

We consider a system with N, components.

I11.A. Thermodynamic Constraints

As noted above, if the adsorptive system is at thermodynamic equilibrium, there is a

thermodynamic constraint for each component. If we use the Langmuir isotherm, the constraint
is

Kipb,i

N¢
1+2Kipb,i
=1

0, = (1.2)
There are N, of these constraints.

111.B. ““Lever-Rule” Constraints

For each component, i, we can write

M =My, +My;

We have the following definitions

p .:%:e.p m;
a,i V iFR"™i

This leads to the following constraints.
Pti =Pa,i TPbi€
(L-¢)
Pri =0iprM; +Pb,i8:9i6PsD—mi +pPpi€ (111.2)
P
There are N of these constraints.

I11.C. ““Sum of the Mass Fractions is Unity”> Constraints
NC
D owy; =1 for all phases ¢
i=1

If we multiply this by the phase density we have,

12
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NC
D Poi =Py for all phases ¢ (111.3)
i=1

There are 3 of these constraints for the bulk, adsorbed and total phases. For the total and bulk
phases, we have respectively

NC
Zpt,i =Pt
i=1

NC
Zpb,i = Po
i=1

For the adsorbed phase we have

NC
zpa,i =Pa
i=1

which can be shown to be equivalent to
NC
D6, =1-6
i=1

I11.D. Degree of Freedom Analysis

For a system with N, components, we have 3(Nc +1) variables and 2N.+3 constraints.
Therefore, we have N. independent unkowns.

In the binary system, we have For a system with N.=2 components, we have 3(NC +1):9

variables and 2N.+3=7 constraints. Therefore, we have N.=2 independent unkowns. The 9
variables are p;,p,, Py, Pi,aPansPbasPie Pag:Pos- 1Ne 7 constraints are 2 isotherms, 2 lever

rules and 3 sums of the mass fractions. The 2 independent unknowns can be chosen carefully
from the full set of 9 unknowns, for example: p,,p; A-

111.D. Differential Material Balances

For the total density in all phases,

o,

B L fpye] (11.4)

For the total density in the bulk phase,

13
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o 0 1
%:_E[IJWZ]JFE;(_ Fads,i +rdes,i) (111.5)

For the total density in the adsorbed phase,

0 S
% = Z(rads,i - rdes,i ) (I “-6)

i=1
For the total density of component i in all phases,

8pt,i
ot

=_§[Pb,igvz]_%[jb,ig] foralli (1.7)

where j,; is the diffusive mass flux of component i relative to the center of mass velocity.
For the total density in the bulk phase,

OPy.i 0

P _E[pb,ivz ]‘%[jb,i ]+%(_ Vads,i T Vdes,i ) foralli (1.8)

For the total density in the adsorbed phase,

apa,i
ot

= Tads,i — Fdes,i forall i (|||.9)

14
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I11. Reactive Systems

15



