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Our exploration of “uphill diffusion”, or diffusion of a species counter to its composition 
gradient, will take the form of an example.  In this example, we will consider a three component 
fluid described by the van der Waals (vdW) equation of state (EOS).   
 
I.  van der Waals’ Equation of State 
 
As a reminder, the pressure, p,  for the vdW EOS is 
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where kB is Boltmann’s constant, T is temperature, Vm is the molecular volume, bmix is the 
minimum molecular volume and amix is a parameter describing the mean field energetic 
attraction.  For the vdW EOS, the mixture parameters are defined in terms of the pure component 
parameters as 
 

 



cN

i
iimix bxb

1

          (2) 

 
and 
 

 
 


c cN

i
ijj

N

j
imix axxa

1 1

         (3) 

 
where Nc is the number of components in the system.  Frequently the binary energetic parameters 
are defined in terms of the pure component energetic parameters 
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where kij is a binary interaction parameter, which is assumed to be zero when unknown.  
Equation (4) can be replaced by directly providing all aij.  The chemical potential of component i 
in the vdW EOS is given by 
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where we have assumed no internal structure in the molecule and i is the thermal deBroglie 
wavelength defined as 
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where h is Planck’s constant and mi is the mass of a molecule of component i. 
 
II.  Problem Statement 
 
Consider a three component fluid located in an isothermal system between two boundaries.  For 
this example, we will set all of the vdW b parameters (all bi and consequently bmix) to zero.  (The 
conclusions of this example are valid regardless of whether the b parameters are zero or non-
zero.)  Furthermore, the values of the binary a parameters are as follows:  a11 = a22 = a33 = a13 = 
a23= a31 = a32 = 0, a12 = a21 = 20 Joules-m3/mole2.  These a parameters indicate that components 
1 and 2 have a attractive interaction with each other.  All other pairs of components have no such 
interaction. 
 
For a three component system, the Gibbs’ Phase Rule tells us that we have four degrees of 
freedom to define the thermodynamic state. 
 
 DOF = NC – NP + 2 = 3 – 1 + 2 = 4       (7) 
 
The thermodynamic state of the boundary at z = 0 is defined by the mole fraction of 1, x1 = 0.25, 
mole fraction of 2, x2 = 0.74, temperature T = 300 K, and pressure p = 1 bar. The thermodynamic 
state of the boundary at z = 1 m is defined by the mole fraction of 1, x1 = 0.2, mole fraction of 3, 
x3 = 0.79, temperature T = 300 K, and pressure p = 1 bar. 
 
III.  Problem Analysis 
 
Task 1.  Using a finite difference formula, determine the average mole fraction gradients for each 
component, based on the boundary values. 
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Task 2.  Based on the sign of the mole fraction gradients, in which direction would you expect 
the diffusive flux of each species to be? 
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One would expect that species diffuse from high mole fraction to low mole fraction. 
 Component 1 would move to the boundary at z = 1. 
 Component 2 would move to the boundary at z = 1. 
 Component 3 would move to the boundary at z = 0. 
 
Task 3.  Using a finite difference formula, determine the average chemical potential gradients for 
each component, based on the boundary values. 
 
The chemical potential expressions are 
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To compute the chemical potentials, we will require the molecular volumes.  The easiest way to 
determine the molecular volumes from the vdW EOS is to rearrange the expression for pressure 
given in equation (1) into a cubic polynomial in the molecular volume.   
 
   023  mixmixmmixmmixBm baVaVpbTkpV       (10) 

 
Then solve for the three roots of the cubic polynomial.  For the simplified case where bmix is 
zero, one of the roots is zero and the other roots are the solution to the quadratic equation, 
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which are  
 

 
 

p

paTkTk
V mixBB

m 2

42 
         (12) 

 
The stable vapor root corresponds to the root with the positive sign.  The roots at the two 
boundaries are Vm = 3.515x10-26 m3/molecule at z = 0 and Vm = 4.082x10-26 m3/molecule at z = 1. 
 
The average chemical potential gradients are 
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Numerical evaluation yields 
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Task 4.  Based on the sign of the chemical potential gradients, in which direction would you 
expect the diffusive flux of each species to be? 
 One would expect that species diffuse from high chemical potential to low chemical 
potential. 
 Component 1 would move to the boundary at z = 0. 
 Component 2 would move to the boundary at z = 1. 
 Component 3 would move to the boundary at z = 0. 
 
Task 5.  Based on your conclusions in Tasks 2 and 4, which fluxes will one actually observe, 
those given in Task 2 or Task 4?  Why? 
 
One will observe the fluxes predicted in Task 4, because Task 4 is based on the thermodynamic 
driving force for diffusion.  Following the chemical potential gradient will lead the system to a 
lower free energy.  Here, because component 1 interacts more favorably with component 2 than 
it does with component 3, the advantage of the energetic driving force outweighs the 
disadvantage of the entropic driving force associated with going up a concentration gradient. 
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Task 6.  What is the common term given to the transport phenomena exhibited by one of the 
components? 
 
Component one will display “uphill diffusion”, where it diffuses up the concentration gradient. 
 
Task 7.  Name a  chemical engineering unit operation in which this transport phenomena is 
frequently exploited. 
 
In liquid-liquid extraction, a good solvent is used to extract a solute from a less good solvent.  
The goodness of a solvent is really an indicator of the chemical potential of the solute in that 
solvent.  Thus, one can extract a solute to a higher concentration in the good solvent than was 
originally present in the less good solvent, due to the overall reduction in free energy. 
 
Task 8.  What is the thermodynamic condition for uphill diffusion in this system. 
 
Uphill diffusion will occur when the gradient for the chemical potential of species 1 is positive.  
Thus we take equation (13.1) and set it greater than 0. 
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Remember in this solution that the molar volume that appears on the RHS is a function of the 
choice of a12.  Solving iteratively yields for this example a12 > 11.8 Jm3/mole2. 
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Matlab Code Used in This Example 
 
close all; 
clear all; 
format long e; 
% 
%  parameters 
% 
kB = 1.38066e-23; % J/mol 
Nav = 6.022e23; 
T = 300; % K 
p = 101325; % Pa 
a12 = 20.0; % J-m^3/mole^2 
a12 = a12/Nav^2; % J-m^3/molecule^2 
a21 = a12; 
bmix = 0; 
% 
% boundary one (z=0) 
% 
x10 = 0.25; 
x20 = 0.74; 
x30 = 1 - x10 - x20; 
amix = x10*x20*a12 + x20*x10*a21; 
Vm0 = (kB*T + sqrt( (kB*T)^2 - 4*p*amix) )/(2*p) 
%Vm2 = (kB*T - sqrt( (kB*T)^2 - 4*p*amix) )/(2*p) 
% 
% boundary two (z=1) 
% 
x11 = 0.2; 
x31 = 0.79; 
x21 = 1 - x11 - x31; 
amix = x11*x21*a12 + x21*x11*a21; 
Vm1 = (kB*T + sqrt( (kB*T)^2 - 4*p*amix) )/(2*p) 
%Vm2 = (kB*T - sqrt( (kB*T)^2 - 4*p*amix) )/(2*p) 
% 
%  mole fraction gradients 
% 
gradx1 = x11 - x10 
gradx2 = x21 - x20 
gradx3 = x31 - x30 
% 
%  chemical potential gradients 
% 
gradmu1 = kB*T*log( (Vm0*x11)/(Vm1*x10) ) + 2*a12*( x20/Vm0 - x21/Vm1 ) 
gradmu2 = kB*T*log( (Vm0*x21)/(Vm1*x20) ) + 2*a21*( x10/Vm0 - x11/Vm1 ) 
gradmu3 = kB*T*log( (Vm0*x31)/(Vm1*x30) )  
% 
%  thermodynamic criteria for uphill diffusion of component 1 
% 
a12min = -0.5*kB*T*log( (Vm0*x11)/(Vm1*x10) ) / ( x20/Vm0 - x21/Vm1 );  
a12min = a12min*Nav*Nav % J*m^3/mole^2 
 


