
D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 1

Derivation of a Numerical Method for solving a single linear parabolic PDE
The Most Elementary Method: The Euler Method

I. FORMULATION.

Consider a linear parabolic partial differential equation in one spatial dimension:

 f
x
Tb

x
caT

x
Tc

t
Td x2

2
+

∂
∂







 −
∂
∂

+−
∂
∂

=
∂
∂

 (I.1)

where the functions, f,d,c,b,a are known functions of time, t, and position, x, but not of the
temperature, T.
 Because the equation is first order in time, this problem requires 1 initial condition of the
form

 ())x(Tt,xT io =

 Because the equation is second order in space, this problem requires 2 boundary
conditions. Boundary conditions come in different forms, but for this problem, let’s use the
simplest form, called a Dirichlet Boundary Condition, where the temperature at the boundary
node is explicitly given.

 ())t(Tt,xT oo = and ())t(Tt,xT ff =

 Our plan is to divide our space dimensions each into m spatial increments, each of width

m
L where of xxL −= . If we are interested in observing the heat transfer from time ot to ft ,

then we can divide that time into n equal temporal increments, each of width
n

tt of − . See

Figure One.

 At the first step, you know all of the function values, T , at time= ot , because these are
given by the initial condition. We also know the values (temperatures, if we assume we are
solving the heat equation) at the boundaries for all time. Then what we next want is the
temperatures for all interior nodes (all nodes but the 2 nodes with temperatures defined by the
boundary conditions at the first time increment, 1t . If we can get { })x,t(T 1 from { })x,t(T o
and)x,t(T o and)x,t(T m , then we have a formulation which will allow us to incrementally
solve the P.D.E through time. Where we could then obtain { })x,t(T 2 from { })x,t(T 1 and

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 2

)x,t(T o and)x,t(T m . In general we want to obtain { })x,t(T 1j+ from { })x,t(T j and

)x,t(T o and)x,t(T m .

 In this lecture packet, we derive the simplest method for obtaining this solution, based on
the Euler method. This is not a commonly used method because it is so inaccurate and unstable.
However, it is relatively easy to derive and provides a path toward more sophisticated methods.
 A comment on notation: we will write)x,t(T ij as j

iT so that
j superscripts designate temporal increments
i subscripts designate spatial increments

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 3

spatial dimension
te

m
po

ra
l d

im
en

si
on

node where temperature is known due to initial condition
legend

node where temperature is known due to boundary condition

Ti
j

to
t1 =to+∆t

t2 =to+2∆t

tn =to+n∆t

tj =to+j∆t

x o x 1
=x

o+
∆x

x 2
=x

o+
2∆

x

x i=
x o

+i
∆

x

x m
=x

o+
m
∆

x

node where temperature is unknown but will be solved for

Figure One. Schematic of the spatial and temporal discretization. Case I. Two Dirichlet
Boundary Conditions.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 4

II. DISCRETIZATION.

A. The Parabolic partial differential equation.

 We write the PDE as

)T,t,x(Kf
x
Tb

x
caT

x
Tc

d
1

t
T

x2

2
=








+

∂
∂







 −
∂
∂

+−
∂
∂

=
∂
∂

 (II.2)

Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead
in time, namely

t
TT

tt
TT

t
T j

i
1j

i

j1j

j
i

1j
i

i ∆
−

=
−
−

≈






∂
∂ +

+

+

 (II.3)

This statement is true at any given point i in space. It is a can make a forward finite difference
formula of the partial derivative with respect to time, so that:

 j

i
j
i

1j
i tKTT ∆+=+ (II.5)

This is the Euler Method. It is first order in time. This equation can be written in vector form

 ()jjjj1j RTKtTT +∆+=+ (II.5a)

where the vector of unknowns is a column vector of length (m-1) spanning over unknown spatial
nodes:



















=

−
j

1m

j
1

j

T

T
T M

The first and last nodes, at i = 0 and i = m are not included in this vector because they are not
unknowns. (See Figure One.) In equation (II.5a), the matrix K contains all terms which are
coefficients to the temperature and the residual vector contains all constant terms. We can
rewrite this as:

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 5

j*jj*1j RTKIT +














+=+ (II.5b)

where the factor of the time step has been absorbed into the K matrix and the R vector.

To continue, we need to evaluate the right hand side of equation (II.4). For any given
point j in time, we can make a finite approximation of the partial derivative with respect to space
(centered finite difference formula).

x2
TT

xx
TT

x
T j

1i
j
1i

1i1i

j
1i

j
1i

j

i ∆
−

=
−
−

≈






∂
∂ −+

−+

−+ (II.6)

Moreover, we can use that same formula, again to obtain the second derivative of the
temperature with respect to space. (Forward finite difference formula for first derivative with
backward finite difference formula for second derivative gives centered finite difference
formula.)

x
x
T

x
T

xx
x
T

x
T

x
T

j

i

j

1i

i1i

j

i

j

1i
j

i
2

2

∆








∂
∂

−






∂
∂

=
−








∂
∂

−






∂
∂

≈








∂
∂ +

+

+ (II.7)

We can substitute our formula for the first spatial derivative into that for the second spatial
derivative.

2

j
1i

j
i

j
1i

j
1i

j
i

j
i

j
1i

j

i
2

2

x
TT2T

x
x
TT

x
TT

x
T

∆

+−
=

∆












∆
−

−










∆
−

≈








∂
∂ −+

−+

 (II.8)

This gives the second spatial derivative at time j. We can then obtain the two functions, 1j
iK +

and c which we require to obtain the temperatures at the new time.












+











∆
−











−







∂
∂

+−










∆

+−
= −+−+ j

i

j
1i

j
1ij

ix

j

i

j
i

j
i2

j
1i

j
i

j
1ij

ij
i

j
i f

x2
TT

b
x
cTa

x
TT2T

c
d
1K

 (II.9)

We now have enough information to fill the matrix and vector in the following equation

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 6

j*jj*1j RTKIT +














+=+ (II.5b)



















≤≤−=



























−

∆
−

∆

∆
=

≤≤+=



























−

∆
+

∆

∆
=

≤≤=












−

∆
−

∆
=

=

−

+

otherwise0

1-mi2 ,1i forb
dx
dc

x2
1

x
c

d
tK

2-mi1 ,1i forb
dx
dc

x2
1

x
c

d
tK

 1-mi1 ,i fora
x
c2

d
tK

K

j
i

j
i

2

j
i

j
i

d

j
i

j
i

2

j
i

j
i

d

j
i2

j
i

j
i

d

j
i,*

l

l

l

l

The matrix,
j
i,*K l , is tridiagonal. The associated vector of constants is
















−=+
∆

=

=+
∆

=

≤≤
∆

=

=

+−

−

1mi forTKf
d

tR

1i forTKf
d

tR

2-mi2 forf
d

tR

R

fd
j
ij

i
1m

od
j
ij

i
1

j
ij

i
d

j
i*

Thus the Euler method for solving a single linear parabolic partial differential equation in one
spatial dimension with two Dirichlet boundary conditions is completely derived.

A short code which implements this routine in Matlab is included below:

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 7

function linparapde_euler
%
% linparapde_euler
%
% single linear 1-D parabolic PDE with
% 2 Dirichlet Boundary Conditions
%
% d*dT/dt = div(c*grad(T)) - a*T -b*dTdx +f
%
clear all;
close all;
% discretize time
to = 0;
tf = 1.0e-0;
dt = 1.0e-3;
tvec = [to:dt:tf];
nt = length(tvec);

% discretize space
xo = 0;
xf = 1.0;
dx = 0.1;
xvec = [xo:dx:xf];
nx = length(xvec);

% dimension solution
Tmat = zeros(nx,nt);

% dimension temporary vectors
nvar = nx-2;
Told = zeros(nvar,1);
Tnew = zeros(nvar,1);

% apply initial conditions
for i = 1:1:nx
 x = xvec(i);
 Tmat(i,1) = icfunk(x);
end
% apply boundary conditions
for i = 2:1:nt

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 8

 t = tvec(i);
 Tmat(1,i) = bc1funk(t);
 Tmat(nx,i) = bc2funk(t);
end

% loop over times
Told = Tmat(2:1:nx-1,1);
for i = 2:1:nt
 t = tvec(i);
 Kmat = zeros(nvar,nvar);
 Rvec = zeros(nvar,1);
 % diagonal elements of matrix
 for j = 1:1:nvar
 x = xvec(j+1);
 Kmat(j,j) = dt/dfunk(x,t)* (-2*cfunk(x,t)/dx^2 - afunk(x,t));
 end
 % upper off-diagonal elements of matrix
 for j = 1:1:nvar-1
 x = xvec(j+1);
 Kmat(j,j+1) = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 end
 % lower off-diagonal elements of matrix
 for j = 2:1:nvar
 x = xvec(j+1);
 Kmat(j,j-1) = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 end
 % vector of constants
 for j = 1:1:nvar
 x = xvec(j+1);
 Rvec(j) = dt/dfunk(x,t)*ffunk(x,t);
 end
 % incorporate BCs
 x = xvec(1);
 term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 Rvec(1) = Rvec(1) + term*bc1funk(t);
 x = xvec(nx);
 term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 Rvec(nvar) = Rvec(nvar) + term*bc2funk(t);
 Tnew = Told + Kmat*Told + Rvec;
 Tmat(2:1:nx-1,i) = Tnew;

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 9

 Told = Tnew;
end
% plot
figure(1);
nskip = 10;
for i = 1:nskip:nt
 plot(xvec,Tmat(:,i),'k-');
 %pause(1);
 hold on;
end
xlabel('position (m)')
ylabel('Temperature (K)');

function a = afunk(x,t);
a = 0;

function b = bfunk(x,t);
b = 0;

function c = cfunk(x,t);
c = 1;

function dcdx = dcdxfunk(x,t);
dcdx = 0;

function d = dfunk(x,t);
d = 1;

function f = ffunk(x,t);
f = 000;

function ic = icfunk(x);
ic = 300;

function bc1 = bc1funk(t);
bc1 = 300;

function bc2 = bc2funk(t);
bc2 = 400;

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 10

Solution: Euler method: 0.001t ,1.0x =∆=∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

310

320

330

340

350

360

370

380

390

400

position (m)

Te
m

pe
ra

tu
re

 (K
)

Here we plot several temperature profiles for the partial differential equation and initial
conditions given by:

)0f(
x
T)0b()0

x
c(T)0a(

x
T)1c(

t
T)1d(2

2
=+

∂
∂







 =−=
∂
∂

+=−
∂

∂
==

∂
∂

=

() 300)x(Tt,xT io == () 300)t(Tt,xT oo == () 400)t(Tt,xT ff ==

We used 10 spatial intervals and solved from to = 0 to tf = 1, with 1000 temporal
intervals. In the plot, we show every tenth profile.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 11

Derivation of a Numerical Method for solving a single linear parabolic PDE

The Second-Order Method: The Crank-Nicholson Method

The Crank-Nicholson Method is a second order Runge-Kutte type method. In this case,
we evaluate the slope at the beginning and end of the interval (at time j and time j+1),
and average the slopes.

 ()ji1j
i

j
i

1j
i KK

2
tTT +

∆
+= ++ (III.1)

In matrix notation this becomes, where we have now split the function K up into a matrix
of coefficients, jK , and a vector of constants, jR .

 







+++

∆
+= ++++ jjj1j1j1jj1j RTKRTK

2
tTT (III.2)

If we absorb the factor of half the time step into the matrix K and the vector R, then we
can rearrange and write:

j*1j*jj*1j1j* RRTKITKI ++














+=














−

+++
 (III.3)

where the asterisk indicates that we have included the factor of half the time step in the
matrix. We should note that in this manner the matrix of coefficients and the vector of
constants have the same definition as that in the Euler method, except for an additional
factor of ½.
Solving for the vector of unknowns, 1jT + , we have












++














+














−=

+
−

++ j*1j*jj*
1

1j*1j RRTKIKIT (III.4)

The advantage of this method is that it is second order. We can take larger time steps,
without the method blowing up.
 Below, we present a MATLAB code to implement the Crank-Nicholson method.
This code is 90% the same as the Euler code. We have moved the calculation of K and R
into function, to conserve space.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 12

function linparapde_crank
%
% linparapde_crank
%
% single linear 1-D parabolic PDE with
% 2 Dirichlet Boundary Conditions
%
% d*dT/dt = div(c*grad(T)) - a*T -b*dTdx +f
%
clear all;
close all;
% discretize time
to = 0;
tf = 1.0e-0;
dt = 1.0e-2;
tvec = [to:dt:tf];
nt = length(tvec);

% discretize space
xo = 0;
xf = 1.0;
dx = 0.1;
xvec = [xo:dx:xf];
nx = length(xvec);

% dimension solution
Tmat = zeros(nx,nt);

% dimension temporary vectors
nvar = nx-2;
Told = zeros(nvar,1);
Tnew = zeros(nvar,1);

% apply initial conditions
for i = 1:1:nx
 x = xvec(i);
 Tmat(i,1) = icfunk(x);
end

% apply boundary conditions

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 13

for i = 2:1:nt
 t = tvec(i);
 Tmat(1,i) = bc1funk(t);
 Tmat(nx,i) = bc2funk(t);
end

%
% make an identity matrix for later use
%
Id = zeros(nvar,nvar);
for i = 1:1:nvar
 Id(i,i) =1.0;
end

% loop over times
i = 1;
t = tvec(i);
Told = Tmat(2:1:nx-1,i);
Kmatold = 0.5*getK(nvar,t,xvec,dt,dx);
Rvecold = 0.5*getR(nvar,t,xvec,dt,dx,nx);
for i = 2:1:nt
 t = tvec(i);
 Kmatnew = 0.5*getK(nvar,t,xvec,dt,dx);
 Rvecnew = 0.5*getR(nvar,t,xvec,dt,dx,nx);
 Ainv = inv(Id - Kmatnew);
 % vector of constants
 Tnew = Ainv*((Id + Kmatold)*Told + Rvecnew + Rvecold);
 Tmat(2:1:nx-1,i) = Tnew;
 Told = Tnew;
 Kmatold = Kmatnew;
 Rvecold = Rvecnew;
end
% plot
figure(1);
nskip = 10;
for i = 1:nskip:nt
 plot(xvec,Tmat(:,i),'k-');
 %pause(1);
 hold on;
end

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 14

xlabel('position (m)')
ylabel('Temperature (K)');

function Kmat = getK(nvar,t,xvec,dt,dx);
 Kmat = zeros(nvar,nvar);
 % diagonal elements of matrix
 for j = 1:1:nvar
 x = xvec(j+1);
 Kmat(j,j) = dt/dfunk(x,t)* (-2*cfunk(x,t)/dx^2 - afunk(x,t));
 end
 % upper off-diagonal elements of matrix
 for j = 1:1:nvar-1
 x = xvec(j+1);
 Kmat(j,j+1) = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 end
 % lower off-diagonal elements of matrix
 for j = 2:1:nvar
 x = xvec(j+1);
 Kmat(j,j-1) = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 end

 function Rvec = getR(nvar,t,xvec,dt,dx,nx);
 Rvec = zeros(nvar,1);
 for j = 1:1:nvar
 x = xvec(j+1);
 Rvec(j) = dt/dfunk(x,t)*ffunk(x,t);
 end
 % incorporate BCs
 x = xvec(1);
 term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 Rvec(1) = Rvec(1) + term*bc1funk(t);
 x = xvec(nx);
 term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx));
 Rvec(nvar) = Rvec(nvar) + term*bc2funk(t);

function a = afunk(x,t);
a = 0;

function b = bfunk(x,t);
b = 0;

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 15

function c = cfunk(x,t);
c = 1;

function dcdx = dcdxfunk(x,t);
dcdx = 0;

function d = dfunk(x,t);
d = 1;

function f = ffunk(x,t);
f = 000;

function ic = icfunk(x);
ic = 300;

function bc1 = bc1funk(t);
bc1 = 300;

function bc2 = bc2funk(t);
bc2 = 400;

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 16

Solution: Crank-Nicholson method: 0.01t ,1.0x =∆=∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

310

320

330

340

350

360

370

380

390

400

position (m)

Te
m

pe
ra

tu
re

 (K
)

Here we plot several temperature profiles for the partial differential equation and initial
conditions given by:

)0f(
x
T)0b()0

x
c(T)0a(

x
T)1c(

t
T)1d(2

2
=+

∂
∂







 =−=
∂
∂

+=−
∂

∂
==

∂
∂

=

() 300)x(Tt,xT io == () 300)t(Tt,xT oo == () 400)t(Tt,xT ff ==

We used 10 spatial intervals and solved from to = 0 to tf = 1, with 100 temporal intervals.
In the plot, we show every tenth profile.

As a comparison, if we try to solve the first order, Euler method with a similar spatial and
temporal interval (0.01t ,1.0x =∆=∆), then we will find that the method crashes. A plot
of the crash is shown in the next figure.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 17

Solution: Euler method: 0.01t ,1.0x =∆=∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3
x 1046

position (m)

Te
m

pe
ra

tu
re

 (K
)

Here we plot several temperature profiles for the partial differential equation and initial
conditions given by:

)0f(
x
T)0b()0

x
c(T)0a(

x
T)1c(

t
T)1d(2

2
=+

∂
∂







 =−=
∂
∂

+=−
∂

∂
==

∂
∂

=

() 300)x(Tt,xT io == () 300)t(Tt,xT oo == () 400)t(Tt,xT ff ==

We used 10 spatial intervals and solved from to = 0 to tf = 1, with 100 temporal intervals.
In the plot, we show every tenth profile.

As is clearly evident, the method was unstable and the result is rubbish.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 18

Solution: Crank-Nicholson method: 0.1t ,1.0x =∆=∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

320

340

360

380

400

420

440

position (m)

Te
m

pe
ra

tu
re

 (K
)

Clearly the time step of 0.1 sec is too small for the spatial interval of 0.1 meters.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 19

Solution: Crank-Nicholson method: 0.01t ,01.0x =∆=∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

320

340

360

380

400

420

position (m)

Te
m

pe
ra

tu
re

 (K
)

Finer meshes require finer time steps. If we drop the spatial interval to 0.01 meters, then
the time step of 0.01 seconds, which previously was adequate for a spatial interval of 0.1
meters, is no longer sufficient.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 20

Solution: Crank-Nicholson method: 0.001t ,01.0x =∆=∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

310

320

330

340

350

360

370

380

390

400

position (m)

Te
m

pe
ra

tu
re

 (K
)

Finer meshes require finer time steps. If we drop the spatial interval to 0.01 meters, then
the time step of 0.001 seconds is no longer sufficient, as can be seen from the spurious
behavior at x=1.0 m.

D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001

 21

Solution: Crank-Nicholson method: 0.0001t ,01.0x =∆=∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
280

300

320

340

360

380

400

position (m)

Te
m

pe
ra

tu
re

 (K
)

Finer meshes require finer time steps. If we drop the spatial interval to 0.01 meters, then
the time step of 0.0001 seconds yields a reasonable result. (More lines are shown here
because the code was set to draw every tenth profile, and we have 10,000 steps in this
particular case.)

