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Derivation of a Numerical Method for solving a single linear parabolic PDE 
The Most Elementary Method:  The Euler Method 

 
I.  FORMULATION. 
 
Consider a linear parabolic partial differential equation in one spatial dimension: 
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where the functions, f,d,c,b,a  are known functions of time, t, and position, x, but not of the 
temperature, T.   
 Because the equation is first order in time, this problem requires 1 initial condition of the 
form 
 
 ( ) )x(Tt,xT io =   
 
 Because the equation is second order in space, this problem requires 2 boundary 
conditions.  Boundary conditions come in different forms, but for this problem, let’s use the 
simplest form, called a Dirichlet Boundary Condition, where the temperature at the boundary 
node is explicitly given. 
  
 ( ) )t(Tt,xT oo =  and ( ) )t(Tt,xT ff =  
 
 Our plan is to divide our space dimensions each into m spatial increments, each of width 

m
L   where of xxL −= .  If we are interested in observing the heat transfer from time ot  to ft , 

then we can divide that time into n equal temporal increments, each of width 
n

tt of − .  See 

Figure One. 
 
 At the first step, you know all of the function values, T , at time= ot , because these are 
given by the initial condition.  We also know the values (temperatures, if we assume we are 
solving the heat equation) at the boundaries for all time.  Then what we next want is the 
temperatures for all interior nodes (all nodes but the 2 nodes with temperatures defined by the 
boundary conditions at the first time increment, 1t .  If we can get { })x,t(T 1  from { })x,t(T o  
and )x,t(T o  and )x,t(T m , then we have a formulation which will allow us to incrementally 
solve the P.D.E through time.   Where we could then obtain { })x,t(T 2  from { })x,t(T 1  and 
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)x,t(T o  and )x,t(T m .  In general we want to obtain { })x,t(T 1j+  from { })x,t(T j  and 

)x,t(T o  and )x,t(T m . 
 
 In this lecture packet, we derive the simplest method for obtaining this solution, based on 
the Euler method.  This is not a commonly used method because it is so inaccurate and unstable.  
However, it is relatively easy to derive and provides a path toward more sophisticated methods. 
 A comment on notation:  we will write )x,t(T ij  as j

iT  so that 
j superscripts designate temporal increments 
i subscripts designate spatial increments 
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Figure One.  Schematic of the spatial and temporal discretization.  Case I.  Two Dirichlet 
Boundary Conditions. 
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II.  DISCRETIZATION. 
 
A.  The Parabolic partial differential equation. 
 
 We write the PDE as 
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Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead 
in time, namely 
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This statement is true at any given point i in space.  It is a can make a forward finite difference 
formula of the partial derivative with respect to time, so that: 
 
 j

i
j
i

1j
i tKTT ∆+=+          (II.5) 

 
This is the Euler Method.  It is first order in time.  This equation can be written in vector form 
 
 ( )jjjj1j RTKtTT +∆+=+         (II.5a) 
 
where the vector of unknowns is a column vector of length (m-1) spanning over unknown spatial 
nodes: 
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The first and last nodes, at i = 0 and i = m are not included in this vector because they are not 
unknowns.  (See Figure One.)  In equation (II.5a),  the matrix K contains all terms which are 
coefficients to the temperature and the residual vector contains all constant terms.  We can 
rewrite this as: 
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where the factor of the time step has been absorbed into the K matrix and the R vector. 
 

To continue, we need to evaluate the right hand side of equation (II.4).  For any given 
point j in time, we can make a finite approximation of the partial derivative with respect to space 
(centered finite difference formula). 
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Moreover, we can use that same formula, again to obtain the second derivative of the 
temperature with respect to space. (Forward finite difference formula for first derivative with 
backward finite difference formula for second derivative gives centered finite difference 
formula.) 
 

x
x
T

x
T

xx
x
T

x
T

x
T

j

i

j

1i

i1i

j

i

j

1i
j

i
2

2

∆








∂
∂

−






∂
∂

=
−








∂
∂

−






∂
∂

≈








∂
∂ +

+

+     (II.7) 

 
We can substitute our formula for the first spatial derivative into that for the second spatial 
derivative. 
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This gives the second spatial derivative at time j.  We can then obtain the two functions, 1j
iK +  

and c which we require to obtain the temperatures at the new time.   
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We now have enough information to fill the matrix and vector in the following equation 
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The matrix, 
j
i,*K l , is tridiagonal.  The associated vector of constants is 
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Thus the Euler method for solving a single linear parabolic partial differential equation in one 
spatial dimension with two Dirichlet boundary conditions is completely derived. 
 
A short code which implements this routine in Matlab is included below: 
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function linparapde_euler 
% 
%  linparapde_euler 
% 
% single linear 1-D parabolic PDE with  
%  2 Dirichlet Boundary Conditions 
% 
% d*dT/dt = div(c*grad(T)) - a*T -b*dTdx +f  
% 
clear all; 
close all; 
% discretize time 
to = 0; 
tf = 1.0e-0; 
dt = 1.0e-3; 
tvec = [to:dt:tf]; 
nt = length(tvec); 
 
% discretize space 
xo = 0; 
xf = 1.0; 
dx = 0.1; 
xvec = [xo:dx:xf]; 
nx = length(xvec); 
 
% dimension solution 
Tmat = zeros(nx,nt); 
 
% dimension temporary vectors 
nvar = nx-2; 
Told = zeros(nvar,1); 
Tnew = zeros(nvar,1); 
 
% apply initial conditions 
for i = 1:1:nx 
 x = xvec(i); 
 Tmat(i,1) = icfunk(x); 
end 
% apply boundary conditions 
for i = 2:1:nt 
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 t = tvec(i); 
 Tmat(1,i) = bc1funk(t); 
 Tmat(nx,i) = bc2funk(t); 
end 
 
% loop over times 
Told = Tmat(2:1:nx-1,1); 
for i = 2:1:nt 
   t = tvec(i); 
   Kmat = zeros(nvar,nvar); 
   Rvec = zeros(nvar,1); 
   % diagonal elements of matrix 
   for j = 1:1:nvar 
      x = xvec(j+1); 
      Kmat(j,j) =  dt/dfunk(x,t)* (-2*cfunk(x,t)/dx^2 - afunk(x,t) ); 
   end 
   % upper off-diagonal elements of matrix 
   for j = 1:1:nvar-1 
      x = xvec(j+1); 
      Kmat(j,j+1) =  dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   end 
   % lower off-diagonal elements of matrix 
   for j = 2:1:nvar 
      x = xvec(j+1); 
      Kmat(j,j-1) =  dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   end 
   % vector of constants 
   for j = 1:1:nvar 
      x = xvec(j+1); 
      Rvec(j) =  dt/dfunk(x,t)*ffunk(x,t); 
   end 
   % incorporate BCs 
   x = xvec(1); 
   term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   Rvec(1) = Rvec(1) + term*bc1funk(t); 
   x = xvec(nx); 
   term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   Rvec(nvar) = Rvec(nvar) + term*bc2funk(t); 
   Tnew = Told + Kmat*Told + Rvec; 
   Tmat(2:1:nx-1,i) = Tnew; 
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   Told = Tnew; 
end 
% plot 
figure(1); 
nskip = 10; 
for i = 1:nskip:nt 
   plot(xvec,Tmat(:,i),'k-'); 
   %pause(1); 
   hold on; 
end 
xlabel('position (m)') 
ylabel('Temperature (K)'); 
 
 
function a = afunk(x,t); 
a = 0; 
 
function b = bfunk(x,t); 
b = 0; 
 
function c = cfunk(x,t); 
c = 1; 
 
function dcdx = dcdxfunk(x,t); 
dcdx = 0; 
 
function d = dfunk(x,t); 
d = 1; 
 
function f = ffunk(x,t); 
f = 000; 
 
function ic = icfunk(x); 
ic = 300; 
 
function bc1 = bc1funk(t); 
bc1 = 300; 
 
function bc2 = bc2funk(t); 
bc2 = 400;
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Solution: Euler method:  0.001t ,1.0x =∆=∆  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

310

320

330

340

350

360

370

380

390

400

position (m)

Te
m

pe
ra

tu
re

 (K
)

 
 
Here we plot several temperature profiles for the partial differential equation and initial 
conditions given by: 
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We used 10 spatial intervals and solved from to = 0 to tf = 1, with 1000 temporal 
intervals.  In the plot, we show every tenth profile. 
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Derivation of a Numerical Method for solving a single linear parabolic PDE 

The Second-Order Method:  The Crank-Nicholson Method 
 
The Crank-Nicholson Method is a second order Runge-Kutte type method.  In this case, 
we evaluate the slope at the beginning and end of the interval (at time j and time j+1), 
and average the slopes. 
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In matrix notation this becomes, where we have now split the function K up into a matrix 
of coefficients, jK , and a vector of constants, jR . 
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If we absorb the factor of half the time step into the matrix K and the vector R, then we 
can rearrange and write: 
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where the asterisk indicates that we have included the factor of half the time step in the 
matrix.  We should note that in this manner the matrix of coefficients and the vector of 
constants have the same definition as that in the Euler method, except for an additional 
factor of ½. 
Solving for the vector of unknowns, 1jT + , we have 
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The advantage of this method is that it is second order.  We can take larger time steps, 
without the method blowing up. 
 Below, we present a MATLAB code to implement the Crank-Nicholson method.  
This code is 90% the same as the Euler code.  We have moved the calculation of K and R 
into function, to conserve space.  
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function linparapde_crank 
% 
%  linparapde_crank 
% 
% single linear 1-D parabolic PDE with  
%  2 Dirichlet Boundary Conditions 
% 
% d*dT/dt = div(c*grad(T)) - a*T -b*dTdx +f  
% 
clear all; 
close all; 
% discretize time 
to = 0; 
tf = 1.0e-0; 
dt = 1.0e-2; 
tvec = [to:dt:tf]; 
nt = length(tvec); 
 
% discretize space 
xo = 0; 
xf = 1.0; 
dx = 0.1; 
xvec = [xo:dx:xf]; 
nx = length(xvec); 
 
% dimension solution 
Tmat = zeros(nx,nt); 
 
% dimension temporary vectors 
nvar = nx-2; 
Told = zeros(nvar,1); 
Tnew = zeros(nvar,1); 
 
% apply initial conditions 
for i = 1:1:nx 
 x = xvec(i); 
 Tmat(i,1) = icfunk(x); 
end 
 
% apply boundary conditions 



D. Keffer, ChE 505, Department of Chemical Engineering, University of Tennessee, October, 2001 

 13

for i = 2:1:nt 
 t = tvec(i); 
 Tmat(1,i) = bc1funk(t); 
 Tmat(nx,i) = bc2funk(t); 
end 
 
% 
%  make an identity matrix for later use 
% 
Id = zeros(nvar,nvar); 
for i = 1:1:nvar 
   Id(i,i) =1.0; 
end 
 
% loop over times 
i = 1; 
t = tvec(i); 
Told = Tmat(2:1:nx-1,i); 
Kmatold = 0.5*getK(nvar,t,xvec,dt,dx); 
Rvecold = 0.5*getR(nvar,t,xvec,dt,dx,nx); 
for i = 2:1:nt 
   t = tvec(i); 
   Kmatnew = 0.5*getK(nvar,t,xvec,dt,dx); 
   Rvecnew = 0.5*getR(nvar,t,xvec,dt,dx,nx); 
   Ainv = inv(Id - Kmatnew); 
   % vector of constants 
   Tnew = Ainv*((Id + Kmatold)*Told + Rvecnew + Rvecold); 
   Tmat(2:1:nx-1,i) = Tnew; 
   Told = Tnew; 
   Kmatold = Kmatnew; 
   Rvecold = Rvecnew; 
end 
% plot 
figure(1); 
nskip = 10; 
for i = 1:nskip:nt 
   plot(xvec,Tmat(:,i),'k-'); 
   %pause(1); 
   hold on; 
end 
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xlabel('position (m)') 
ylabel('Temperature (K)'); 
 
function Kmat = getK(nvar,t,xvec,dt,dx); 
   Kmat = zeros(nvar,nvar); 
   % diagonal elements of matrix 
   for j = 1:1:nvar 
      x = xvec(j+1); 
      Kmat(j,j) =  dt/dfunk(x,t)* (-2*cfunk(x,t)/dx^2 - afunk(x,t) ); 
   end 
   % upper off-diagonal elements of matrix 
   for j = 1:1:nvar-1 
      x = xvec(j+1); 
      Kmat(j,j+1) =  dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   end 
   % lower off-diagonal elements of matrix 
   for j = 2:1:nvar 
      x = xvec(j+1); 
      Kmat(j,j-1) =  dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   end 
    
   function Rvec = getR(nvar,t,xvec,dt,dx,nx); 
   Rvec = zeros(nvar,1); 
   for j = 1:1:nvar 
      x = xvec(j+1); 
      Rvec(j) =  dt/dfunk(x,t)*ffunk(x,t); 
   end 
   % incorporate BCs 
   x = xvec(1); 
   term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   Rvec(1) = Rvec(1) + term*bc1funk(t); 
   x = xvec(nx); 
   term = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - bfunk(x,t))/(2*dx) ); 
   Rvec(nvar) = Rvec(nvar) + term*bc2funk(t); 
 
function a = afunk(x,t); 
a = 0; 
 
function b = bfunk(x,t); 
b = 0; 
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function c = cfunk(x,t); 
c = 1; 
 
function dcdx = dcdxfunk(x,t); 
dcdx = 0; 
 
function d = dfunk(x,t); 
d = 1; 
 
function f = ffunk(x,t); 
f = 000; 
 
function ic = icfunk(x); 
ic = 300; 
 
function bc1 = bc1funk(t); 
bc1 = 300; 
 
function bc2 = bc2funk(t); 
bc2 = 400; 
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Solution:  Crank-Nicholson method:  0.01t ,1.0x =∆=∆  
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Here we plot several temperature profiles for the partial differential equation and initial 
conditions given by: 
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( ) 300)x(Tt,xT io ==  ( ) 300)t(Tt,xT oo ==  ( ) 400)t(Tt,xT ff ==  

 
We used 10 spatial intervals and solved from to = 0 to tf = 1, with 100 temporal intervals.  
In the plot, we show every tenth profile. 
 
As a comparison, if we try to solve the first order, Euler method with a similar spatial and 
temporal interval ( 0.01t ,1.0x =∆=∆ ), then we will find that the method crashes.  A plot 
of the crash is shown in the next figure. 
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Solution: Euler method:  0.01t ,1.0x =∆=∆  
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Here we plot several temperature profiles for the partial differential equation and initial 
conditions given by: 
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We used 10 spatial intervals and solved from to = 0 to tf = 1, with 100 temporal intervals.  
In the plot, we show every tenth profile. 
 
As is clearly evident, the method was unstable and the result is rubbish.   
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Solution: Crank-Nicholson method:  0.1t ,1.0x =∆=∆  
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Clearly the time step of 0.1 sec is too small for the spatial interval of 0.1 meters.   
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Solution: Crank-Nicholson method:  0.01t ,01.0x =∆=∆  
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Finer meshes require finer time steps.  If we drop the spatial interval to 0.01 meters, then 
the time step of 0.01 seconds, which previously was adequate for a spatial interval of 0.1 
meters, is no longer sufficient.   
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Solution: Crank-Nicholson method:  0.001t ,01.0x =∆=∆  
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Finer meshes require finer time steps.  If we drop the spatial interval to 0.01 meters, then 
the time step of 0.001 seconds is no longer sufficient, as can be seen from the spurious 
behavior at x=1.0 m. 
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Solution: Crank-Nicholson method:  0.0001t ,01.0x =∆=∆  
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Finer meshes require finer time steps.  If we drop the spatial interval to 0.01 meters, then 
the time step of 0.0001 seconds yields a reasonable result.  (More lines are shown here 
because the code was set to draw every tenth profile, and we have 10,000 steps in this 
particular case.) 
 
 
 


