D. Keffer, ChE 505 ,University of Tennessee, May, 1999

Derivation of a Numerical Method for solving a single linear parabolic PDE
|. FORMULATION.

Linear parabolic partial differential equations are, in their most general form, given by:

d% = No{c(NT)]- aT - b>xNT +f (1.2)

where the functions, a,b,c,d,f are known functions of t,X,Y,z and the temperature, T, isan
unknown function of t,X,Y,Z. In order to approximate this creature using a finite difference
scheme we recognize that

N Hc(NT)] = cN>RT + KT e = cR?T + NT e = cN2T +Ne xNT (1.2

and rewrite this as:;

d%:cNZTmcxﬂT- aT - b>NT +f (1.3)
d‘l‘Tﬂ—I:cNZT- aT +(Nc - b)xNT +f (1.4)

For purposes of brevity only, we will consider the case with variation only in one spatial
dimension. The extension to three dimensions is straightforward. Our most general parabolic
PDE becomes in one spatial dimension

2 y
dﬂT Ll aT+aéE- 9ﬂ+f

S =c——- c : (1.5)
Tt % &Tx  “gix
We now need to know the functional forms of a,b,c,d,f,Nc , which must be given. In many

problems, most of these functions are constants and, often the constants are unity or zero.
However, in order to write a code that solves any parabolic PDE, it isfor this general formulation
that we derive afinite-difference method.
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L
Our planisto divide our space dimensions each into m spatia increments, each of width — . If
m

we are interested in observing the heat transfer from time t, to t;, then we can divide that time

te -t
into n equal temporal increments, each of width 20 seeFi gure One.
n

At the first step, you know al of the function values, T, at time=t, because these are given by

theinitial condition. Let’sfirst consider the case where we have 2 Dirichlet boundary conditions.
In that case, we also know the values (temperatures, if we assume we are solving the heat
eguation) at the beginning and end of therod for all time. Then what we next want is the
temperatures for all interior nodes (all nodes but the 2 nodes with temperatures defined by the

boundary conditions at the first time increment, t;. If we can get T(tl,{x}) from T(to,{x})
and T(t,X,) and T(t,X,,), then we have aformulation which will allow us to incrementally
solve the P.D.E through time. Where we could then obtain T(tz,{x}) from T(tl,{x}) and
T(t,X,) and T(t,X,,,). Ingeneral wewant to obtain T(t j+1,{x}) from T(t j,{x}) and
T(t,X,) and T(t,Xp,).

We will derive one such method, a method known as the Crank-Nicolson method.

A comment on notation: we will write T(t j,Xi) asTij so that

| superscripts designate temporal increments
I subscripts designate spatial increments
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Figure One. Schematic of the spatial and temporal discretization. Casel. Two Dirichlet
Boundary Conditions.
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Figure Two. Schematic of the spatial and temporal discretization. Casell. Two Neumann
Boundary Conditions.
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1. DISCRETIZATION.
Derivation of the Crank-Nicolson finite difference equations

A. The Parabolic partial differential equation.

The Crank-Nicolson finite difference equations provide estimates that are second order in
gpace and time. The Crank-Nicolson is an implicit method.

Let j superscripts designate temporal increments and let i subscripts designate spatia
increments. For purposes of brevity only, we will consider the case with variation only in one
gpatial dimension. The extension to three dimensionsis straightforward. Our most genera
parabolic PDE becomesin one spatia dimension

2
dﬂ:cu-aTﬂgéE- XOﬂT (11.1)

Tt &1x Pl

In order to get an approximation that is second order in time, we recast this equation as

T _1€ 9°T e ofT
—=—a——-al+¢c—- =K(x,tT 1.2
it dE g2 Sox Vg TTATROT) (12

Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead
in time, namely

C+» L= | (11.3)

This statement is true at any given point i in space. It isacan make aforward finite difference
formula of the partial derivative with respect to time. Now what is also true by the second-order
Runge-K utta method is that:

0 o1 )
f%a » = 5 §<(X|’t1+1’ J"'1) + K(XI,tJ+1, J+1 a: E g(lj a (11.4)
so that:
T =T +%§<;+1+Kij a (11.5)
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Thisisthe formulafor the second order Runge-Kutta. Ordinarily, we wouldn't know the

temperature needed to evalute Kij+1 (and we would be forced to approximate it) but we shall see

that we can formulate the problem in alinear fashion so that we can implicitly solve the right and
left-hand sides of this equation simultaneoudly, without further approximation.

To continue, we need to evaluate the right hand side of equation (11.4). For any given
point j in time, we can make a finite approximation of the partial derivative with respect to space
(centered finite difference formula).

. '
AT 0 T.J+1 - T|Jl T|J+1 - Ti{l

(11.6)
gﬂx g X+~ X1 2Dx

Moreover, we can use that same formula, again to obtain the second derivative of the temperature
with respect to space. (Forward finite difference formulafor first derivative with backward finite
difference formulafor second derivative gives centered finite difference formula.)

_ aéTI' o aéTT o aéTT o aéﬂ' o
T ¢ 0 X g ST a_ X a 6Ty
éﬂx Xi+1 = X Dx

(11.7)

We can substitute our formulafor the first spatial derivative into that for the second spatial
derivative.

_ éa-ij-i-l'TiJ 9 éa-ij'Ti{lg |
q?T0 & DX F & Dx 5 oTl-21)+7)
éﬂ > > Dx 2 (11.8)
X
%]

This gives the second spatial derivative a timej. We can then obtain the two functions, Kij+1 and

KiJ which we require to obtain the temperatures at the new time.

K/ :iﬁf Jga-'{“l_ 2T, +Tij'1g- alT) +%£9 - b,/ %a-—']*l - 19+fJu
Tdg'f of 5 @ka & x5 g
(11.9)
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_ é _ a-_j+1_ 2-|-_j+1 +T_j+1('j _ _ Qﬂ' j+1 J+1 u
Kij+1 :%@iulg i+1 _ i-1 - aiJ+1-|-iJ+1 %TD‘EO i bX'J+1_5g—I+12DXI 1 T+fJ+1L,J
dg’ & Dx 5 ge g B s H
(11.10)
Define
A:DtaB:Dtaé1cb¢ _ Dt Dtf

, ¢—-b,+ C= c,D=1,andF=—
2d 4dDx &x ] 2dDx?2 2d

so that we can rewrite equations (11.9) and (11.10) as

2 z . . . .
K/ :agcil(TiJﬂ- 2T+ 1!, ) AJTJ+BJ(TIJ+1- TI_ )+|:|J E (11.9b)

K™ = 2 C! +1(TiJ;|-+11 - 2T+ Tiiil)' AT +B] (TiJ:ll - Tij;+11)+ Ry
Dt & b
(11.10b)

Group like temperatures in equations (11.9b) and (11.10b)

= 24l ol) o 2cl- Al) Tololenl) TR 0 s

Kij+1 :ég(cijﬂ _ Bij+1) -I-ij;-l-ll_i_(_ 2Cij+1 _ Aij+1) Tij+1 (CJ+1+BJ+1) -I-I!:-ll +Fj+1 a

(11.10¢c)

Substitute equations (11.9¢) and (11.10c) into (11.5) to obtain

. e(C, B/) Ti, +( 2ci- Al) Ti+(cl +BI) Ti, +F + u
i . . . U
8(CJ+1 J+1 J+1 ( 2CJ+1 J+1) Tij+1+(CiJ+1 +Bij+1) T|J-|-'-11+FJ+1H

(11.11)

Group like temperatures, placing al unknown temperatures (at time j+1) on the right-hand side
and all known temperatures (at timej) on the left-hand side.
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(e i) Tt e 2ci 4 AT T (CIt Bt Tt

i (C'J ) B'J) T +(1_ 2] - AIJ) T/ +(Cij +Bij) Thy +F +F™
(11.12)

If we define Jgpq = (1+2C+A), J; =-(C+B), J, =-(C- B) and
Rgiag = (1- 2C - A) then we can rewrite equation (11.12) as

Jj+1 j+1+Jj+1 T

¥l o il — ) T ] i_ 1 Tl ] j+1
ioi Vi1 Tdiagi T t9nii T = - Jioi 11 t Raiagi T = Jnij T TH +F

lo,i diag,i 'i
(11.13)
These equations hold for al interior nodes. We will deal with nodes affected by the
boundary conditions shortly. When we have Dirichlet boundary conditions, an interior node is
any node except those at the boundary. When we have Neumann boundary conditions, we are
forced to add an imaginary node on each side of the system. Thus an interior node is any node

except those two imaginary nodes (but including the nodes that would be the boundary if we had
Dirichlet boundary conditions).

This format is linear in unknowns, }Tjﬂ Y. We should take careful notice of this
|
equation. (1) All our unknown temperatures (the temperatures at time j+1 are on the left hand
side of the equation). (2) Moreover, they appear in alinear fashion onthe LHS. (3) All the
variables on the RHS are known quantities. Clearly thisis going to give us a system of linear,

algebraic equations. We solve this system of equations using the rules of linear algebra. In fact,
we can write the above equation as:

QIM =R (11.14)
Thisis asystem of equations of the standard form:

Ax=b (11.15)
with a solution

T =J'R (11.16)

so long as the determinant of the J matrix is non-zero. We will call the matrix on the left-hand
side of equation (I1.14) the Jacobian and we will call the vector on the right-hand side of equation
(11.14) the residual .

Size of the matrix:
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If there are m spatia intervals, there are m+1 spatial nodes, numbered by the variablei
from 0 tom. For 2 Dirichlet boundary conditions, if there are m spatial nodes, then there are m-1

interior nodes, thus there are m-1 unknown temperatures. The J matrix isamatrix of dimension

m-1 by m-1, with an index k bounded by 1£ Kk £ m - 1 corresponding to spatial nodes
1£i£€m- 1.

For 2 Neumann boundary conditions, there are m+3 spatial nodes. (Thisis because for
Neumann boundary conditions, we create imaginary nodes at each end, in order to satisfy the
boundary condition fluxes. See Figure Two. The additional nodestakei vaues of -1 and m+1.)
The temperature at all of these nodes are unknown. Thus there are m+3 unknown temperatures.

The J matrix is amatrix of dimension m+3 by m+3, with an index k boundedby 1£K £m + 3

corresponding to spatial nodes - 1£1 £ m+1.

For 1 Dirichlet, and 1 Neumann BC, there are m=m+2 spatial nodes, numbered by the
variablei from 0 to m+1, if the Dirichlet nodeis at O, numbered by the variablei from -1 to m, if
the Dirichlet node is at m. The temperature at all but one of these nodes (the Dirichlet node) are

unknown. Thus there are m+1 unknown temperatures. The J matrix is amatrix of dimension

m+1 by m+1, with an index k bounded by 1£ k £ m + 1 corresponding to spatial nodes
OfiEm+lor-1EIi£m.

The right hands side of the above equation isthe residual. Theleft hand sideisa
tridiagonal matrix.

Below we consider the explicit forms of the Jacobian and residual.
B. Dirichlet boundary conditions.

We will consider our Dirichlet Boundary conditions in their most general form as
T=h (11.17)

where h isaknown functions of t,X in one spatial dimension and t,X,Y, Z in three dimensions.
In terms of an unknown temperature at a discretized node, we have:

Tij+1 = hij+1 = h(Xistj+1) (11.18)

This equation will be used at the boundary nodes. Thisisin the same linear form as the finite-
difference equations for the P.D.E., which is what we need since, ultimately, we need to solve
them simultaneoudly.

C. Neumann boundary conditions.

We will consider our Neumann Boundary conditions in their most general form as

pl]TT—X:-qT+g (11.19)
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where P, 0, g are known functions of t,X in one spatial dimension and t,X,Y,Z in three
dimensions. We already have aformulafor the first spatial derivative, namely

N j
ad]_T N T|J+1 } lel T|J+1 } Tij-l

= » (11.6)
gw”ﬁ Xiv1 = X1 2Dx
so our Neumann boundary condition becomes at time j+1
j+1 16
gt~ Te1 2 gragia gin (11.20)
g 2Dk 5
We define P = geig and obtain
e2Dx g
j+198-j+1 j+1 O 1 1
PG T 9= g1l 4 gl (11.21)

-1 é

We perform the same rearrangement as we did on the PDE, putting al unknown temperatures at
time j+1 on the left-hand side and all other temperatures on the right-hand side.

pJ"‘lTJ"'l + qJ+1TJ + pJ+1-|-J+1 = g*? (11.22)

i+1 i

This equation will be used for the imaginary spatial nodes created to handle Neumann boundary
conditions. Thisisin the same linear form as the finite-difference equations for the P.D.E., which
iswhat we need since, ultimately, we need to solve them simultaneoudly.

[11. JACOBIANSAND RESIDUALS.
A. Dirichlet boundary conditions
1. Calculate Jacobian (k is the index inside the Jacobian matrix)
a. First exterior node (i=0)
Not included in the Jacobian because thisis not an unknown.
The temperature here is given by the boundary condition.
b. Last exterior node (i=m)
Not included in the Jacobian because thisis not an unknown.
The temperature here is given by the boundary condition.
c. Firstinterior node (i=1) (k=1)

I = Izg

J12) =37

10



D. Keffer, ChE 505 ,University of Tennessee, May, 1999

d. Lastinterior node (i=m-1) (k=m-1)
Jm-1m- 2)=J*

lom-1
_ i+l
Jm-1m-1)= ‘Jgi-ag,m-l
e. All other nodes (1<i<m-1) (1<k<m-1)

Jkk-1 =357
J(k,K) = Jf;;g'i

Jkk+1) =3

s0 that the Jacobian looks like:

agy It O 0 o o !
2:2 0 J|0’ Jd,agJ+ Inii 0 0 G
e 0 0 3T Jag™ 3" 0§
o o O Jomz Juugy, nmz U
g 0 0 0 0 Jlojﬂ Jdlagj+1 H

Thisisatri-diagona matrix of known functions of time and space.

A. Dirichlet boundary conditions
2. Calculate Residua
a. First exterior node (i=0)
Not included in the Jacobian because thisis not an unknown.
The temperature here is given by the boundary condition.
b. Last exterior node (i=m)
Not included in the Jacobian because thisis not an unknown.
The temperature here is given by the boundary condition.
c. First interior node (i=1) (k—l)
R(l) =" ‘J 1TJ + Rd|ag 1T J#ﬂ,lTé + FlJ + Flj-'-1 B ‘JIJ;%TJ-'-1
d. Lastinterior node (i=m-1) (k=m-1)
— ] i
R(m 1) ‘Jlo m- 1T + Rdlag m- 1Tm 1°
e. All other nodes (1<i<m 1) (1<k<m 1)

] ] j+1 j+1 j+1
‘Jhlm 1T +F +Fm 1° ‘Jhi,m-le

dlagl

11
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30 that the Residual 1ooks like:

1Tl ] i_ 1 Tl ] j¥1 _ qj+lyj+l
Jio1To T RaiagaT1 - JniaTz +F +F 7 - JgiTg

o 17 hiaf2 TR
- JioiTit1 * Regiag Ti = i Toa +F +F

o e
- JioiTit1 * Regiag Ti = i Toa +F +F

|20
I
D> D> D> (D> (D> (D> (D~

7 j j gl i j 1 4itl i+l
‘Jlo,m-le-Z + Rdiag,m-le-l ‘Jhi,m-le + I:m-l + I:m-l ‘Jhi,m-le

[( @Y e e Y e Y e\ e Y a?

[(1)))

Thisisavector of known quantities.

B. Neumann boundary conditions
1. Calculate Jacobian (k is the index inside the Jacobian matrix)
a. First exterior node (now an imaginary node) (i=-1) (k=1)

Juy =-Py
J(1.2) = ab*
J13)=r"

b. Last exterior node (now an imaginary node) (i=m+1) (k=m+3)
Jm+3m+1)=-pi
Jm+3m+2)=git
Jm+3,m+3)=pit

c. All other nodes (-1<i<m+1) (1<k<m+3)
Jk,k - 1) =3It

lo,i
J(k,K) = Jf;;g'i

Jkk+1) =3}

The Jacobian looks like:

12
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e u
~ 1 Jt1 jt1 1 ’
e Jlo Jdlag ‘Jhl 0 0 0 u
é j+1 j+1 J+1 a
J - é O J|01 ‘Jdlag Jhl O O U
= @ j+1 o J"'1 U
& 0 0 Jiom. Jdlagm_ 1 Jhim- 0 0
& 0 0 0 Jomh Jging, +1 Iy~ G
8 Im M
= j+1 j+1 j+1 2
e 0 0 0 - Pm m Pm ¢

B. Neumann boundary conditions
2. Calculate Residua
a. First exterior node (i=-1) (k=1)
R(D) =g5”
b. Last interior node (i=m+1) (k=m+3)
R(m +3) = gt
c. All other nodes (-1<i<m+1) (1<k<m+3)
— j+1
R(k) ‘JI0|T|J 1 + Rdlag |TJ JhIITI!Fl + FJ + FJ

30 that the Residual 1ooks like:

é git v
S T +RL -3l TI+F] +F* g

€ lo,0 dlag 0 hi,0 u

-€ j j J j4pivt U
R= é ‘JI0|T| 1 Rdlag |T Jhl |T|+1 + F + F U
& 1) i j i 1y

9' ‘Jlo me 1 + Rdlag mT Jhl me+1 + I:m + I:m L,J

? j+1 lil

e m b

Thisisavector of known quantities.

V. SOLUTION.
With the Jacobian and Residual, we solve for the temperatures at the next time, j+1.

T =0"'R

We can then repeat the calculation of the Jacobian and the residual and solve for the temperatures
at time, j+2, and so on.

13



