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I.  FORMULATION.

Linear parabolic partial differential equations are, in their most general form, given by:

( )[ ] fTbaTTc
t
T

d +∇⋅−−∇⋅∇=
∂
∂

(I.1)

where the functions, f,d,c,b,a  are known functions of z,y,x,t  and the temperature, T , is an

unknown function of z,y,x,t .  In order to approximate this creature using a finite difference

scheme we  recognize that

( )[ ] TcTccTTccTTcTc 22 ∇⋅∇+∇=∇⋅∇+∇=∇⋅∇+∇⋅∇=∇⋅∇ (I.2)

and rewrite this as:

fTbaTTcTc
t
T

d 2 +∇⋅−−∇⋅∇+∇=
∂
∂

(I.3)

( ) fTbcaTTc
t
T

d 2 +∇⋅−∇+−∇=
∂
∂

(I.4)

We will consider the case with variation in two spatial dimensions.  The extension to three
dimensions is straightforward.  Our most general parabolic PDE becomes in two spatial dimension
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(I.5)

We now need to know the functional forms of c,f,d,c,b,a ∇ , which must be given.  In many
problems, most of these functions are constants and, often the constants are unity or zero.
However, in order to write a code that solves any parabolic PDE, it is for this general formulation
that we derive a finite-difference method.

Our plan is to divide our x-spatial dimension into xm  spatial increments, each of width 
x

x

m
L

.

Similarly, we divide our x-spatial dimension into ym  spatial increments, each of width 
y

y

m

L
 .  If
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we are interested in observing the heat transfer from time ot  to ft , then we can divide that time

into n equal temporal increments, each of width 
n

tt of −
.  See Figure One.

At the first step, you know all of the function values, T , at time= ot , because these are

given by the initial condition.  Let’s first consider the case where we have a rectangular area with
4 Dirichlet boundary conditions.  In that case, we also know the values (temperatures, if we
assume we are solving the heat equation) at the edges of the area for all time.  Then what we next
want is the temperatures for all interior nodes (all nodes but the nodes with temperatures defined
by the boundary conditions at the first time increment, 1t .  If we can get { })y,x,t(T 1  from

{ })y,x,t(T o  and the boundary conditions: )y,x,t(T o , )y,x,t(T
xm , )y,x,t(T o , )y,x,t(T

ym , then we

have a formulation which will allow us to incrementally solve the P.D.E through time.   Where we
could then obtain { })y,x,t(T 2  from { })y,x,t(T 1  and the boundary conditions.  In general we want

to obtain { })x,t(T 1j+  from { })x,t(T j  and )x,t(T o  and )x,t(T m .

We will derive one such method, a direct two-dimensional analog of the one-dimensional method
known as the Crank-Nicolson method.

A comment on notation:  we will write )y,x,t(T kij  as j
k,iT  so that

j superscripts designate temporal increments
i subscripts designate spatial increments along the x coordinate
k subscripts designate spatial increments along the y coordinate
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Figure One.  Schematic of the spatial and temporal discretization.  Case I.  Two Dirichlet
Boundary Conditions.
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Figure Two.  Schematic of the spatial and temporal discretization.  Case II.  Two Neumann
Boundary Conditions.
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II.  DISCRETIZATION.
Derivation of the Crank-Nicolson finite difference equations

A.  The Parabolic partial differential equation.

The Crank-Nicolson finite difference equations provide estimates that are second order in
space and time.  The Crank-Nicolson is an implicit method.

Let j superscripts designate temporal increments and let i subscripts designate spatial
increments.  For purposes of brevity only, we will consider the case with variation only in one
spatial dimension.  The extension to three dimensions is straightforward.  Our most general
parabolic PDE becomes in one spatial dimension
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(II.1)

In order to get an approximation that is second order in time, we recast this equation as
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(II.2)

Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead
in time, namely

t

TT

tt

TT

t
T j

k,i
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j1j
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=
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(II.3)

This statement is true at any given point i in space.  It is a forward finite difference formula of the
partial derivative with respect to time.  Now what is also true by the second-order Runge-Kutta
method is that:

[ ] [ ]j
k,i

1j
k,i

1j
i1jki

1j
i1jki

k,i

KK
2
1

)T,t,y,x(K)T,t,y,x(K
2
1

t
T

+=+≈







∂
∂ ++

+
+

+ (II.4)

so that:

[ ]j
k,i

1j
ki,i

j
ki,i

1j
k,i KK

2
t

TT +
∆

+= ++ (II.5)

This is the formula for the second order Runge-Kutta.  Ordinarily, we wouldn't know the
temperature needed to evalute 1j

k,iK +  (and we would be forced to approximate it) but we shall see
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that we can formulate the problem in a linear fashion so that we can implicitly solve the right and
left-hand sides of this equation simultaneously, without further approximation.

To continue, we need to evaluate the right hand side of equation (II.4).  For any given
point j in time, we can make a finite approximation of the partial derivative with respect to space
(centered finite difference formula).
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Moreover, we can use that same formula, again to obtain the second derivative of the temperature
with respect to space. (Forward finite difference formula for first derivative with backward finite
difference formula for second derivative gives centered finite difference formula.)

x

x
T

x
T

xx

x
T

x
T

x
T

j

k,i

j

k,1i

i1i

j

k,i

j

k,1i

j

k,i
2

2

∆









∂
∂

−







∂
∂

=
−









∂
∂

−







∂
∂

≈







∂
∂ +

+

+ (II.7x)

y

y
T

y
T

yy

y
T

y
T

y
T

j

k,i

j

1k,i

i1k

j

k,i

j

1k,i

j

k,i
2

2

∆









∂
∂

−







∂
∂

=
−









∂
∂

−







∂
∂

≈







∂
∂ +

+

+ (II.7y)

We can substitute our formula for the first spatial derivative into that for the second spatial
derivative.
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This gives the second spatial derivatives at time j.  We can then obtain the two functions, 1j
k,iK +  and

j
k,iK  which we require to obtain the temperatures at the new time.
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Group like temperatures in equations (II.9b) and (II.10b)
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Substitute equations (II.9c) and (II.10c) into (II.5) to obtain
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Group like temperatures, placing all unknown temperatures (at time j+1) on the right-hand side
and all known temperatures (at time j) on the left-hand side.
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1j

k,iy
1j
k,1i

1j

k,ix
1j

k,ix

FFTBCTBC

TAC2C21TBCTBC
              

TBCTBC

TAC2C21TBCTBC

(II.12)

If we define )AC2C21(J yxdiag +++= , ( )xxx,hi BCJ +−= , ( )yyy,hi BCJ +−= ,

( )xxx,lo BCJ −−= , ( )yyy,lo BCJ −−= , and )AC2C21(R yxdiag −−−=  then we can rewrite

equation (II.12) as

[ ]
[ ]1j

k,i
j
k,i

j
1k,i

j

k,iy,hi
j

k,1i
j

k,ix,hi
j
k,i

j

k,idiag
j

1k,i
j

k,iy,lo
j

k,1i
j

k,ix,lo

1j
1k,i

1j

k,iy,hi
1j
k,1i

1j

k,ix,hi
1j

k,i
1j

k,idiag
1j
1k,i

1j

k,iy,lo
1j
k,1i

1j

k,ix,lo

FFTJTJTRTJTJ              

TJTJTJTJTJ

+
++−−

+
+

++
+

++++
−

++
−

+

++−−+−−=

++++
(II.13)

These equations hold for all interior nodes.  We will deal with nodes affected by the
boundary conditions shortly.  When we have Dirichlet boundary conditions, an interior node is
any node except those at the boundary.  When we have Neumann boundary conditions, we are
forced to add an imaginary node on each side of the system.  Thus an interior node is any node
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except those two imaginary nodes (but including the nodes that would be the boundary if we had
Dirichlet boundary conditions).

This format is linear in unknowns, 






 +1jT .  We should take careful notice of this

equation.  (1)  All our unknown temperatures (the temperatures at time j+1 are on the left hand
side of the equation).  (2)  Moreover, they appear in a linear fashion on the LHS.  (3)  All the
variables on the RHS are known quantities.  Clearly this is going to give us a system of linear,
algebraic equations.  We solve this system of equations using the rules of linear algebra.  In fact,
we can write the above equation as:

RTJ 1j =+
(II.14)

This is a system of equations of the standard form:

bxA = (II.15)

with a solution

RJT 11j −+ = (II.16)

so long as the determinant of the J matrix is non-zero.  We will call the matrix on the left-hand
side of equation (II.14) the Jacobian and we will call the vector on the right-hand side of equation
(II.14) the residual.

Size of the matrix:
 If there are xm  spatial intervals in the x-direction, there are xm +1 spatial nodes in the x-

direction, numbered by the variable i from 0 to xm .  If there are ym  spatial intervals in the y-

direction, there are ym +1 spatial nodes in the y-direction, numbered by the variable k from 0 to

ym .

For 2 Dirichlet boundary conditions in each spatial dimension, if there are xm  spatial

nodes, then there are 1mx −  interior nodes in the x-direction.  If there are ym  spatial nodes, then

there are 1my −  interior nodes in the y-direction.  Thus there are ( )( )1m1mm xyu −−=  unknown

temperatures.  The J  matrix is a matrix of dimension um  by um , with an index κ  bounded by

um1 ≤κ≤  corresponding to all of the spatial nodes.

The number of unknowns in the Jacobian for other boundary conditions is left as an
exercise to the reader.  See, the derivation of the same for the one-dimensional case, for a parallel
example.

The right hands side of the equation (II.14) is the residual.  The remaining problem lies in
mapping the 2-D spatial coordinates of the nodes to the single dimensionality of the unknown
vector and residual vector.  Pay attention this is tricky.
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When xm <  ym , number the nodes along x-axis first, as shown in Figure Three.  When

xm >  ym , number the nodes along y-axis first, as shown in Figure Four.  This gives the banded

matrix with the smallest bandwidth.
The book-keeping for this mapping is accomplished by the use of an index vector.  We

need to know how to do two things.
First, we need to know, given the spatial position (x and y positions or i and k

coordinates) of the node, how do we get the matrix index.
This transformation is given by:

im)1k( x +−=κ  for  xm <  ym , for i = 0 to xm , k = 0 to ym (II.17)

km)1i( y +−=κ  for  xm >  ym , for i = 0 to xm , k = 0 to ym (II.18)

However, if you have numbered your nodes from i = 1 to 1mx +  and  k = 1 to 1my +
(which you would do if you were using MATLAB, which can only start vectors with index 1)
rather than from i = 0 to xm and k = 0 to ym  (which is allowed in the more general FORTRAN),

then you have

1im)2k( x −+−=κ  for  xm <  ym , for i = 1 to 1mx + , k = 1 to 1my + (II.19)

1km)2i( y −+−=κ  for  xm <  ym , for i = 1 to 1mx + , k = 1 to 1my + (II.20)

The second transformation we need to accomplish is, given the matrix index, κ , how do
we obtain the i and k coordinates.

( )









=
=

<

+







−

−κ
=

+−⋅















−

−κ
−

−
−κ

=

y

x

yx

x

x
xx

m to 0k

m to 0i

mm

 for      

                             1
1m

1
intk

11m
1m

1
int

1m
1

i
(II.21)

( ) 







=
=

>

+−⋅






















−
−κ

−
−

−κ
=

+










−
−κ

=

y

x

yx

y
yy

y

m to 0k

m to 0i

mm

 for      

11m
1m

1
int

1m
1

k

                                 1
1m

1
inti

(II.22)

However, if you have numbered your nodes from i = 1 to 1mx +  and  k = 1 to 1my +

rather than from i = 0 to xm and k = 0 to ym , then you have
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( )









+=
+=

<

+







−

−κ
=

+−⋅















−

−κ
−

−
−κ

=

1m to 1k

1m to 1i

mm

    for      

                             2
1m

1
intk

21m
1m

1
int

1m
1

i

y

x

yx

x

x
xx (II.23)

( ) 







+=
+=

>

+−⋅






















−
−κ

−
−

−κ
=

+










−
−κ

=

1m to 1k

1m to 1i

mm

    for      

21m
1m

1
int

1m
1

k

                               2
1m

1
inti

y

x

yx

y
yy

y
(II.24)

These rules allow us to quickly perform the transformations without having to store the
transformation matrix, which can be a memory limitation, if the problem gets large.
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i=0
k=0
no κ

i=1
k=0
no κ

i=2
k=0
no κ

i=3
k=0
no κ

i=0
k=1
no κ

i=1
k=1
κ=1

i=2
k=1
κ=2

i=3
k=1
no κ

i=0
k=2
no κ

i=1
k=2
κ=3

i=2
k=2
κ=4

i=3
k=2
no κ

i=0
k=3
no κ

i=1
k=3
κ=5

i=2
k=3
κ=6

i=3
k=3
no κ

i=0
k=4
no κ

i=1
k=4
κ=7

i=2
k=4
κ=8

i=3
k=4
no κ

i=0
k=5
no κ

i=1
k=5
no κ

i=2
k=5
no κ

i=3
k=5
no κ

node numbering
x

y x index:  i = 0,1,2,mx=3
y index:  k = 0,1,2,3,4,my=5
matrix index:  κ = 1,2,3,4,5,6,7,mu=8
(numbers refer to nodes located to the
upper left)

Figure Three.  Node numbering example.  xm <  ym   Number along the x-axis first.

( )( ) ( )( ) 82413151m1mm xyu =⋅=−−=−−=
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i=0
k=1
no κ

i=0
k=0
no κ

node numbering

x

y
x index:  i = 0,1,2,3,4,5,mx=6
y index:  k = 0,1,2,my=3
matrix index:  κ = 1,2,3,4,5,6,7,8,9,mu=10

(numbers refer to nodes located to the upper left)

i=1
k=0
no κ

i=2
k=0
no κ

i=3
k=0
no κ

i=4
k=0
no κ

i=5
k=0
no κ

i=6
k=0
no κ

i=1
k=1
κ=1

i=2
k=1
κ=3

i=3
k=1
κ=5

i=4
k=1
κ=7

i=5
k=1
κ=9

i=6
k=1
no κ

i=0
k=2
no κ

i=1
k=2
κ=2

i=2
k=2
κ=4

i=3
k=2
κ=6

i=4
k=2
κ=8

i=5
k=2
κ=10

i=6
k=2
no κ

i=0
k=3
no κ

i=1
k=3
no κ

i=2
k=3
no κ

i=3
k=3
no κ

i=4
k=3
no κ

i=5
k=3
no κ

i=6
k=3
no κ

Figure Four.  Node numbering example.  xm >  ym   Number along the y-axis first.

( )( ) ( )( ) 105216131m1mm xyu =⋅=−−=−−=
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B.  Dirichlet boundary conditions.

We will consider our Dirichlet Boundary conditions in their most general form as

hT = (II.25)

where h  is a known functions of x,t  in one spatial dimension and z,y,x,t  in three dimensions.

In terms of an unknown temperature at a discretized node, we have:

( )1jki
1j

k,i
1j

k,i t,y,xhhT +
++ == (II.26)

This equation will be used at the boundary nodes.  This is in the same linear form as the finite-
difference equations for the P.D.E., which is what we need since, ultimately, we need to solve
them simultaneously.
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III.  JACOBIANS AND RESIDUALS.

Let’s completely specify the initial Jacobian and Residual for a small problem with
Dirichlet boundary conditions, as shown in Figure Five.

x index:  i = 0,1,2,mx=3
y index:  k = 0,1,2,my=3
matrix index:  κ = 1,2,3,mu=4

(numbers refer to nodes located to the upper left)

i=0
k=1
no κ

i=0
k=0
no κ

node numbering

y

i=1
k=0
no κ

i=2
k=0
no κ

i=3
k=0
no κ

i=1
k=1
κ=1

i=2
k=1
κ=2

i=3
k=1
no κ

i=0
k=2
no κ

i=1
k=2
κ=3

i=2
k=2
κ=4

i=3
k=2
no κ

i=0
k=3
no κ

i=1
k=3
no κ

i=2
k=3
no κ

i=3
k=3
no κ

Figure Five.  Example Problem.   xm =  ym   Number along the y-axis first.

( )( ) ( )( ) 42213131m1mm xyu =⋅=−−=−−=

To create the Jacobian, we explicity fill in the matrix as dictated by equation (II.13).
Some of the terms on the left hand-side are not unknowns because they are defined by the
Dirichlet boundary conditions.  These terms get moved to the left-hand-side of equation (II.13)
(which means they get moved into the residual vector).





















=

+++

+++

+++

+++

1j
2,2,diag

1j
2,2,x,lo

1j
2,2,y,lo

1j
2,1,x,hi

1j
2,1,diag

1j
2,1,y,lo

1j
1,2,y,hi

1j
1,2,diag

1j
1,2,x,lo

1j
1,1,y,hi

1j
1,1,x,hi

1j
1,1,diag

JJJ0

JJ0J

J0JJ

0JJJ

J

The residual is now everything else in equation (II.13) that didn’t make it into the Jacobian.
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





















−−++−−+−−

−−++−−+−−

−−++−−+−−

−−++−−+−−

=

+++++

+++++

+++++

+++++

1j
3,2

1j

2,2y,hi
1j
2,3

1j

2,2x,hi
1j
2,2

j
2,2

j
3,2

j

2,2y,hi
j
2,3

j

2,2x,hi
j
2,2

j

2,2diag
j
1,2

j

2,2y,lo
j
2,1

j

2,2x,lo

1j
3,1

1j

2,1y,hi
1j
2,0

1j

2,1x,lo
1j

2,1
j
2,1

j
3,1

j

2,1y,hi
j
2,2

j

2,1x,hi
j
2,1

j

2,1diag
j
1,1

j

2,1y,lo
j
2,0

j

2,1x,lo

1j
1,3

1j

1,2x,hi
1j
0,2

1j

1,2y,lo
1j

1,2
j
1,2

j
2,2

j

1,2y,hi
j
1,3

j

1,2x,hi
j
1,2

j

1,2diag
j
0,2

j

1,2y,lo
j
1,1

j

1,2x,lo

1j
0,1

1j

1,1y,lo
1j

1,0
1j

1,1x,lo
1j

1,1
j
1,1

j
2,1

j

1,1y,hi
j
1,2

j

1,1x,hi
j
1,1

j

1,1diag
j
0,1

j

1,1y,lo
j
1,0

j

1,1x,lo

TJTJFFTJTJTRTJTJ

TJTJFFTJTJTRTJTJ

TJTJFFTJTJTRTJTJ

TJTJFFTJTJTRTJTJ

R

which, when we use the Dirichlet boundary conditions becomes,























−−++−−+−−

−−++−−+−−

−−++−−+−−

−−++−−+−−

=

+++++

+++++

+++++

+++++

1j
3,2

1j

2,2y,hi
1j
2,3

1j

2,2x,hi
1j
2,2

j
2,2

j
3,2

j

2,2y,hi
j

2,3
j

2,2x,hi
j
2,2

j

2,2diag
j
1,2

j

2,2y,lo
j
2,1

j

2,2x,lo

1j
3,1

1j

2,1y,hi
1j
2,0

1j

2,1x,lo
1j

2,1
j
2,1

j
3,1

j

2,1y,hi
j
2,2

j

2,1x,hi
j
2,1

j

2,1diag
j
1,1

j

2,1y,lo
j

2,0
j

2,1x,lo

1j
1,3

1j

1,2x,hi
1j
0,2

1j

1,2y,lo
1j

1,2
j
1,2

j
2,2

j

1,2y,hi
j

1,3
j

1,2x,hi
j
1,2

j

1,2diag
j

0,2
j

1,2y,lo
j
1,1

j

1,2x,lo

1j
0,1

1j

1,1y,lo
1j
1,0

1j

1,1x,lo
1j

1,1
j
1,1

j
2,1

j

1,1y,hi
j
1,2

j

1,1x,hi
j
1,1

j

1,1diag
j
0,1

j

1,1y,lo
j

1,0
j

1,1x,lo

hJhJFFhJhJTRTJTJ

hJhJFFhJTJTRTJhJ

hJhJFFTJhJTRhJTJ

hJhJFFTJTJTRhJhJ

R

The residual is a vector of known quantities.
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IV.  CODIFICATION.

The only remaining trick is to come up with a code that will quickly fill the Jacobian matrix and
the residual vector.

One can methodically write

Consider the case where the nodes are numbered from i = 0 to xm and k = 0 to ym .  Then we can

write:

% loop over i (only consider unknown nodes)
for i = 1:1:mx-1

% loop over k (only consider unknown nodes)
for k = 1:1:my-1

if (mx < my)
kappa_row = f(i,k) from equation (II.17)

else
kappa_row = f(i,k) from equation (II.18)

end
% loop over self and 4 adjacent nodes
for jj = 1:1:5

% what you do depends on which node you have got
if (jj == 1)

% add low-x contribution
iu = i - 1
ku = k
% determine if this node is a variable or a known
if (iu > 0 & iu < mx & ku > 0 & ku < my)

% you have got an unknown
if (mx < my)

kappa = f(iu,ku) from equation (II.17)
else

kappa = f(iu,ku) from equation (II.18)
end

J(kappa_row,kappa) = 1j
k,i,x,loJ +

R(kappa_row) = R(kappa_row)  - j
ku,iu,x,lo

j
k,i,x,lo TJ

else
% you have got a known

R(kappa_row) = R(kappa_row) - 1j
ku,iu,x,lo

1j
k,i,x,lo TJ ++

R(kappa_row) = R(kappa_row)  - j
ku,iu,x,lo

j
k,i,x,lo TJ

end
                        elseif  (jj == 2)

% add low-y contribution, analogously to low-x
elseif  (jj == 3)

% add high-x contribution, analogously to low-x
elseif  (jj == 4)

% add high-y contribution, analogously to low-x
else

% add self contribution and F’s to residual, analogously to low-x
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end
end % this ends the jj-loop

end   % this ends the k-loop
end   % this ends the i-loop

This pseudocode algorithm will work.  For the generalized case, it is as efficient a code as we can
expect.  However, if there are simple relationships between 1j

k,i,x,loJ +  and 1j
k,i,y,loJ +  and the others, more

efficient schemes, which take advantage of any symmetries in the Jacobian can be derived.

V.  SOLUTION.
With the Jacobian and Residual, we solve for the temperatures at the next time, j+1:

RJT 11j −+ =

We can then repeat the calculation of the Jacobian and the residual and solve for the temperatures
at time, j+2, and so on.

Since we have the reverse transformation from matrix coordinates to spatial coordinates in
equations (II.21) and (II.22), it is no problem to find the temperatures at any given point.

VI.  EXTENSION TO NONLINEAR EQUATIONS
The extension of the solution methodology from the 2D linear parabolic PDEs to 2D

nonlinear parabolic PDEs is precisely analogous to the extension of the solution methodology
from the 1D linear parabolic PDEs to 1D nonlinear parabolic PDEs.

You just write the PDE as ODE, use finite differences for the spatial derivatives and solve
using a second-order Runge-Kutta method.


