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|. FORMULATION.

Linear parabolic partial differential equations are, in their most general form, given by:

d% =N >{C(NT)]- aT - b>xNT +f (1.1)

where the functions, a,b,c,d,f are known functions of t,X,Y,z and the temperature, T, isan
unknown function of t,X,Y,Z. In order to approximate this creature using a finite difference
scheme we recognize that

NA{c(NT)] = R QT + KT >0c = cN2T + NT e = cN?T +Re xNT (1.2
and rewrite this as.

qT

dﬂ:cNZHchNT- aT - b>xNT +f (1.3)
d‘l%—l-—chT aT +(Nc - b)xNT +f (1.4)

We will consider the case with variation in two spatial dimensions. The extension to three
dimensionsis straightforward. Our most general parabolic PDE becomesin two spatial dimension

2
m_ T '”T aT+&0C _p O &e |, O 4 (1.5)
gﬂx w5 & e oy Yty

We now need to know the functional forms of a,b,c,d,f,Nc , which must be given. In many
problems, most of these functions are constants and, often the constants are unity or zero.
However, in order to write a code that solves any parabolic PDE, it isfor this general formulation
that we derive afinite-difference method.

Similarly, we divide our x-spatia dimension into m, spatial increments, each of width — . If

m,
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we are interested in observing the heat transfer from time t, to t;, then we can divide that time

into n equal temporal increments, each of width 0 seeFi gure One.
n

At the first step, you know al of the function values, T, at time=t, because these are

given by the initial condition. Let’sfirst consider the case where we have arectangular area with
4 Dirichlet boundary conditions. In that case, we aso know the values (temperatures, if we
assume we are solving the heat equation) at the edges of the areafor al time. Then what we next
want is the temperatures for al interior nodes (al nodes but the nodes with temperatures defined

by the boundary conditions at the first time increment, t,. If we can get T(t,,{x,y}) from
T(t,.{x.y}) and the boundary conditions: T(t,X,,y), T(t.X,, ,¥), T(tx,Y,), T(t Xy, ), thenwe
have a formulation which will allow us to incrementally solve the P.D.E through time. Where we
could then obtain T(t,.{x,y}) from T(t,.{x,y}) and the boundary conditions. In general we want
to obtain T(t;,q,{x}) from T(t;,{x}) and T(t,x,) and T(t,xp,).

We will derive one such method, a direct two-dimensional analog of the one-dimensional method
known as the Crank-Nicolson method.

A comment on notation: we will write T(t;, x;,y,) asT), sothat

| superscripts designate temporal increments
I subscripts designate spatial increments along the x coordinate
k subscripts designate spatial increments along the y coordinate
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spatial dimension
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(O node where temperature is known due to initial condition
[ ] node where temperature is known due to boundary condition

node where temperature is unknown but will be solved for

Figure One. Schematic of the spatial and temporal discretization. Casel. Two Dirichlet
Boundary Conditions.
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Figure Two. Schematic of the spatial and temporal discretization. Casell. Two Neumann
Boundary Conditions.



D. Keffer, ChE 505 ,University of Tennessee, May, 1999

[1. DISCRETIZATION.
Derivation of the Crank-Nicolson finite difference equations

A. The Parabolic partial differential equation.

The Crank-Nicolson finite difference equations provide estimates that are second order in
gpace and time. The Crank-Nicolson is an implicit method.

Let j superscripts designate temporal increments and let i subscripts designate spatia
increments. For purposes of brevity only, we will consider the case with variation only in one
gpatial dimension. The extension to three dimensionsis straightforward. Our most genera
parabolic PDE becomesin one spatia dimension

2
ﬂT HT ﬂT _aT+ &c oNT BQ]C OﬂT +f

_: 1.1
Cgﬂx w5 & e oy Yty (-0

In order to get an approximation that is second order in time, we recast this equation as

1€ T TTO. am ofT , &fc | ofT
= +f =K(x,y,t,T) (11.2
t dgcg‘ﬂx T & x “oix g‘ﬂy a1y ﬂ GytT) W2

Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead
in time, namely

Ao TE-T,_TE-T

=ILKe 1.3
eflta,  tu-t Dt o

This statement is true at any given point i in space. It isaforward finite difference formula of the
partial derivative with respect to time. Now what is also true by the second-order Runge-Kutta
method is that:

?%; »—[K(x,,yk, ton T KX Yot T )] 1[K’*1+KJ ] (11.4)
so that:
Ty =7+ 2, | (15)

Thisisthe formulafor the second order Runge-Kutta. Ordinarily, we wouldn't know the
temperature needed to evalute KJ+l (and we would be forced to approximate it) but we shall see
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that we can formulate the problem in alinear fashion so that we can implicitly solve the right and
left-hand sides of this equation simultaneoudly, without further approximation.
To continue, we need to evaluate the right hand side of equation (11.4). For any given

point j in time, we can make a finite approximation of the partial derivative with respect to space
(centered finite difference formula).

L i i j j
Béﬂg » Ti+Lk - Ti—],k — TiJ+],k - TiJ-lk

' (11.6x)

gﬂx 9k Xiv1 ™ Xiq 2Dx

a]_Tg » Ti,jk+1 - Ti,jk-l - Ti,jk+1 ) Ti,jk-l (1.6y)
Ty A Yr+1™ Yee1 2Dy

Moreover, we can use that same formula, again to obtain the second derivative of the temperature
with respect to space. (Forward finite difference formulafor first derivative with backward finite
difference formulafor second derivative gives centered finite difference formula.)

AT ofTe T oAT8

2 J

a-[ T 0 gﬂx Q+Lk gﬂx éqk _ gﬂx d+Lk eﬂx d,k
» = (1.7x)
g‘ﬂx Xiv1 = X Dx
ATd  aTd ATy ATd
2TO gﬂy ﬂk+1 gﬂy qk gﬂqu+l g a (II 7y)
gﬂy ﬂk yk+l yl Dy
We can substitute our formulafor the first spatial derivative into that for the second spatial
derivative.
_ a—ijﬂ,k - lek 9_ a_i,jk - Tij—],k 9
a[ZTQJ » é Dx 6 é Dx B: Tijﬂ’k - 2Ti’Jk +Tij']”k (|| 8X)
2 = 2 '
g‘ﬂx A Dx Dx
&Ti,jku Tk 9_ &T lek 1x 0
a[ é W a é Dy ﬂ: Ti,Jk+1 - 2T|Jk +Ti,Jk—1 (” 8y)
‘Hy qk Dy Dyz
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This gives the second spatial derivatives at timej. We can then obtain the two functions, KJ+l and
K!, which we require to obtain the temperatures at the new time.

€ &l - 2T, +T T - 2T, +T) .0 u
g:ij,k ik I; L : - aljlejk lil
A DX -
1 8 Dy 2
KiJ,k = dTé J j o . U(” 9)
ik §+%£9 _p! (;m—iﬂ,k T, +¢%TCO _p! %—i,kﬂ_ Ti,k— el U a
Xi,k = ik = = ik
g elX g, 'kg 2Dx 8gﬂqu yk% 2Dy 4 E
&nglj:llk 2leljl + le+llk TIJI:w%l 2leljl + T|JI:ll 0 _j+lTj+l H
= i,ké sz 2 + |,k i,k p
j+1 1 ? IDy 1] l;l
Kik :dTg L+ A+l 1 & J+l j+1 "1 4 u
bk §+8%£9 -b 1 L - T O+g co b J+1%r|k+1 Tica +f1+1li|
' Xik = ik = <k 4
g, E x5 EWa, & aby 5 U
(11.10)
Define
a=D@ g _ Do o, Dgl 6. D
2d 4dDx g fix a 4dDy g'ﬂy & 2dDx
Dtf
C,=-> ¢,D=1adF=—
2dDy? 2d
so that we can rewrite equations (11.9) and (11.10) as
K-jk zié(:mk(-rujﬂ,k - 2TJ +T|J],k)+C ( |k+l_ 2Ti,Jk +Ti,Jk—l) 3 (11.9b)
D& LT +B,) (T, - T )8, (T Th,)+F
% J+1(TJ+1 2-|—j+l Tj+l )+C J+1(TJ+1 _ Tj+l Tj+l ) u
1 2 xik \'i+1k ik i- 1k ik+1 ik ik-1
= b )oY G (11.10b)
Dte AJ TJ +BX|k(T|J+lk lelk)+B (T|Jk+l Tl,Jk—l) F. G
Group like temperatures in equations (11.9b) and (11.10b)
j g( Coirc - xnk) 1k +(CYij,k - BYiJ,k) Tivjk-1+(_ 2Cs0x- 2C A:k) Fi u q (11.9c)
J C
|,k e . ) ) _ _
Dt X
8+ (Cxujk +Bxuk) Tij+lk + (Cyij,k +Byij,k) Ti,Jk+l +Fiyjk H
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o~ i1 g i) i o) e[ 1 1 ,-+1) 10
S(Cxi,k - Bxi,k ) Ti-lk + (CYi,k Byi,k ) Tiyk-l +( ZCXi,k 2CYi,k Aivk Tivk U
é

Kj+l - 3 p
bk j j+ i+ j+ j+ i+ j+ u
. g’- (CXiJ;l + Bxij,kl) Tij+llk + (CYiJ,kl + BYiJ,kl) Tivjkil + Fivjkl H
(11.10c)
Substitute equations (11.9¢) and (11.10c) into (11.5) to obtain
S(C"ijvk ) Bxi{k) Tij-lk + (CYiJ,k ) BYiJ,k) Tiyjk-l + (' ZC><iJ,k } ZCYiJ,k } Aijyk) Tivjk 3
é _ . _ . . _ _ a
- &t (Cxij,k +Bxij,k) Tl + (CYiJ,k +BYiJ,k) Tha thRy + u
Ti'k B Ti'k +Z( j+1 j+1) j+1 ( j*1 j+1) j+1 ( j+1 i*+1 j+1) j+13
écxiyk - Bxi,k Ti_lk + Cyi,k - Byi,k Ti,k-l+ - ZCxi,k - ZCYi,k - Ai,k Ti,k i
é j+ j+ i j+ j+ i+ i+ l:I
g (Cxij,kl + Bxij,kl) Tij++llk + (CYiJ,kl + BYiJ,kl) Tivjkil + Fivjkl H
(11.12)

Group like temperatures, placing al unknown temperatures (at time j+1) on the right-hand side
and all known temperatures (at timej) on the left-hand side.

(e - e, ) i e ac i rac e Al T

Xi,k Xi,k Yik

(o rma) - e e ) T

xi,k ik+1

DI > D> D~

o | _ _ _ _ (1.12)
S(Cxij,k - BXiJ,k) T +(CYiJ,k - BYiJ,k) Ti,Jk-1+(1' 2C,i - 2Cy,, - A Tk
-é

$+ (CXijvk * Bxij,k) Tij+lk + (CYij,k + BYij,k) Ti,jk+1 + F|Jk + F|J|:l

If we define J,,, = (1+2C, +2C, +A), J,, =-(C, +B,), 3., =-(C, +B, ).
Jo.=-(C.-B,), 3, =-(C, - B,), and Ry,, = (1- 2C, - 2C, - A) then we can rewrite

lo,y
equation (11.12) as
1 j+1 j*lj+l j*lrj+ 1+l j*lrj+1
[‘]Io,xiyk Ti—l,k + 'Jlo,yiyk Ti,k—l + 'Jdiagiyk Ti,k +'Jhi,xiyk Ti+Lk +'Jhi,yiyk Ti,k+l ]
(11.13)
— I I Ti I I I Ti ] j+1
- [‘ 'Jlo,xiykTi-],k - 'Jlo,yiykTi,k—l +RdiagiykTi,k - 'Jhi,xiykTiﬂ,k - 'Jhi,yiykTi,k+l + Fi,k +Fi,k

These equations hold for al interior nodes. We will deal with nodes affected by the
boundary conditions shortly. When we have Dirichlet boundary conditions, an interior node is
any node except those at the boundary. When we have Neumann boundary conditions, we are
forced to add an imaginary node on each side of the system. Thus an interior node is any node
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except those two imaginary nodes (but including the nodes that would be the boundary if we had
Dirichlet boundary conditions).

Thisformat is linear in unknowns, }Tjﬂ Y. We should take careful notice of this
|

equation. (1) All our unknown temperatures (the temperatures at time j+1 are on the left hand
side of the equation). (2) Moreover, they appear in alinear fashion onthe LHS. (3) All the
variables on the RHS are known quantities. Clearly thisis going to give us a system of linear,
algebraic equations. We solve this system of equations using the rules of linear algebra. In fact,
we can write the above equation as:

~=]Ij+1 =R (11.14)
Thisis asystem of equations of the standard form:

Ax=b (11.15)
with a solution

TH=J'R

(11.16)

so long as the determinant of the J matrix is non-zero. We will call the matrix on the left-hand
side of equation (I1.14) the Jacobian and we will call the vector on the right-hand side of equation
(11.14) the residual .

Size of the matrix:
If there are m, spatial intervalsin the x-direction, there are m, +1 spatial nodes in the x-

direction, numbered by the variablei from 0to m, . If thereare m, spatia intervalsin they-
direction, there are m, +1 spatial nodes in the y-direction, numbered by the variable k from O to

m, .

For 2 Dirichlet boundary conditions in each spatial dimension, if there are m, spatial
nodes, then there are m, - 1 interior nodes in the x-direction. If there are m,, spatial nodes, then

thereare m, - 1 interior nodes in the y-direction. Thusthereare m, = (my - 1)(mX - 1) unknown

temperatures. The J matrix isamatrix of dimension m, by m,, with anindex k bounded by
1£ k £m, corresponding to all of the spatial nodes.

The number of unknowns in the Jacobian for other boundary conditionsis left as an
exercise to the reader. See, the derivation of the same for the one-dimensional case, for a parallel
example.

The right hands side of the equation (11.14) isthe residual. The remaining problem liesin
mapping the 2-D spatial coordinates of the nodes to the single dimensionality of the unknown
vector and residual vector. Pay attention thisistricky.
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When m, < m,, number the nodes along x-axis first, as shown in Figure Three. When
m, > m,, number the nodes along y-axis first, as shown in Figure Four. This gives the banded

matrix with the smallest bandwidth.

The book-keeping for this mapping is accomplished by the use of an index vector. We
need to know how to do two things.

First, we need to know, given the spatial position (x and y positions or i and k
coordinates) of the node, how do we get the matrix index.

This transformation is given by:

k=(k-2Dm, +i for m < m, ,fori=0tom, ,k=0tom, (1.17)
k=(-1m, +k for m > m, , fori=0tom ,k=0tom, (11.18)

However, if you have numbered your nodesfromi=1tom, +1and k=1tom, +1

(which you would do if you were using MATLAB, which can only start vectors with index 1)
rather than fromi=0to m andk =0to m, (whichisalowed in the more genera FORTRAN),

then you have
k=(k-2m, +i-1 for m < m, , fori=1tom +1,k=1tom, +1 (I1.19)
k=(-2)m, +k-1 for m, < m, , fori=1tom +1,k=1tom, +1 (I1.20)

The second transformation we need to accomplish is, given the matrix index, k , how do
we obtain the i and k coordinates.

ek-1ad

'= -|t _u><(m - 1)+1 I m,<m,
" M - for.l i=0tom, (11.22)
k=intae _1%+1 lk=0tom,
my-lg
&k-10
i=int K 1?+1 i m, >m
rny_:I_Tﬂ .I. - X y
& 5 forf i=0tom, (1.22)
- % - o
k=ék L it K 1?1’J><(my-1)+1 1k=0tom,
@my-l m, - 14

However, if you have numbered your nodesfromi=1tom, +1and k=1tom, +1
rather than fromi =0to m and k =0to m,, then you have

10
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ek- . au
1= ék—ll- Intg 1:E[j><mx - 1)+2 1 m, <my
< i} M e for | i=ltom, +1 (11.23)
k=intaek_1g+2 Lk=1tom, +1
mx_lb
2K -
i=int a 1j+2 i m.>m
my' o} P Y
for  i=1tom, +1 (11.24)
Ek-1 1 -
k= e—-lt u><(m -1) 2 Tk—ltomy+1

These rules alow usto quickly perform the transformations without having to store the
transformation matrix, which can be amemory limitation, if the problem gets large.

11
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i1=0 =1 =2 =3
k=0 k=0 k=0 k=0
no k no k no k no k
i1=0 =1 =2 =3
k=1 k=1 k=1 k=1
no k k=1 k=2 no k
=0 =1 =2 =3
k=2 k=2 k=2 k=2
no k k=3 k=4 no k
i1=0 =1 =2 =3
k=3 k=3 k=3 k=3
no k k=5 k=6 no k
i1=0 =1 =2 =3
k=4 k=4 k=4 k=4
no k k=7 k=8 no k
i1=0 =1 =2 =3
k=5 k=5 k=5 k=5
no k no k no k no k
x index: i=0,1,2,m,=3

Vv yindex: k=0,1,2,3,4,m,=5
matrix index: k =1,2,3,4,5,6,7,m =8
(numbers refer to nodes located to the
upper left)

Figure Three. Node numbering example. m, < m, Number aong the x-axisfirst.
m, =(m, - Ym, - 1)=(5- 1)3- 1)=4x =8

12
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X
i=0 =1 =2 1=3 1=4 I=5 1=6
k=0 k=0 k=0 k=0 k=0 k=0 k=0
no k no k no k no k no k no k no k
i=0 =1 =2 =3 1=4 I=5 1=6
k=1 k=1 k=1 k=1 k=1 k=1 k=1
no k k=1 k=3 k=5 k=7 k=9 no k
i=0 =1 =2 1=3 1=4 I=5 1=6
k=2 k=2 k=2 k=2 k=2 k=2 k=2
no k k=2 k=4 k=6 k=8 k=10 no k
i=0 =1 =2 =3 1=4 I=5 1=6
k=3 k=3 k=3 k=3 k=3 k=3 k=3
no k no k no k no k no k no k no k

X index: 1=0,1,2,3,4,5m, =6
y y index: k=0,1,2,m =3
v matrix index: k =1,2,3,4,5,6,7,8,9,m,=10

(numbers refer to nodes located to the upper left)

Figure Four. Node numbering example. m > m, Number aong the y-axisfirst.
m, =(m, - Ym, - 1)=(3- 1(6- 1)=26=10

13
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B. Dirichlet boundary conditions.
We will consider our Dirichlet Boundary conditions in their most general form as
T=h (11.25)

where h isaknown functions of t,X in one spatial dimension and t,X,Y, Z in three dimensions.
In terms of an unknown temperature at a discretized node, we have:

Tujljl = hij;l = h(xi’yk’tj+1) (11.26)

This equation will be used at the boundary nodes. Thisisin the same linear form as the finite-
difference equations for the P.D.E., which is what we need since, ultimately, we need to solve
them simultaneoudly.

14
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1. JACOBIANS AND RESIDUALS.

Let’s completely specify theinitia Jacobian and Residua for a small problem with
Dirichlet boundary conditions, as shown in Figure Five.

node numbering

i=0 i=1 i=2 =3
k=0 k=0 k=0 k=0
no k no k no k no k x index: i=0,1,2,m,=3
i=0 i=1 =2 |:3 Yy index: k = 0,1,2,my:3
k=1 k=1 k=1 k=1 matrix index: k =1,2,3,m=4
nok k=1 k=2 nok (numbers refer to nodes located to the upper left)
i=0 i=1 i=2 i=3
k=2 k=2 k=2 k=2
no k k=3 k=4 no k
i=0 i=1 i=2 i=3

Y| k=3 k=3 k=3 k=3

Y nok no k no k no k

Figure Five. Example Problen. m, = m, Number aong the y-axisfirst.
m, =(m, - Ym, - 1)=(3- 1)3- 1)=2¢ =4
To create the Jacobian, we explicity fill in the matrix as dictated by equation (11.13).
Some of the terms on the left hand-side are not unknowns because they are defined by the
Dirichlet boundary conditions. These terms get moved to the |eft-hand-side of equation (11.13)
(which means they get moved into the residual vector).

47j+1 j+1 j+1 N
g‘]diag,],l 'Jhi,x,],l 'Jhi,y,],l 0 u
€.+ gt 0 gt u

J _ lo,x,2,1 diag,2,1 hiy,2,1 U

LT AT j+1 j+1
g‘]lo,y,lZ O 'Jdiag,LZ 'Jhi,x,jLZ -

< j+1 j+1 1Y
e 0 'Jlo,y,2,2 'Jlo,x,2,2 Jdiag,z,zg

The residual is now everything else in equation (11.13) that didn’t make it into the Jacobian.

15
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é _ i i i1 T i i j j+1 i+l ()
é J|O,XllT0,l 'Jlo,yllTLO + RdiagllTLl Jhi,XllTZ,l 'Jhi,yllTLZ + Fl,l + Fl,l J|O,Xll TO,l 'Jlo,yll Tl,O l:l
A iTi i Ti i Ti i T i Ti i j+1 jHlj i
R = g - 'Jlo,xzle],l - 'Jlo,yzleZ,O +Rdiagzle2,l - 'Jhi,xzleS,l - 'Jhi,yzleZ,Z +F2,1 +F2,1 - 'Jlo,yzleZ,O - 'Jhi,xzleS,l 3
=z i i i i i T i T i i i+ e T
g - 'Jlo,xlzTO,Z - 'Jlo,ylzT],l +Rdiagl2T],2 - 'Jhi,xlzTZ,Z - 'Jhi,ylzTLS +F1,2 +FL2 - 'Jlo,xlzTO,Z - 'Jhi,ylzTLS u
~ i i i i i i i j i i i j+1 i+1gj+1 i+1g-j+ 7
@' J|o,x212TL2 - 'Jlo,yzszZ,l +Rdiagzsz2,2 - 'Jhi,xzszB,Z - 'Jhi,yzszZ,S +F2,2 +F2,2 - 'Jhi,xzszB,Z - 'Jhi,yzszZ,B H
which, when we use the Dirichlet boundary conditions becomes,
é i wo I i Tl i iTi i i1 _ [ F+ g
é J|O,Xllh0,l J|O,yllhl,0 + RdiaglleLl Jhi,XllTZ,l 'Jhi,ylleLZ + Fl,l + Fl,l J|O,Xll 01 J|O,ylllhl,0 l:l
A i T i i i i i iTi j j+1 1 R S
R = g - 'Jlo,xzlel,l - J|o,y211h2,0 + RdiagzleZ,l - 'Jhi,xzylh?;,l - 'Jhi,yzleZ,Z + Fz,l + Fz,l - J|o,y2111h2,0 - 'Jhi,xzih?;,l 3
~ A I Ri ioTi ioTi ITi I Ri j j+l L ol o
? - ‘]Io,xlzhO,Z - ‘]Io,yllel +Rdiagl2T],2 - 'Jhi,xlzTZ,Z - Jhi,ylzhls +FL2 +F1,2 - J|o,xl21ho,2 - 'Jhi,ylzlh],?; u
~ j j j j j j J i j j i j+1 g+ IR ST s
@' 'Jlo,xzszLZ - 'Jlo,yzszZ,l + RdiagzszZ,Z - Jhi,x212h3,2 - Jhi,y212h2,3 + Fz,z + Fz,z - Jhi,x212h3,2 - Jhi,yzyth,BH

Theresidual is avector of known quantities.

16
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The only remaining trick is to come up with a code that will quickly fill the Jacobian matrix and

the residual vector.

One can methodically write

Consider the case where the nodes are numbered fromi =0to m andk =0to m,. Thenwe can

write:

% loop over i (only consider unknown nodes)

kappa_row = f(i,k) from equation (11.17)

kappa_row = f(i,k) from equation (11.18)

% loop over self and 4 adjacent nodes

% what you do depends on which node you have got

% add low-x contribution

iu=i-1

fori=21:1:mx-1

% loop over k (only consider unknown nodes)
for k =1:1:my-1

if (mx <my)

else

end

forjj =115

if jj==12)
ku =k

% determine if this node is avariable or a known
if (U>0& iu<mx & ku>0& ku<my)

ese

end
esaif (jj==2)

% you have got an unknown
if (mx <my)
kappa = f(iu,ku) from equation (11.17)

else

kappa = f(iu,ku) from equation (11.18)
end
Jkappa row,kappa) = J,";;iyk

R(kappa_row) = R(kappa row) -Ji . T/

lo,x,i,k " lo,x,iuku

% you have got a known

R(kappa_row) = R(kappa_row) - 1%\ T1%
R(kappa_row) = R(kappa_row) -Ji . T/

lo,x,i,k " lo,x,iuku

% add low-y contribution, analogously to low-x

dsaif (jj == 3)

% add high-x contribution, analogously to low-x

eseif (jj ==4)

% add high-y contribution, analogously to low-x

ese

% add self contribution and F' s to residual, analogoudly to low-x
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end
end % this ends the jj-loop
end % this ends the k-loop
end % this ends the i-loop

This pseudocode algorithm will work. For the generalized case, it is as efficient a code as we can
expect. However, if there are simple relationships between Ji;} . and Ji;};, and the others, more

10,X,i,

efficient schemes, which take advantage of any symmetries in the Jacobian can be derived.

V. SOLUTION.
With the Jacobian and Residual, we solve for the temperatures at the next time, j+1.

=R
We can then repeat the calculation of the Jacobian and the residua and solve for the temperatures
at time, j+2, and so on.

Since we have the reverse transformation from matrix coordinates to spatial coordinates in
equations (11.21) and (11.22), it is no problem to find the temperatures at any given point.

VI. EXTENSION TO NONLINEAR EQUATIONS

The extension of the solution methodology from the 2D linear parabolic PDEsto 2D
nonlinear parabolic PDEs s precisely analogous to the extension of the solution methodology
from the 1D linear parabolic PDEsto 1D nonlinear parabolic PDEs.

You just write the PDE as ODE, use finite differences for the spatia derivatives and solve
using a second-order Runge-K utta method.
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