D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

Numerical Methodsfor the Solution of Elliptic Partial Differential Equations

David Keffer
Department of Chemical Engineering
University of Tennessee, Knoxville
September 1999

Table of Contents

Introduction 1

1. Single Linear Elliptic PDE

A. Method of Transformation to a system of parabolic PDES 2

B. Method of the Laplacian Difference Equation 3

C. Liebmann’s method 4
2. Single Nonlinear Elliptic PDE 10
3. Systemsof Linear Elliptic PDES 13

4. Systems of Nonlinear Elliptic PDES 19



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

Introduction
A linear éliptic PDE has the general form :
Nic(x y,2)NU(x,y,2)) +b(x,y,2) NU(x, y, 2) +a(x,y, 2)U(x y,2) = f(x,y,2)  (0.1)
which can be rewritten as:

c(x,y,2)N2U(x, y,2) + [Ne(x, v, 2) +b(x, y, 2)] NU(x, y, 2)

(0.2
+a(x,y,z)U(x,y,z) =f(x,Y,2)
and which, when the coefficients are constants can be written as:
cxN2U(x, Y, z) + b xNU(x, y, z) +au(x, y, z) = f(x,y,z) (0.3)
which, if we abandon matrix notation becomes
2 2 2
cxﬂg+cyﬂg+czﬂg+bxﬂ—+byﬂu+b E+aU f (0.4)
fix iy 1z fix Ty 1z
if we have variation in U in three spatia dimensions, or
e TV, o TU p Wy W ay=1 (0.5)
) PSR Y ™ Ty

if we have variation in U in two spatia dimensions. If we have variation in U in only one spatial
dimension, then we have

‘HU
‘Hx

+b, W U=t (0.6)
“ qx

which is an ordinary differential equation, which we already know how to solve, numerically and
analytically.
Some ssmple and famous examples of dliptic equations are

: : O PT 1T
the two-dimensiona Laplace equation: —+— =0 (0.7)
ixs Ty
the three-dimensional Laplace equation: N2U =0 (0.8)
2
the two-dimensional Poisson equation: % 1117 =f(x,y) (0.9)



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

1. SingleLinear Elliptic PDEs

A. Method of Transformation to a system of parabolic PDES

An dlliptic PDE does not have time as an independent variable. It isaPDE because it has at
least two independent spatial dimensions. Because it does not have a time dependence, we don’t
naturally think to solve it using a numerical integration method, like the Runge-K utta method, that
we used for ODEs, aswell as for parabolic and hyperbolic PDEs.

Of course, we could use that technique. The mathematics of our solution methodol ogy
doesn’'t care whether our independent variable islabeled t for time or x for space. Therefore, we
could take the two-dimensional version of equation 0.2

c2U+[Nc +b] U +au = f (1.1)
which can be rewritten as

2 2
TV, ¢ TU, g,y 0TV, &0, Ly, OV = (1.2)

“Ix* Yy ETx TgTx &y Vgly

where | have decided not to write the explicit (x,y,z) dependence of a, b, ¢, f, and U, and consider
y ast and x as x and solve it aswe did a hyperbolic PDE. First we break the single second order
PDE into two first order PDES using the substitution:

U
U=Uad U,=-— 1.3
! Ty 3

Then we can write the first equation as

u, _
—=U 14
v -
and the second equation as

2 2,

c, —LZJ =f-c, 1 LZJ +- qa:dTCx oy _gde, | O—ﬂU - au (15)
1% fix dTx  “gTx é ﬂy gﬂy

u,_1¢&  TU aa1c p 01U, afe, g u

=~ 4-c +b,=U, - au 1.6
v o8 S i y g 4 (19

Equation (1.4) and (1.6) form a system of two linear parabolic PDEs which are entirely consistent
with the linear eliptic PDE of equation (1.1).

Since we already know how to solve a system of parabolic PDEs, we are done. We use
our code for solving a system of parabolic PDESs to solve the éliptic PDE.



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

Note to ourselves: No one solves Elliptic PDEs using this technique.

Why not?

People are crazy and they like to make things more complicated than they need to be. We
have a technique for solving systems of parabolic PDES that is guaranteed to work. The only
place where it wouldn’t work is where ¢, equals O in equation (1.6).

A second reason people don’t solve dliptic PDES as systems of parabolic PDEs is because
in doing so, you make a distinction between x and y. In the above formulation, we treat x asa
gpatial dimension. If we follow our previous work, then we use a centered finite difference
method for the first and second partial derivatives of U with respect to x. The centered finite
difference formulae are accurate to order h>. Now, when we solved parabolic PDEs, we did not
use a centered finite difference formulae for the time variable since that would have added an
additional unknown to the problem. Instead, we used a second-order Runge-K utta method.

The third and biggest reason that people don’t solve eliptic PDEs as systems of parabolic
PDEs is because a properly posed PDE has boundary conditionsat U(x,y =y,) = U, (x) and

U(x,y =y;) =U;,(x). However, in order to solve the parabolic PDE, we need

ux,y =y,) =U,,(x) and z—;"(x,y =y, = ((jj_;J (x). Sincewedon't have theinitial partial

fy
derivative information, we have to use a technique like the shooting method (see ChE 301 notes),
which we used to solve an ODE BVP asan ODE IVP, in order to solve the éliptic PDE as a
system of parabolic PDEs. The big drawback with thisis that we now have to converge to the
correct final boundary condition. Convergence is never a sure thing, if we can avoid any scheme
that relies on convergence, we would like to.

B. Method of the Laplacian Difference Equation

For small systems, we use the centered finite difference formulae for both x and y:

%]_TQ Ti+],k - Ti—],k - Ti+],k - Ti—],k

5 1.7)
e X g, Xivg = X1 2Dx
?_Tg . Tiker = Tika - Tiver - Tien (1.8)
Wa, Yea Y 2Dy
AT o HATo ATo AT o
o Gme TGeo Goo G0
ATo  efxan eWa _eXau efxa (1.9)
g‘ﬂxz Ef,k Xivg = X Dx
ATO @To T AT
HATo Sy Ger E1y G _ Sy i 8YY g (1.10)
ﬂyz a,k Y~ Yi Dy



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

&Tiﬂk - Ti,k 9 &Ti,k - Ti—],k 9
ﬂzTg » é DX a é DX B: -I—i+ij - 2-I_i,k +-I_i— 1k (111)
™ g, Dx Dx?
&Ti,kﬂ B Ti,k 9_ &Ti,k B T|k19
ﬂZT"Q » é Dy E; é Dy B: Ti,k+l - 2Ti,k +Ti,k—l (1.12)
W 4. Dy Dy’

If we substitute these formulae into equation (1.2), we have a system of linear algebraic equations,
which we know how to solve. We have m, »m, unknowns where m, is the number of nodes

where the temperature is unknown in the x-dimension and m, is the number of nodes where the

temperature is unknown in the y-dimension. The mapping of the unknowns from (x,y)
coordinates in the spatial dimension to the one-dimensional ordering of the matrix which appears
in our system of linear algebraic equations is exactly analogous to the mapping that was laid out
for the same mapping when solving a single parabolic PDE with variation in 2 spatial dimensions,
S0 see those notes on the 505 website.

The point isthat thisistrivial and works so long as we don’t have too many unknowns.

Note: this technique only worksif the problem islinear, but the linear problem can be of
the general form of equation (1.1).

C. Liebmann’s method
For larger systems, where we don’t have the ability to solve the system of linear

eguations, we can apply a Gauss-Seidel approximation, which when applied to PDEs is known as
Liebmann’s method. Here we just write:

T » Ti+],k +Ti—],k +Ti,k+l +Ti,k—l
i,k
’ 4

(1.13)

Because the matrix is diagonally dominant, repeated applications of this approximation will
converge to the true solution.

This aonewould work. Itisslow. Therefore, people try to speed it up by using the
following enhancement after each application of equation (1.11)

T =1 Th +(@- DT (1.14)

where | isarelaxation parameter with avalue between 1 and 2, and T/, T}.* are the values from

the present and previous iteration.
This process of (1.11) and (1.12) is cycled through for each node at which the solution
unknown and then repeated until the solution profile no longer changes.



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

Now, convergence, even guaranteed convergence, is an iffy business. It requiresinitia
guesses. | will do everything in my power to avoid having to make initial guesses. Therefore, if
a al possible, I will use method B above.

Note, this method will work for Laplace’s equation only.

An Example of solving Laplace’s Equation using Liebmann’s method.
Consider arectangle plate with the following Dirichlet boundary conditions:

T(x =0,y) =100
T(x=1y)=0
T(x,y =0) =50
T(x,y =) =75

We discretize this grid for n, and n, intervals and solve for avariety of valuesof | . We therefore
have (n, +1)(ny +% total nodes and (n, - 1)(ny - 1) unknown nodes. (The remaining nodes have

values given by the boundary conditions. Our initial guessisthat al interior nodes are 0. Below
we show atable of results for the different values of | . Our error is calculated as the root mean
sguare error.

X

loX=}
o>

aa u-uey
L B R OO

We stop the iterative solution procedure when the error islessthan 1.0XL0™® or we exceed 100
iterations.

Below arethe errorsfor n,=n, =4. (Sowe have 3 = 9 unknown nodes.) We see that
avadueof | =1.2 gavethe quickest (14 iterations) convergence.

lamdba = 1.000000 iteration = 27 , error = 0.000001
lamdba = 1.100000 iteration = 20, error = 0.000001
lamdba = 1.200000 iteration = 14 , error = 0.000000
lamdba = 1.300000 iteration = 17 , error = 0.000000
lamdba = 1.400000 iteration = 21 , error = 0.000001
lamdba = 1.500000 iteration = 27 , error = 0.000001
lamdba = 1.600000 iteration = 36 , error = 0.000001
lamdba = 1.700000 iteration = 52, error = 0.000001
lamdba = 1.800000 iteration = 81 , error = 0.000001
lamdba = 1.900000 iteration = 100 , error = 0.001554

Below arethe errorsfor n,=n, =10. (Sowe have 9* = 81 unknown nodes.) We see
that avalueof | =1.6 gave the quickest (40 iterations) convergence.



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

lamdba = 1.000000 iteration = 100 , error = 0.000230
lamdba = 1.100000 iteration = 100 , error = 0.000027
lamdba = 1.200000 iteration = 100 , error = 0.000002
lamdba = 1.300000 iteration = 82, error = 0.000001
lamdba = 1.400000 iteration = 63, error = 0.000001
lamdba = 1.500000 iteration = 43, error = 0.000001
lamdba = 1.600000 iteration = 40, error = 0.000000
lamdba = 1.700000 iteration = 51, error = 0.000001
lamdba = 1.800000 iteration = 82, error = 0.000000
lamdba = 1.900000 iteration = 100, error = 0.001717

Below arethe errorsfor n,=n,=50. (So we have 49 = 2401 unknown nodes)) We
see that none of the values of | converged within the acceptable tolerance in less than 100
iterations. But we see that we had the smallest error after 100 iterationswith avalueof | =1.9.

lamdba = 1.000000 iteration = 100, error = 0.151001
lamdba = 1.100000 iteration = 100, error = 0.157871
lamdba = 1.200000 iteration = 100, error = 0.164691
lamdba = 1.300000 iteration = 100, error = 0.170279
lamdba = 1.400000 iteration = 100, error = 0.172255
lamdba = 1.500000 iteration = 100 , error = 0.166663
lamdba = 1.600000 iteration = 100 , error = 0.147557
lamdba = 1.700000 iteration = 100, error = 0.107225
lamdba = 1.800000 iteration = 100 , error = 0.042887
lamdba = 1.900000 iteration = 100 , error = 0.024803

What if we change our initial guess of the interior nodes to be the average of the boundary
conditions values (100 + 0 + 50 + 75)/4 = 56.25. Below are the errorsfor ny=n, =10. (Sowe
have 9° = 81 unknown nodes,) We seethat avalue of | =1.6 gave the quickest (39 iterations)
convergence. It took one iteration less than the initial guess with all interior nodes equal to zero.

lamdba = 1.000000 iteration = 100 , error = 0.000016
lamdba = 1.100000 iteration = 100 , error = 0.000002
lamdba = 1.200000 iteration = 89, error = 0.000001
lamdba = 1.300000 iteration = 73, error = 0.000001
lamdba = 1.400000 iteration = 57, error = 0.000001
lamdba = 1.500000 iteration = 40, error = 0.000001
lamdba = 1.600000 iteration = 39, error = 0.000001
lamdba = 1.700000 iteration = 51, error = 0.000001
lamdba = 1.800000 iteration = 78 , error = 0.000001
lamdba = 1.900000 iteration = 100 , error = 0.000593

What did we learn from this? The value of | isnot only dependent on the boundary conditions
but on the size of discretization and the initial guesses as well.



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

A two-dimensional color contour plot of the converged solution is given below.

90

80

70

60

50

40

30

20

10

A 3-dimensional color contour plot of the converged solution is given below.

90
80
70

60

50

40

30

20

10




D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

The MATLAB code we used to solve this problem is given below.

function U = ell _liebmann

clear all

%

% Sol ve Lapl ace's equation using Liebmann's nethod
%

% Assunme Dirichlet Boundary Conditions
%

% Author: David Keffer

% Departnent of Chemi cal Engineering
% University of Tennessee, Knoxville
% Last Updated: October 24, 2000

%

%ol ve for several values of |anbda
lambdav = [1.0:0.1:1.9];
for k = 1:1:1ength(l anbdav)

| ambda = | anbdav(Kk);

% nunber of intervals

nx_int = 10;

ny_int = 10;

% nunber of nodes

nx = nx_int + 1;

ny = ny_int + 1;

% grid points in x and y

X0 0;
xf
yo
yf
dx - x0)/nx_int;
dy - yo)/ny_int;
xgrid = [xo:dx:xf];
ygrid = [yo:dy:yf];
% initialize U and Uold
U = zeros(nx, ny);
Uol d = zeros(nx, ny);
% Fill in Uold with four dirichlet BCs
for j = 1:1:ny
% BC for x = xo

Uol d(1,j) = 100.0;

~—~pRpoOoro

0
0;
0;
f
f

% BC for x = xf
Uol d(nx,j) = 0.0;
% BC for y = yo
Uol d(j,1) = 50.0;
% BC for y = yf
Uol d(j, ny) = 75.0;
end
% fill in the interior nodes of Uold with initial guess
for i = 2:1:nx-1
for j = 2:1:ny-1

%Jol d(i,j) = 0.0;
Uol d(i,j) = 56.25;
end
end
U = Uol d;
%
% iteratively solve
%
maxit = 100;
err = 100;
tol = 1.0e-6;
icount = 0;
while (icount < maxit & err > tol)
icount = icount + 1;
Uold = U;
for i = 2:1:nx-1
for j = 2:1:ny-1
% appl y Liebmann's nethod
Ui, j) = (Ui+1,j) + Ui-1,j) + Ui, j+1) + Ui, j-1) )*0.25;
Ui, j) I anbda*U(i,j) + (1-1anbda)*Uol d(i,j);
end
end



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

% cal cul ate error
err = 0.0;
for i = 2:1:nx-1
for j = 2:1:ny-1
err = err + (U(i,j) - Uold(i,j))"2;

end
end
err = sqrt(err/((nx-2)*(ny-2)));
end
fprintf(1l,' landba = % iteration = % , error = % \n',lanbda, icount, err);
% pl ot
xmn = xgrid(1);
xmax = xgrid(nx);
ymin = ygrid(1);
ymax = ygrid(ny);

ncontourlines = 50;
Urn = mn(mn(U));
Umax = max(nmax(U));
if (abs(Um n-Umax) < 1.0e-8);
fprintf(1l,' Solution is a flat plane with value = % \n', Ut n)
el se
pl ot _di mensions = 1;
if (plot_dinensions == 3)
contour3(xgrid, ygrid, U ncontourlines);
axi s([xmin xmax ymn ynax Um n Unrax])
el se
contour(xgrid, ygrid,U ncontourlines);
axi s([xm n xmax ymn ynmax])
end
x| abel (" x");
ylabel ("y");
col or bar
end
end



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

2. Single Nonlinear Elliptic PDE

Now the trouble starts. The Method of the Laplacian Difference Equation only works for
linear dliptic PDEs. The Method of Liebmann only works for Laplace’'s equation. So we have to
use the method of transformation to a system of parabolic PDEs.

The Method of Transformation to a system of parabolic PDES is our best bet for at |east
two reasons. First, we already have a code that does 90% of (A). It won't take much effort to
add an exterior loop which converges on the final boundary condition. Second, in (A) we haveto

make initial guesses for the partial derivative ((jj—u(x,y =y, = ((jj_U (x) at each of m, nodes.
y y fy

In this method, we begin by rewriting the PDE in the same way that we did for the linear
case, namely, by converting it to a system of two parabolic PDEs.

&)
U -y (2.2)
iy
(2) é 21 1@ .. o) c . 0
u :iéf_ N aéTC +b, ofu™ alc, +b L@ . au® (2.2)
X 2 y =
v ca ix e‘ﬂx g Tx iy o a

Now, our PDE is nonlinear so the form may not be as we have written it in equation (2.2). Let's
be alittle more general and rewrite equations (2.1) and (2.2) as general nonlinear functions:

e _ KO&E YU U@, u® 'ﬂU(z) T°u® ‘HZU‘Z)(? 23
Ty g x X K -
U2 k@, y,um ye, W2 VD FUT U(Z)‘? (2.4)
Ty ix = Ix = I X '

A comment on notation: we will write U (x,y;) asU"! so that

| superscripts designate temporal (y) increments
I subscripts designate spatia (x) increments
¢ and k superscripts inside parentheses designate different functions

To recap what we did in the parabolic PDE case, we first discretized time and space.
Second we used the second order Classical Runge-Kutta method to solve the time component of
the PDE like an ODE.

Ut = U+ % éd()ijﬂ +KO) E (2.5)

where K/ isthe partial derivative of U with respect toy,

10



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

0 k& % _99
o §X"y”{uj}. CRIRE ¥

The braces in equation (2.6) now stand for the complete set over both position i and function (7).

(2.6)

The second function in equation (2.5) is given by K(x;,y;,,,U! +DyK! )

.o} N TR ji+1i7 O
KO = )Qx v UJ+1}I ﬂ_UJ 1gll ﬂz_UJ 4 N (2.7)
A T ¥
2
where the value of U is given by
U™ » U] + DyK] (2.8)

Note: thistemperatureis used not only for the explicit temperatures but is also used in the finite
difference formulae to obtain the first and second spatial partial derivatives.

From this point on, we proceed in generally same manner as we did for a system of
parabolic PDEs. Hopefully we see that in treating an elliptic equation as a set of parabolic PDEs,
we are performing the same transformation that we did in solving the hyperbolic PDE. Inthis
transformation we will that we are missing certain “boundary conditions”.

Remember, the elliptic PDE on a rectangular domain gives boundary conditions (in this
case Dirichlet) of the form:

U(x = X,,Yy) = f(y) U(x =x,y) =f,(y).
Uxy =Y,) =f5(x) Uy =y;) =1f,(x).

In order to solve this as a system of parabolic PDES, we need boundary conditions on U® = U
@ - U

v We have the boundary conditions on U from the original set of BCs. We

andon U

®
can obtain the boundary conditions on U® by redizing that U® = W %

iy

UP(x = x,,y) = fi(y) UD(x = x,,y) =f,(y).

U (x =x,,y) = () UP(x = x,,y) = AAV)) _
iy Ty

11



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

Asfor theinitial conditions, we have one and we have to guess the other along the lines of the
“shooting method” to obtain the fourth boundary condition, U(x,y =y,) =f,(x). Thusour initia
conditions become:

U(xy =y,) =f,(x) %(x,y =y,) = e ().

We are going to have to make guesses for the value of the dope at all of the nodes. (That stinks
but that’slife))

12



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

3. Systemsof Linear Elliptic PDEs

Using the Method of the Laplacian Difference Equation, asingle linear elliptic PDE can be
converted to asystem of m, >, linear algebraic equations. Anaogously asystem of n coupled

linear elliptic PDEs can be converted to a system of n>m, »m, linear algebraic equations. it

really doesn’t matter how big the system of equationsis, the methodology needed to solve it
remains unchanged. The only limitation is computational power and memory requirements, which
we are assuming to be sufficient for our problems.

Example: Consider the problem

2y® 2Uy®

“."7 + '"."T = 106 y) +a,(% Y)U® +by(x,y)U? 3.1)
21 1(2) 21 1(2)

.".”L:Z + 111;2 = f,(X,y) +a,(X, YU +b,(x,y)u*? (3.2)

on therectangledefined by O£ x £1 and O £ y £ 1 with the boundary conditions:

UP(x = x,,y) =hy(y) , UP(x = x,,y) =h,(y), (3.3)
UD(xy =y,) =hy(x), UP(x,y =y,) =h,(X)

UP(x =x,,y) = g,(y) , UP(x =x,,y) = g,(y), (3.4)
U (x,y =Yy,) =05(x), UP(x,y = y,) = 9,(x)

withm, =3 and m, =3.
Pictorialy we have four nodes with 2 unknowns each:

13



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

node numbering

i=0 i=1 i=2 =3
k=0 k=0 k=0 k=0
no k no k no k no k x index: i=0,1,2,m,=3
i=0 i=1 =2 |:3 Yy index: k = 0,1,2,my:3
k=1 k=1 k=1 k=1 matrix index: k =1,2,3,m=4
nok k=1 k=2 no k (numbers refer to nodes located to the upper left)
i=0 i=1 i=2 i=3
k=2 k=2 k=2 k=2
no k k=3 k=4 no k
i=0 i=1 i=2 i=3

Y| k=3 k=3 k=3 k=3

Y nok no k no k no k

Using the finite-centered difference formulae in equations (1.6)-(1.10) for the partia derivativesin
eguations (3.1) and (3.2) we have

U® 1k - 20D +UDL 1 + U®is1 - 20U +UD 1

DX’ Dy? =f,(xy) +a,(x,y)U™ +by(x, y)u®

(3.5)
Uik - 205 +UP; g + U@ a1 - 205 +UP; 1

DXZ WZ

=1,(%,y) +a,(x, YU +b,(x,y)u?

(3.6)
We can write an equation such as (3.5) and (3.6) for each node where U and U'® are unknown.
In this case, since we have four unknown nodes, we have 8 unknown variables and 8 equations.
We can easily solve the 8 by 8 matrix.

Jx =R (3.7)
where the vector of unknownsis

7 (l) ~
gull lﬁl
Sy
e-21u
s
D 7
2,2
S22t
(2) 7
~ 21 4
QJ(Z)U
ez

&2

I>
I

14



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

The matrix is
é ., 1 1
ood o 0
el g oo L w0
o Dy’ 0
é
el o w L 00
e 11 > ° 0
e u
_é O Dyz DXZ JZI,Z
‘=] - g 1
e Jh 2
€ . Dx
g J. 0 O 0 1 5
& 0 ngl 0 0 Dx2 21
¢ o o0 J, O 1 )
€ I Dy2
& 0 0 0 J,
e 0 12
g Dy
where
" 2 2
IJI = Dx2 ) W' al(xi’yj)
'J:,j =-a,(x,Y;)
'JiL,er =-b,(x;,Y))
2 2
‘]:J - Dx2 ) W' bz(xi’yj')

The residual has the form:

15

o
o

0
iz
0 I,

o O

= O

-2

H
N
N
N N
oo ooo oo oooooooooonaoncy

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

e 1 1 u
éfl(xl’yl)_ yhl(yl)_ Wha(xl) l;I
e u
= 1 1 >
gfl(XZ’yl)_ yhzeﬁ)' th(xz)g
‘?f 1 1. u
er(X,, - — - — X,;)u
e (X, Y2) e 1(Y2) Dy 4( l)lj
é 1 1 U
éfl(xz’YZ)' yhz(yg' Wh4(xz)ﬂ
R=@ 1 1 v (3.10)
gfz(xl,yl)- ygl(yl)' Wgs(xl) H
e 1 u
gfz(xz’Y1)' Wgz(YJ' Wgs(xz)g
é 1 1 G
af, (X1, Y5) - —59:(Y,) - —59.(X)
(SIVACAYED &) 1\Y2 a\M /U
é D])-(Z le l;I
gz(XZ’yz)' Wgz(yz)' Wg“(XZ)E

We solve this system of linear algebraic equations for the solution.

16



D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

4. Systemsof Nonlinear Elliptic PDEs

Using the Method of Transformation to a system of parabolic PDES, a single nonlinear
elliptic PDE can be converted to a system of 2 parabolic PDES, which is solved as a system of
2m, nonlinear ODEs. Anaogoudy asystem of n coupled nonlinear €lliptic PDES can be
converted to asystem of 2n>m, nonlinear ODEs. It really doesn’'t matter how big the system of
equations is, the methodology needed to solve it remains unchanged. The only limitation is
computational power and memory requirements, which we are assuming to be sufficient for our
problems.

As before, we solve the system of 2n>m, nonlinear ODEs, based on an initial guess of the
initial condition of the slope. We see how well that guess delivers us to the final boundary
conditions. We then revise our guess of the initial condition of the slope and try again until we
obtain the final boundary condition. Methods for updating the guess are given in the ChE 301
notes on the shooting method.

17



