
D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

Numerical Methods for the Solution of Elliptic Partial Differential Equations

David Keffer
Department of Chemical Engineering

University of Tennessee, Knoxville
September 1999

Table of Contents

Introduction 1

1. Single Linear Elliptic PDE
A. Method of Transformation to a system of parabolic PDEs 2
B. Method of the Laplacian Difference Equation 3
C. Liebmann’s method 4

2. Single Nonlinear Elliptic PDE 10

3. Systems of Linear Elliptic PDEs 13

4. Systems of Nonlinear Elliptic PDEs 19

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

1

Introduction

A linear elliptic PDE has the general form :

())z,y,x(f)z,y,x(U)z,y,x(a)z,y,x(U)z,y,x(b)z,y,x(U)z,y,x(c =+∇⋅+∇⋅∇ (0.1)

which can be rewritten as:

[]
)z,y,x(f)z,y,x(U)z,y,x(a

)z,y,x(U)z,y,x(b)z,y,x(c)z,y,x(U)z,y,x(c 2

=+
∇⋅+∇+∇⋅

(0.2)

and which, when the coefficients are constants can be written as:

)z,y,x(f)z,y,x(aU)z,y,x(Ub)z,y,x(Uc 2 =+∇⋅+∇⋅ (0.3)

which, if we abandon matrix notation becomes

faU
z
U

b
y
U

b
x
U

b
z
U

c
y
U

c
x
U

c zyx2

2

z2

2

y2

2

x =+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

(0.4)

if we have variation in U in three spatial dimensions, or

faU
y
U

b
x
U

b
y
U

c
x
U

c yx2

2

y2

2

x =+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

(0.5)

if we have variation in U in two spatial dimensions. If we have variation in U in only one spatial
dimension, then we have

faU
x
U

b
x
U

c x2

2

x =+
∂
∂

+
∂
∂

(0.6)

which is an ordinary differential equation, which we already know how to solve, numerically and
analytically.

Some simple and famous examples of elliptic equations are

• the two-dimensional Laplace equation: 0
y
T

x
T

2

2

2

2

=
∂
∂

+
∂
∂

(0.7)

• the three-dimensional Laplace equation: 0U2 =∇ (0.8)

• the two-dimensional Poisson equation:)y,x(f
y
T

x
T

2

2

2

2

=
∂
∂

+
∂
∂

(0.9)

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

2

1. Single Linear Elliptic PDEs

A. Method of Transformation to a system of parabolic PDEs
An elliptic PDE does not have time as an independent variable. It is a PDE because it has at

least two independent spatial dimensions. Because it does not have a time dependence, we don’t
naturally think to solve it using a numerical integration method, like the Runge-Kutta method, that
we used for ODEs, as well as for parabolic and hyperbolic PDEs.

Of course, we could use that technique. The mathematics of our solution methodology
doesn’t care whether our independent variable is labeled t for time or x for space. Therefore, we
could take the two-dimensional version of equation 0.2

[] faUUbcUc 2 =+∇⋅+∇+∇⋅ (1.1)

which can be rewritten as

faU
y
U

b
y

c

x
U

b
x
c

y
U

c
x
U

c y
y

x
x

2

2

y2

2

x =+
∂
∂









+

∂
∂

+
∂
∂







 +

∂
∂+

∂
∂+

∂
∂

(1.2)

where I have decided not to write the explicit (x,y,z) dependence of a, b, c, f, and U, and consider
y as t and x as x and solve it as we did a hyperbolic PDE. First we break the single second order
PDE into two first order PDEs using the substitution:

UU1 = and
y
U

U2 ∂
∂

= (1.3)

Then we can write the first equation as

2
1 U

y
U

=
∂
∂

(1.4)

and the second equation as

aU
y
U

b
y

c

x
U

b
x
c

x
U

cf
y
U

c y
y

x
x

2

2

x2

2

y −
∂
∂









+

∂
∂

−
∂
∂







 +

∂
∂−+

∂
∂−=

∂
∂

(1.5)









−








+

∂
∂

−
∂
∂







 +

∂
∂

−+
∂
∂

−=
∂

∂
12y

y1
x

x
2
1

2

x
y

2 aUUb
y

c

x
U

b
x
c

x
U

cf
c
1

y
U

(1.6)

Equation (1.4) and (1.6) form a system of two linear parabolic PDEs which are entirely consistent
with the linear elliptic PDE of equation (1.1).

Since we already know how to solve a system of parabolic PDEs, we are done. We use
our code for solving a system of parabolic PDEs to solve the elliptic PDE.

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

3

Note to ourselves: No one solves Elliptic PDEs using this technique.
Why not?
People are crazy and they like to make things more complicated than they need to be. We

have a technique for solving systems of parabolic PDEs that is guaranteed to work. The only
place where it wouldn’t work is where yc equals 0 in equation (1.6).

A second reason people don’t solve elliptic PDEs as systems of parabolic PDEs is because
in doing so, you make a distinction between x and y. In the above formulation, we treat x as a
spatial dimension. If we follow our previous work, then we use a centered finite difference
method for the first and second partial derivatives of U with respect to x. The centered finite
difference formulae are accurate to order h2. Now, when we solved parabolic PDEs, we did not
use a centered finite difference formulae for the time variable since that would have added an
additional unknown to the problem. Instead, we used a second-order Runge-Kutta method.

The third and biggest reason that people don’t solve elliptic PDEs as systems of parabolic
PDEs is because a properly posed PDE has boundary conditions at)x(U)yy,x(U y,oo == and

)x(U)yy,x(U y,ff == . However, in order to solve the parabolic PDE, we need

)x(U)yy,x(U y,oo == and)x(
dy
dU

)yy,x(
dy
dU

y,f
f == . Since we don’t have the initial partial

derivative information, we have to use a technique like the shooting method (see ChE 301 notes),
which we used to solve an ODE BVP as an ODE IVP, in order to solve the elliptic PDE as a
system of parabolic PDEs. The big drawback with this is that we now have to converge to the
correct final boundary condition. Convergence is never a sure thing, if we can avoid any scheme
that relies on convergence, we would like to.

B. Method of the Laplacian Difference Equation

For small systems, we use the centered finite difference formulae for both x and y:

x2

TT

xx

TT

x
T k,1ik,1i

1i1i

k,1ik,1i

k,i ∆
−

=
−
−

≈







∂
∂ −+

−+

−+ (1.7)

y2

TT

yy

TT

y
T 1k,i1k,i

1k1k

1k,i1k,i

k,i
∆
−

=
−
−

≈







∂
∂ −+

−+

−+ (1.8)

x

x
T

x
T

xx

x
T

x
T

x
T k,ik,1i

i1i

k,ik,1i

k,i

2

2

∆









∂
∂

−







∂
∂

=
−









∂
∂

−







∂
∂

≈







∂
∂ +

+

+ (1.9)

y

y
T

y
T

yy

y
T

y
T

y
T k,i1k,i

i1k

k,i1k,i

k,i

2

2

∆









∂
∂

−







∂
∂

=
−









∂
∂

−







∂
∂

≈







∂
∂ +

+

+ (1.10)

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

4

2
k,1ik,ik,1i

k,1ik,ik,ik,1i

k,i

2

2

x

TT2T

x

x

TT

x

TT

x
T

∆
+−

=
∆









∆
−

−







∆

−

≈







∂
∂ −+

−+

(1.11)

2
1k,ik,i1k,i

1k,ik,ik,i1k,i

k,i

2

2

y

TT2T

y

y

TT

y

TT

y
T

∆
+−

=
∆









∆
−

−







∆

−

≈







∂
∂ −+

−+

(1.12)

If we substitute these formulae into equation (1.2), we have a system of linear algebraic equations,
which we know how to solve. We have yx mm ⋅ unknowns where xm is the number of nodes

where the temperature is unknown in the x-dimension and ym is the number of nodes where the

temperature is unknown in the y-dimension. The mapping of the unknowns from (x,y)
coordinates in the spatial dimension to the one-dimensional ordering of the matrix which appears
in our system of linear algebraic equations is exactly analogous to the mapping that was laid out
for the same mapping when solving a single parabolic PDE with variation in 2 spatial dimensions,
so see those notes on the 505 website.

The point is that this is trivial and works so long as we don’t have too many unknowns.
Note: this technique only works if the problem is linear, but the linear problem can be of

the general form of equation (1.1).

C. Liebmann’s method

For larger systems, where we don’t have the ability to solve the system of linear
equations, we can apply a Gauss-Seidel approximation, which when applied to PDEs is known as
Liebmann’s method. Here we just write:

4

TTTT
T 1k,i1k,ik,1ik,1i

k,i
−+−+ +++

≈ (1.13)

Because the matrix is diagonally dominant, repeated applications of this approximation will
converge to the true solution.

This alone would work. It is slow. Therefore, people try to speed it up by using the
following enhancement after each application of equation (1.11)

1j
k,i

j
k,i

new
k,i T)1(TT −λλ−+λ= (1.14)

where λ is a relaxation parameter with a value between 1 and 2, and 1j
k,i

j
k,i T,T − are the values from

the present and previous iteration.
This process of (1.11) and (1.12) is cycled through for each node at which the solution

unknown and then repeated until the solution profile no longer changes.

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

5

Now, convergence, even guaranteed convergence, is an iffy business. It requires initial
guesses. I will do everything in my power to avoid having to make initial guesses. Therefore, if
at all possible, I will use method B above.

Note, this method will work for Laplace’s equation only.

An Example of solving Laplace’s Equation using Liebmann’s method.

Consider a rectangle plate with the following Dirichlet boundary conditions:

100)y,0x(T ==
0)y,1x(T ==
50)0y,x(T ==
75)1y,x(T ==

We discretize this grid for nx and ny intervals and solve for a variety of values of λ . We therefore
have ()()1n1n yx ++ total nodes and ()()1n1n yx −− unknown nodes. (The remaining nodes have

values given by the boundary conditions. Our initial guess is that all interior nodes are 0. Below
we show a table of results for the different values of λ . Our error is calculated as the root mean
square error.

()
()()1n1n

UU
err

yx

2old
j,i

new
j,i

n

2i

n

2j

x y

−−

−
=

∑∑
= =

We stop the iterative solution procedure when the error is less than 6100.1 −⋅ or we exceed 100
iterations.

Below are the errors for nx = ny = 4. (So we have 32 = 9 unknown nodes.) We see that
a value of 2.1=λ gave the quickest (14 iterations) convergence.

 lamdba = 1.000000 iteration = 27 , error = 0.000001
 lamdba = 1.100000 iteration = 20 , error = 0.000001
 lamdba = 1.200000 iteration = 14 , error = 0.000000
 lamdba = 1.300000 iteration = 17 , error = 0.000000
 lamdba = 1.400000 iteration = 21 , error = 0.000001
 lamdba = 1.500000 iteration = 27 , error = 0.000001
 lamdba = 1.600000 iteration = 36 , error = 0.000001
 lamdba = 1.700000 iteration = 52 , error = 0.000001
 lamdba = 1.800000 iteration = 81 , error = 0.000001
 lamdba = 1.900000 iteration = 100 , error = 0.001554

Below are the errors for nx = ny = 10. (So we have 92 = 81 unknown nodes.) We see
that a value of 6.1=λ gave the quickest (40 iterations) convergence.

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

6

 lamdba = 1.000000 iteration = 100 , error = 0.000230
 lamdba = 1.100000 iteration = 100 , error = 0.000027
 lamdba = 1.200000 iteration = 100 , error = 0.000002
 lamdba = 1.300000 iteration = 82 , error = 0.000001
 lamdba = 1.400000 iteration = 63 , error = 0.000001
 lamdba = 1.500000 iteration = 43 , error = 0.000001
 lamdba = 1.600000 iteration = 40 , error = 0.000000
 lamdba = 1.700000 iteration = 51 , error = 0.000001
 lamdba = 1.800000 iteration = 82 , error = 0.000000
 lamdba = 1.900000 iteration = 100 , error = 0.001717

Below are the errors for nx = ny = 50. (So we have 492 = 2401 unknown nodes.) We
see that none of the values of λ converged within the acceptable tolerance in less than 100
iterations. But we see that we had the smallest error after 100 iterations with a value of 9.1=λ .

 lamdba = 1.000000 iteration = 100 , error = 0.151001
 lamdba = 1.100000 iteration = 100 , error = 0.157871
 lamdba = 1.200000 iteration = 100 , error = 0.164691
 lamdba = 1.300000 iteration = 100 , error = 0.170279
 lamdba = 1.400000 iteration = 100 , error = 0.172255
 lamdba = 1.500000 iteration = 100 , error = 0.166663
 lamdba = 1.600000 iteration = 100 , error = 0.147557
 lamdba = 1.700000 iteration = 100 , error = 0.107225
 lamdba = 1.800000 iteration = 100 , error = 0.042887
 lamdba = 1.900000 iteration = 100 , error = 0.024803

What if we change our initial guess of the interior nodes to be the average of the boundary
conditions values (100 + 0 + 50 + 75)/4 = 56.25. Below are the errors for nx = ny = 10. (So we
have 92 = 81 unknown nodes.) We see that a value of 6.1=λ gave the quickest (39 iterations)
convergence. It took one iteration less than the initial guess with all interior nodes equal to zero.

 lamdba = 1.000000 iteration = 100 , error = 0.000016
 lamdba = 1.100000 iteration = 100 , error = 0.000002
 lamdba = 1.200000 iteration = 89 , error = 0.000001
 lamdba = 1.300000 iteration = 73 , error = 0.000001
 lamdba = 1.400000 iteration = 57 , error = 0.000001
 lamdba = 1.500000 iteration = 40 , error = 0.000001
 lamdba = 1.600000 iteration = 39 , error = 0.000001
 lamdba = 1.700000 iteration = 51 , error = 0.000001
 lamdba = 1.800000 iteration = 78 , error = 0.000001
 lamdba = 1.900000 iteration = 100 , error = 0.000593

What did we learn from this? The value of λ is not only dependent on the boundary conditions
but on the size of discretization and the initial guesses as well.

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

7

A two-dimensional color contour plot of the converged solution is given below.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

10

20

30

40

50

60

70

80

90

A 3-dimensional color contour plot of the converged solution is given below.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80

100

y
x

10

20

30

40

50

60

70

80

90

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

8

The MATLAB code we used to solve this problem is given below.

function U = ell_liebmann
clear all
%
% Solve Laplace's equation using Liebmann's method
%
% Assume Dirichlet Boundary Conditions
%
% Author: David Keffer
% Department of Chemical Engineering
% University of Tennessee, Knoxville
% Last Updated: October 24, 2000
%

%solve for several values of lambda
lambdav = [1.0:0.1:1.9];
for k = 1:1:length(lambdav)
 lambda = lambdav(k);

% number of intervals
nx_int = 10;
ny_int = 10;
% number of nodes
nx = nx_int + 1;
ny = ny_int + 1;
% grid points in x and y
xo = 0.0;
xf = 1.0;
yo = 0.0;
yf = 1.0;
dx = (xf - xo)/nx_int;
dy = (yf - yo)/ny_int;
xgrid = [xo:dx:xf];
ygrid = [yo:dy:yf];
% initialize U and Uold
U = zeros(nx,ny);
Uold = zeros(nx,ny);
% Fill in Uold with four dirichlet BCs
for j = 1:1:ny

 % BC for x = xo
Uold(1,j) = 100.0;

 % BC for x = xf
 Uold(nx,j) = 0.0;
 % BC for y = yo

Uold(j,1) = 50.0;
 % BC for y = yf
 Uold(j,ny) = 75.0;

end
% fill in the interior nodes of Uold with initial guess
for i = 2:1:nx-1

 for j = 2:1:ny-1
 %Uold(i,j) = 0.0;
 Uold(i,j) = 56.25;

 end
end
U = Uold;
%
% iteratively solve
%
maxit = 100;
err = 100;
tol = 1.0e-6;
icount = 0;
while (icount < maxit & err > tol)

 icount = icount + 1;
 Uold = U;
 for i = 2:1:nx-1
 for j = 2:1:ny-1
 % apply Liebmann's method
 U(i,j) = (U(i+1,j) + U(i-1,j) + U(i,j+1) + U(i,j-1))*0.25;
 U(i,j) = lambda*U(i,j) + (1-lambda)*Uold(i,j);
 end
 end

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

9

 % calculate error
 err = 0.0;
 for i = 2:1:nx-1
 for j = 2:1:ny-1
 err = err + (U(i,j) - Uold(i,j))^2;
 end
 end
 err = sqrt(err/((nx-2)*(ny-2)));

end
fprintf(1,' lamdba = %f iteration = %i , error = %f \n',lambda, icount, err);
% plot
xmin = xgrid(1);
xmax = xgrid(nx);
ymin = ygrid(1);
ymax = ygrid(ny);
ncontourlines = 50;
Umin = min(min(U));
Umax = max(max(U));
if (abs(Umin-Umax) < 1.0e-8);

 fprintf(1,'Solution is a flat plane with value = %f \n',Umin)
 else
 plot_dimensions = 1;
 if (plot_dimensions == 3)

contour3(xgrid, ygrid,U,ncontourlines);
 axis([xmin xmax ymin ymax Umin Umax])
 else
 contour(xgrid, ygrid,U,ncontourlines);
 axis([xmin xmax ymin ymax])
 end
 xlabel('x');
 ylabel('y');
 colorbar

end
end

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

10

2. Single Nonlinear Elliptic PDE
Now the trouble starts. The Method of the Laplacian Difference Equation only works for

linear elliptic PDEs. The Method of Liebmann only works for Laplace’s equation. So we have to
use the method of transformation to a system of parabolic PDEs.

The Method of Transformation to a system of parabolic PDEs is our best bet for at least
two reasons. First, we already have a code that does 90% of (A). It won’t take much effort to
add an exterior loop which converges on the final boundary condition. Second, in (A) we have to

make initial guesses for the partial derivative)x(
dy
dU

)yy,x(
dy
dU

y,f
f == at each of xm nodes.

In this method, we begin by rewriting the PDE in the same way that we did for the linear
case, namely, by converting it to a system of two parabolic PDEs.

)2(
)1(

U
y

U
=

∂
∂

(2.1)









−








+

∂
∂

−
∂

∂






 +

∂
∂

−+
∂

∂
−=

∂
∂)1()2(

y
y

)1(

x
x

2

)1(2

x
y

)2(

aUUb
y

c

x
U

b
x
c

x
U

cf
c
1

y
U

(2.2)

Now, our PDE is nonlinear so the form may not be as we have written it in equation (2.2). Let’s
be a little more general and rewrite equations (2.1) and (2.2) as general nonlinear functions:









∂

∂
∂

∂
∂

∂
∂

∂
=

∂
∂

2

)2(2

2

)1(2)2()1(
)2()1()1(

)1(

x
U

,
x
U

,
x

U
,

x
U

,U,U,y,xK
y

U
(2.3)









∂

∂
∂

∂
∂

∂
∂

∂
=

∂
∂

2

)2(2

2

)1(2)2()1(
)2()1()2(

)2(

x
U

,
x
U

,
x

U
,

x
U

,U,U,y,xK
y

U
(2.4)

A comment on notation: we will write)y,x(U ji
)(l as

j
i

)(U l so that

j superscripts designate temporal (y) increments
i subscripts designate spatial (x) increments
l and k superscripts inside parentheses designate different functions

To recap what we did in the parabolic PDE case, we first discretized time and space.
Second we used the second order Classical Runge-Kutta method to solve the time component of
the PDE like an ODE.





 +

∆
+=

++ j
i

)(1j
i

)(j
i

)(1j
i

)(KK
2
y

UU llll (2.5)

where
j
i

)(K l is the partial derivative of
j
i

)(U l with respect to y,

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

11

{ }


























∂
∂









∂
∂

=
j

2

2j
j

ji
)(j

i
)(

x
U

 ,
x
U

 ,U ,y,xKK ll (2.6)

The braces in equation (2.6) now stand for the complete set over both position i and function)(l .

The second function in equation (2.5) is given by)yKU,y,x(K j
i

j
i1ji ∆++

{ }


























∂
∂









∂
∂

=
++

+
+

+
1j

2

21j
1j

1ji
)(1j

i
)(

x
U

 ,
x
U

 ,U ,y,xKK ll (2.7)

where the value of U is given by

j
i

j
i

1j
i yKUU ∆+≈+ (2.8)

Note: this temperature is used not only for the explicit temperatures but is also used in the finite
difference formulae to obtain the first and second spatial partial derivatives.

From this point on, we proceed in generally same manner as we did for a system of
parabolic PDEs. Hopefully we see that in treating an elliptic equation as a set of parabolic PDEs,
we are performing the same transformation that we did in solving the hyperbolic PDE. In this
transformation we will that we are missing certain “boundary conditions”.

Remember, the elliptic PDE on a rectangular domain gives boundary conditions (in this
case Dirichlet) of the form:

)y(f)y,xx(U 1o ==)y(f)y,xx(U 2f == .

)x(f)yy,x(U 3o ==)x(f)yy,x(U 4f == .

In order to solve this as a system of parabolic PDEs, we need boundary conditions on UU)1(=

and on
y
U

U)2(

∂
∂

= . We have the boundary conditions on)1(U from the original set of BCs. We

can obtain the boundary conditions on)2(U by realizing that
y

U
U

)1(
)2(

∂
∂

= so

)y(f)y,xx(U 1o
)1(==)y(f)y,xx(U 2f

)1(== .

y

)y(f
)y,xx(U 1

o
)2(

∂
∂

==
y

)y(f
)y,xx(U 2

f
)1(

∂
∂

== .

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

12

As for the initial conditions, we have one and we have to guess the other along the lines of the
“shooting method” to obtain the fourth boundary condition,)x(f)yy,x(U 4f == . Thus our initial
conditions become:

)x(f)yy,x(U 3o ==)x(f)yy,x(
y
U

guesso ==
∂
∂

.

We are going to have to make guesses for the value of the slope at all of the nodes. (That stinks
but that’s life.)

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

13

3. Systems of Linear Elliptic PDEs

Using the Method of the Laplacian Difference Equation, a single linear elliptic PDE can be
converted to a system of yx mm ⋅ linear algebraic equations. Analogously a system of n coupled

linear elliptic PDEs can be converted to a system of yx mmn ⋅⋅ linear algebraic equations. it

really doesn’t matter how big the system of equations is, the methodology needed to solve it
remains unchanged. The only limitation is computational power and memory requirements, which
we are assuming to be sufficient for our problems.

Example: Consider the problem

)2(
1

)1(
112

)1(2

2

)1(2

U)y,x(bU)y,x(a)y,x(f
y
U

x
U

++=
∂

∂
+

∂
∂

 (3.1)

)2(
2

)1(
222

)2(2

2

)2(2

U)y,x(bU)y,x(a)y,x(f
y
U

x
U

++=
∂

∂
+

∂
∂

 (3.2)

on the rectangle defined by 1x0 ≤≤ and 1y0 ≤≤ with the boundary conditions:

)y(h)y,xx(U 1o
)1(== ,)y(h)y,xx(U 2f

)1(== , (3.3)

)x(h)yy,x(U 3o
)1(== ,)x(h)yy,x(U 4f

)1(==

)y(g)y,xx(U 1o
)2(== ,)y(g)y,xx(U 2f

)2(== , (3.4)

)x(g)yy,x(U 3o
)2(== ,)x(g)yy,x(U 4f

)2(==

with 3mx = and 3my = .

Pictorially we have four nodes with 2 unknowns each:

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

14

x index: i = 0,1,2,mx=3
y index: k = 0,1,2,my=3
matrix index: κ = 1,2,3,mu=4

(numbers refer to nodes located to the upper left)

i=0
k=1
no κ

i=0
k=0
no κ

node numbering

y

i=1
k=0
no κ

i=2
k=0
no κ

i=3
k=0
no κ

i=1
k=1
κ=1

i=2
k=1
κ=2

i=3
k=1
no κ

i=0
k=2
no κ

i=1
k=2
κ=3

i=2
k=2
κ=4

i=3
k=2
no κ

i=0
k=3
no κ

i=1
k=3
no κ

i=2
k=3
no κ

i=3
k=3
no κ

Using the finite-centered difference formulae in equations (1.6)-(1.10) for the partial derivatives in
equations (3.1) and (3.2) we have

)2(
1

)1(
112

1k,i
)1(

k,i
)1(

1k,i
)1(

2

k,1i
)1(

k,i
)1(

k,1i
)1(

U)y,x(bU)y,x(a)y,x(f
y

UU2U
x

UU2U
++=

∆
+−

+
∆

+− −+−+

(3.5)

)2(
2

)1(
222

1k,i
)2(

k,i
)2(

1k,i
)2(

2

k,1i
)2(

k,i
)2(

k,1i
)2(

U)y,x(bU)y,x(a)y,x(f
y

UU2U
x

UU2U
++=

∆
+−

+
∆

+− −+−+

(3.6)
We can write an equation such as (3.5) and (3.6) for each node where)1(U and)2(U are unknown.
In this case, since we have four unknown nodes, we have 8 unknown variables and 8 equations.
We can easily solve the 8 by 8 matrix.

RxJ = (3.7)

where the vector of unknowns is

































=

)2(
2,2

)2(
2,1

)2(
1,2

)2(
1,1

)1(
2,2

)1(
2,1

)1(
1,2

)1(
1,1

U

U

U

U
U

U

U

U

x

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

15

The matrix is



















































∆∆

∆∆

∆∆

∆∆

∆∆

∆∆

∆∆

∆∆

=

lr
2,222

2
lr

2,12

2
lr

1,22

22
lr

1,1

ll
2,2

ll
2,1

ll
1,2

ll
1,1

ur
2,2

ur
2,1

ur
1,2

ur
1,1

ul
2,222

2
ul

2,12

2
ul

1,22

22
ul

1,1

J
x
1

y
1

0

x
1

J0
y
1

y
1

0J
x
1

0
y
1

x
1

J

J000

0J00

00J0

000J

J000

0J00

00J0

000J

J
x
1

y
1

0

x
1

J0
y
1

y
1

0J
x
1

0
y
1

x
1

J

J (3.5)

where

)y,x(a
y
2

x
2

J ji122
ul
j,i −

∆
−

∆
−= (3.6)

)y,x(aJ ji2
ll
j,i −= (3.7)

)y,x(bJ ji1
ur
j,i −= (3.8)

)y,x(b
y
2

x
2

J ji222
lr
j,i −

∆
−

∆
−= (3.9)

The residual has the form:

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

16



















































∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

∆
−

=

)x(g
y
1

)y(g
x
1

)y,x(f

)x(g
y
1

)y(g
x
1

)y,x(f

)x(g
y
1

)y(g
x
1

)y,x(f

)x(g
y
1

)y(g
x
1

)y,x(f

)x(h
y
1

)y(h
x
1

)y,x(f

)x(h
y
1

)y(h
x
1

)y,x(f

)x(h
y
1

)y(h
x
1

)y,x(f

)x(h
y
1

)y(h
x
1

)y,x(f

R

242222222

142212212

232122122

132112112

242222221

142212211

232122121

132112111

(3.10)

We solve this system of linear algebraic equations for the solution.

D. Keffer, ChE 505 ,University of Tennessee, Department of Chemical Engineering, August, 1999

17

4. Systems of Nonlinear Elliptic PDEs

Using the Method of Transformation to a system of parabolic PDEs, a single nonlinear
elliptic PDE can be converted to a system of 2 parabolic PDEs, which is solved as a system of

xm2 nonlinear ODEs. Analogously a system of n coupled nonlinear elliptic PDEs can be

converted to a system of xmn2 ⋅ nonlinear ODEs. It really doesn’t matter how big the system of
equations is, the methodology needed to solve it remains unchanged. The only limitation is
computational power and memory requirements, which we are assuming to be sufficient for our
problems.

As before, we solve the system of xmn2 ⋅ nonlinear ODEs, based on an initial guess of the
initial condition of the slope. We see how well that guess delivers us to the final boundary
conditions. We then revise our guess of the initial condition of the slope and try again until we
obtain the final boundary condition. Methods for updating the guess are given in the ChE 301
notes on the shooting method.

