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Numerical Solutions to Ordinary Differential Equations:  A Second-Order Method 
 
Single Equations 
 
Consider the single first-order ODE (either linear or nonlinear) 
 

 )t,y(f
dt
dy

=           (1) 

 
with the initial condition 
 
 oo y)t(y =           (2) 
 
We can again solve this numerically, using an Euler-like formula 
 
 f~)tt(yy 1ii1ii −− −+=         (3) 
 
where f~  is an approximation to the derivative over the interval from ti-1 to ti.  For a second order 
method, the approximation to the derivative is simply an average of the values at ti-1 and ti. 
 

 ( ) ( )[ ]ii1i1i y,tfy,tf
2
1f~ += −−         (4) 

 
The problem is that we don’t know the value of yi that appears on the right hand side of equation 
(4).   
 
Second Order Method for Generic ODEs 
 
In the general case (meaning that equation (1) is either linear or nonlinear in y), we can use the 
Euler method to approximate yi for the purposes of equation (4). 
 
 ( )1i1i1ii1ii y,tf)tt(yy −−−− −+=        (5) 
 
We then substitute this value into equation (4) and substitute the resulting value of f~  into 
equation (3), yielding a second order method: 
 

( ) ( )( )[ ]1i1i1ii1ii1i1i1ii1i1ii1ii y,tf)tt(y,tfy,tf
2
1)tt(yf~)tt(yy −−−−−−−−−− −++−+=−+= (6) 

 
This implementation of the second order method is a member of a class of methods known as 
predictor-corrector methods, because you use Euler’s method to predict  yi  and you use equation 
(6) to correct the value.  Specifically, equation (6) is called Heun’s method. 
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Second Order Method for Linear ODEs 
 
In obtaining equation (6), we were forced to make an additional approximation, namely we had 
to use the Euler method for a preliminary estimate of yi.  If the ODE (eqn. (1)) is linear, then we 
do not have to make this approximation in order to solve the problem.  Consider a linear ODE of 
the form 
 

 )t(b)t(y)t(a)t,y(f
dt
dy

+==         (7) 

 
with the initial condition of equation (2).  We substitute this linear ODE into equation (4) 
obtaining  
 

 [ ]iii1i1i1i byabya
2
1f~ +++= −−−        (8) 

 
where we have used the shorthand notation that )t(aa ii = , as we have done for y and b as well. 
We substitute equation (8) into equation (3)  
 

 [ ]iii1i1i1i1ii1ii byabya
2
1)tt(yy +++−+= −−−−−      (9) 

 
We solve for the unknown, yi, obtaining 
 
 i1i1i,iii,i ByAyA +−= −−         (10) 
 
where j,iA  is the coefficient (in general a function of the independent variable t) in front of the jth 

variable at the ith time, ti, and has the form 
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 ( )1ii
1ii

i bb
2

)tt(B −
− +

−
=          (12) 

 
This method is classified as an implicit method because the value of the unknown  yi  appears on 
both the left hand side and right hand side of equation (9). 
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Option 1.  Solve for y sequentially 
 
We could proceed as we did in the Euler method, where we evaluate y at t1, then use that result 
to generate y at t2, etc. through repeated applications of equation (10).  This is totally legitimate 
and will lead to the correct approximation of the solution.  However, we will see in subsequent 
applications, that there is an alternate method for the solution of the ODE which is more 
attractive. 
 
Option 2.  Solve for all y simultaneously 
 
Consider that we divide the independent variable, t, into n intervals, each of size  
 

 
n

)tt(t of −=∆           (13) 

 
where is the initial time from the initial condition in equation (2) and tf is the final time, beyond 
which we are no longer interested in the solution of the ODE.  Our approximate solution will be 
evaluated at n+1 points, the initial condition and the n subsequent values of t.  If we designate 
the solution of the ODE at each of these points as yi for i = 1 to n+1, then we can write the 
following set equations: 
 
 o1 yy =      for i = 1     
 
 i1i1i,iii,i ByAyA +−= −−  for i = 2 to n+1     (10) 
 
This is a system of linear algebraic equations.  It can be written in matrix form as: 
 
 ByA =           (14) 
 
where the vector B  is principly defined by equation (12), except for the first entry which is the 
initial condition,  
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          (15) 

 
and where the matrix A  is principly defined by equation (11), except for the first row which is 
the initial condition,  
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Thus, we have transformed the numerical solution of a linear ODE into the solution of a system 
of linear algebraic equations, which we know how to solve.   
 
The transformation of ODEs to linear algebraic equations through the discretization of the 
independent and dependent variables is a commonly encountered transformation.  It is one that is 
used ubiquitously through-out the solution of PDEs and Integral Equations.  Therefore, it was 
educational to introduce the concept here, even though we would likely never use this 
methodology to solve a single linear ODE as we did here. 
 
Second Order Method for a System of Generic first order ODEs 
 
A general system of first order ODEs can be expressed as  
 

 0)t,
dt
yd

,y(g =           (17) 

 
with the initial conditions  
 
 oo y)t(y =           (18) 

 
We will assume for the time being that we can rearrange this general form of equation (17) into a 
form where the derivatives can be isolated on the left hand side of the equation, such that we can 
write 
 

 )t,y(f
dt
yd
=           (19) 

 
In the general case (the equations are either linear or nonlinear in y , we can write the 
straightforward multi-equation analog of Heun’s method.  We again use Euler’s method to 
predict the value of the function, 
 
 )t,y(f)tt(yf~)tt(yy 1i1i1ii1i1ii1i

p
i −−−−−−

−+=−+=     (20) 

 
followed by the correction step 
 

 [ ])t,y(f)t,y(f
2
1)tt(yf~)tt(yy i

p
i1i1i1ii1i1ii1ii +−+=−+= −−−−−−

  (21) 
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As we did in the single equation case, we sequentially solve for each iy  based on 1iy

−
. 

 
Second Order Method for a System of Linear ODEs 
 
We can also repeat the derivation for a more accurate second order method if every equation in 
the system of ODEs is linear.  In fact, if the equations are linear, we don’t even need to make the 
approximation that we can isolate the derivatives on the left hand side of the equation, as we did 
above in the general solution.  If the equations are linear, the general system 
 

 0)t,
dt
yd

,y(g =           (17) 

 
can be written as 
 

 )t(B)t(y)t(A
dt
yd

)t(C +=         (22) 

 
Equation (22) would be identical to equation (19) if )t(C  were the identity matrix.  In solving a 
system of mass and energy balances, this is frequently the case. 
 
The derivation of the method, now becomes more complicated.  We need three indices on the 
elements of )t(A .  The first index indicates the equation.  The second index indicates the 
variable.  The third index indicates the time step, once we have performed the discretization of 
time necessary to obtain the numerical solution.  We will use the notation )k(

j,iA  to designate the 

coefficient (the time functionality is now implicit) of the jth variable in the ith equation at 
discretized time tk.  Similarly, )k(A  represents the entire matrix of coefficients at discretized 

time tk. 
 
If C  is a constant matrix, we can discretize equation (22) as  
 

 ( ) [ ])k()k()k()1k()1k()1k(

1kk

)1k()k(
ByAByA

2
1

tt
yy

C +++=
−

− −−−

−

−

   (23) 

 
Once again, you can proceed to solve this problem sequentially or simultaneously.   
 
 
 
Option 1.  Solve for y  sequentially 
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We can rearrange equation (23) to isolate our vector of unknowns )k(y  
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Everything on the right-hand side of equation (24) is known.  You invert and solve for )k(y . 
 
Option 2.  Solve for all )k(y  simultaneously 
 
We could write equation (24) for all values of k from 1 to n+1 (for a discretization of t involving 
n intervals).  We then have a system of m ODEs, we now have a system of m(n+1) linear 
algebraic equations.  We could invert this larger matrix if we so chose.  In solving all of the 
equations simultaneously, we would have to create a single matrix of unknowns.  We have some 
freedom as to how we choose to order our unknowns.  Two possible arrangements for a system 
with m equations and n time intervals are shown below. 
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In the first arrangement, the unknowns are grouped by variable.  In the second arrangement, the 
unknowns are grouped by time.  The latter form is preferable for two reasons.  First, it reduces 
the bandwidth of the resulting matrix, which equates to a quicker computation.  Second, it also 
facilitates the mathematical description of the system.  Here we assume that the vector of 
unknowns takes the form of the second arrangement. 
 
We then can write a system of m(n+1) linear algebraic equations of the form 
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 ** BYA =           (26) 
 
where, in order to present a compact description of the matrix and vector in equation (26), we 
first rewrite equation (24) as  
 
 *

k
)1k(

1k,k
)k(

k,k ByMyM +−= −
−        (27) 

 
where the matrix, k,kM , and the vector, *

kB , are defined by comparison to equation (24). 

  
The matrix and vector used in equation (26) are related to the smaller matrices and vectors used 
in equation (27) by the following equations: 
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and 
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Thus, we have shown how we can transform the numerical solution of a system of linear first-
order ODEs into the solution of a system of linear algebraic equations. 
 


