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11. Numerical solutions to higher-order linear  integral equations

Everything we have done to this point has dealt with integral equations in which there is a single integral,
such as

∫ φλ+=φ
x

a

dy)y()y,x(N)x(f)x( (6)

We have totally ignored something of the form:

∫ ∫ φλ+=φ
x

a

y

b

dydz)z()z,y,x(N)x(f)x( (56)

How do we deal with these?
Well consider what we did with higher-order ODEs and PDEs.  The first thing we did was convert nth

order ODEs to a system of n first order ODEs.  We do that because we already know how to solve systems and the
conversion process is easy and requires no intuition.  In dealing with IEs,  it would serve us well to first see if we
could do the same thing.

Let’s define

)x()x(1 φ=φ (57)

dz)z()z,y,x(N)y,x(
y

b

2 ∫ φ=φ (58)

With these definitions, we see that we have two first-order integral equations,

∫φλ+=φ
x

a

21 dy)y,x()x(f)x( (59)

dz)z()z,y,x(N)y,x(
y

b

12 ∫ φ=φ (60)

Very nice.  We have effectively reduced the second-order IE to a system of two first-order IEs.  However, there is a
problem and it is a nontrivial problem.  In our transformation, we have introduced partial IEs.  Previously, we had
only encountered ordinary IEs, whose solutions were a function of a single variable, )x(φ .  But in equation (6),

we have a partial IE, with a solution which is a function of two variables, )y,x(φ , so we will need to know how to

solve them in order to can handle single higher-order ODEs.
There is no way to get around the computational intensity of multidimensional integrals.  When we had

an integral in one dimension, we were forced to discretize it along y into n intervals and evaluate it at each of those
intervals for every value of x.  If x is also discretized in n intervals, then we have n2  function evaluations.

When we have integrals in 2 dimensions, we are forced to discretize it along y and z into n2 intervals and
evaluate it at each of those intervals for every value of x.   If x is also discretized in n intervals, then we have n3

function evaluations.
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In general, when we have integrals in m dimensions, we are forced to discretize it into nm intervals and
evaluate it at each of those intervals for every value of x.    If x is also discretized in n intervals, then we have nm+1

function evaluations.
The trick we used in integrating the single linear integral problem in Section 8. was to use the same

discretization for x and y.  That allowed us to simultaneously perform the integration along y and the evaluation of
φ  along x, so that instead of n2  function evaluations, we only had n function evaluations.

In this higher-order IE case, we still want to eliminate one exponent of our evaluations.  In the following
linear example, we will see that we have to discretize x and z in the same way to eliminate one term from the
exponent.  However, we cannot use the same trick to collapse the y evaluations onto the x and z evaluations.  We
are forced to perform n2  function evaluations.

∫
=

φλ+=φ
xy

y
21

f

o

dy)y,x()x(f)x( (61)

dz)z()z,y,x(N)y,x(
yz

z

12

f

o

∫
=

φ=φ (62)

In this linear problem, we have ( ) ( )[ ]1n11n yx +++  unknowns.  ( )1nx +  of these unknowns are )x( i1φ

and ( )( )1n 1n yx ++  of these unknowns are )y,x( ji2φ .

We can rewrite equation (61) using the 1-D trapezoidal rule as:









φ+φ+φλ+=φ ∑

=

)x(n

2i
i2f2o2

y
1

y

))x(y,x(2))x(y,x()y,x(
2

h
)x(f)x( (63)









φ+φ+φ=φ ∑

=

)y(n

2i
i1if1fo1o

z
2

z

)z()z,y,x(N2))y(z())y(z,y,x(N)z()z,y,x(N
2
h

)y,x( (64)

If we have ( ) ( )[ ]1n11n yx +++  unknowns, then we need ( )1nx +  equations.

We have ( )1nx +  equation of the form of equation (63) where we increment k from 0 to xn .












φ+φ+φλ+=φ ∑

=

)x(n

2i
kik2kfk2ok2

y
kk1

y

))x(y,x(2))x(y,x()y,x(
2

h
)x(f)x( (65)

Remember though that the integral will be zero if k=0 because then we are only integrating over a point and not
the entire range (This is because the upper limit of integration is variable).  Another way of saying that is that if
ny(x) = 1, then there is no integral contribution.

We have ( )( )1n 1n yx ++  equation of the form of equation (64) where we increment k from 0 to xn

and we increment j from 0 to yn .
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







φ+φ+φ=φ ∑

=

)y(n

2i
i1ijkjf1jfjko1ojk

z
jk2

z

)z()z,y,x(N2))y(z())y(z,y,x(N)z()z,y,x(N
2
h

)y,x( (66)

Example.  If we divide x in 2 intervals and y into 2 intervals then we will have ( ) ( )[ ] 121n11n yx =+++

unknowns and 12 equations.  This will be a set of linear algebraic equations which we can solve using the rules of
linear algebra.

   bA =φ (67)

where our vector of 12 unknown variables is

T

222122022212112012

2021020022111o1

)y,x( )y,x( )y,x(  )y,x( )y,x( )y,x(                   

)...y,x( )y,x( )y,x( )x( )x( )x(








φφφφφφ

φφφφφφ
=φ (68)

and where the constant matrix is

[ ]T
21o 0 0 0 0 0 0 0 0 0 )x(f )x(f )x(fb = (69)

and where the matrix of constants is











































=

100

010

001

000

000

000

000

000

000

bb2b

0bb

000
000

000

000

100

010

001

000

000

000

bb2b

0bb

000
000

000

000

000

000

000

100

010

001

bb2b

0bb

000
aa2a

000

000

000

0aa

000

000

000

000

100

010

001

A

222221220

211210

122121120

111110

022021020

011010

(70)

where

2

h
a yλ−=  and ( )ijk

z
kji z,y,xN

2
h

b λ−= (71)

At this point, it should be clear why we had to use the same discretization for z and x.  In the first three

equations, the first three unknowns are )x( )x( )x( 2111o1 φφφ .  But in the last nine equations, the first three

unknowns are )z( )z( )z( 2111o1 φφφ .  Therefore the discretization of x and z must be identical.
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Had the limits of integration been constant rather than functions of x or y (as they were in this example,
the only difference would have been that the matrix would have had a slightly different form.

  











































=
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001
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000

000

000

bb2b

bb2b

bb2b
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000

000
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010

001

000

000

000

bb2b

bb2b

bb2b
000

000

000

000

000

000

100

010

001

bb2b

bb2b

bb2b
aa2a

000

000

000

aa2a

000

000

000
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100

010

001

A

222221220

212211210

202201200
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112111110
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022021020

012011010

002001000

(72)
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12. Numerical solutions to higher-order nonlinear integral equations

As in the linear case, we reduce the nth-order IE to a system of first-order IEs.

∫ ∫ φλ+=φ
x

a

y

b

dydz)]z(,z,y,x[ F)x(f)x( (12.1)

How do we deal with these?
Well consider what we did with higher-order ODEs and PDEs.  The first thing we did was convert nth

order ODEs to a system of n first order ODEs.  We do that because we already know how to solve systems and the
conversion process is easy and requires no intuition.  In dealing with IEs,  it would serve us well to first see if we
could do the same thing.

Let’s define

)x()x()1( φ=φ (12.2)

∫ φ=φ
y

b

)2( dz)]z(,z,y,x[ F)y,x( (12.3)

With these definitions, we see that we have two first-order integral equations,

∫ φλ+=φ
x

a

)2()1( dy)y,x()x(f)x( (12.4)

∫ φ=φ
y

b

)1()2( dz)]z(,z,y,x[ F)y,x( (12.5)

At this point we have a system of first-order IEs, but again, just as in the linear case, the second IE (equation

(12.5)) is not of the usual form since )y,x()2(φ  is a function of two variables.

Just as was the case in Section 9. when we had a single first-order IE, where we had two choices for
solving the IE, so too when we have a system of nonlinear IEs, do we still have two choices.  The first choice is to
use the trapezoidal approximation as was done in the linear case and solve the resulting system of nonlinear
algebraic equations using some technique for solving systems of nonlinear algebraic equations, like the
multivariate Newton-Raphson method.  The derivation of this method follows that outlined in Section 11.

The second method for solving a nonlinear integral equation is the method of successive approximations.
Again, referring to Pogorzelski [page 192], we see that equation (4)

∫ φλ+=φ
x

a

dy)]y(,y,x[ F)x(f)x( (4)

can be solved using the recursive relation

∫ −φλ+=φ
x

a

1ii dy)]y(,y,x[ F)x(f)x( (52)
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You repeat this procedure until )x()x( i1i φ−φ +  is acceptably small.  The only additional information needed for

this method is the starting point

)x(f)x(0 =φ (53)

We know that we can apply this technique if we just had a system with unknowns { })x()i(φ .  What we have above

is a system with unknowns { })y,x()i(φ .

At this point, the solution is to discretize in x and y and z, using the same discretization for x and z.

We use initial estimates for { })y,x()i(φ

)x(f)x(0
)1( =φ  (12.6)

Then, repeated, alternating applications of

∫ φ=φ
y

b

i
)1(

i
)2( dz)]z(,z,y,x[ F)y,x( (12.7)

and

∫ φλ+=φ +

x

a

i
)2(

1i
)1( dy)y,x()x(f)x( (12.8)

will eventually converge to the solution for { })y,x()i(φ .

The storage matrix for )x(1i
)1(

+φ  must be the size of the discretization of x, namely, 1nx + .  The

storage matrix for the discretization of )y,x(i)2(φ  must be of size ( )( )1n 1n yx ++ .
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13. Numerical solutions to multivariate  integral equations

Everything we have done to this point has dealt with ordinary or single-variable integral equations, where
the solution was, )x(φ .  When we encountered higher-order OIEs, we were forced to create a system of first-order

IEs, some of which turned out to have unknowns of the form )y,x(φ .

This fact of integral equations should be contrasted with that of differential equations.  When we have an
nth-order ODE, we can reduce it to a system of n first-order ODEs.  PDEs do not appear in the transformation.
However, when we have an nth-order OIE, we end up reducing it to a system of n first-order OIEs and PIEs, as
shown in sections 11 and 12.  Now, PIEs appear on there own as well, and not just as a result of the reductive
transformation of a higher order OIE.

Here is an example of a linear PIE first order in both x and y:

∫∫ φλ+φλ+=φ
x

a

22

y

b

11 dw)y,w()w,y,x( Ndz)z,x()z,y,x( N)y,x(f)y,x( (13.1)

Here are two examples of nonlinear PIEs, first order in both x and y:

∫∫ φλ+φλ+=φ
x

a

22

y

b

1 dw)]y,w(,w,y,x[ Fdz)]z,x(,z,y,x[ F)y,x(f)y,x( (13.2)

∫

∫

φλ

φλ
+=φ

x

a
22

y

b
1

dw)]y,w(,w,y,x[ F

dz)]z,x(,z,y,x[ F

)y,x(f)y,x( (13.3)

We already know how to solve both of these situations from Section 11. and Section 12.  If we have a
linear equation, we discretize along x and y.  We choose the same discretization along y and z because they are
both the second arguments in )y,x(φ  or )z,x(φ .  That way, we don’t have to evaluate these functions more than

once.  Similarly, we choose the same discretization along x and w because they are both the first arguments in
)y,x(φ  or )y,w(φ .   Then, still for the linear case, we can substitute into equation (13.1) using the trapezoidal

rule, as was done in Section 11.  This results in ( )( )1n 1n yx ++ linear algebraic equations which we can solve

as we did in Section 11.
If the PIE is nonlinear as is the case in equations (13.2) and (13.3) then we can solve it as we did in

Section 12, using successive approximations in two dimensions.  We begin with

)y,x(f)y,x(0 =φ (13.4)

And we keep plugging into equation (13.2) until )y,x(φ  no longer changes.  The discretization again results

in ( )( )1n 1n yx ++ points.
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14.  Applications of integral equations

In Moiseiwitsch’s book, a concise history of integral equations is given.
Integral equations have uncountable applications.  In my mind, these applications come under two

categories.  Linz cites two reasons for the interest in integral equations:  “In some cases, as in the work of Abel on
tautochrone curves, integral equations are the natural mathematical model for representing a physically interesting
system.  The second and perhaps more common reason is that integral operators, transforms, and equations, are
convenient tools for studying differential equations.”  These, then, are my two categories.  The first category
includes systems which are naturally and exclusively described by integral equations. Under this category are
applications like:

• pair correlation functions of an inhomogeneous fluid (the Ornstein-Zernike closure)
• density distributions of an inhomogeneous fluid (the Yvon-Born-Green hierarchy)
• the renewal equation (history dependent problems in component failure analysis)
• population dynamics (Volterra integral equation)
• systems theory (circuits, feedback, process control, computer systems; convolution integrals)
• problems of experimental inference (obtaining data profiles from noisy external measurements)
• tautochrone curves (Abel’s integral equation)
• viscoelasticity
• epidemics
• superfluidity
• damped vibrations

The second category of applications includes systems which can be described by either differential
equations (ODEs or PDEs) or by integral equations.  As engineers, we are not so interested in these latter types of
problems since we already know how to solve ODEs and PDEs.  We are not out looking for more trouble.

Many (but not all) ODEs and PDEs can be reframed as IEs.  Both initial-value and boundary-value ODEs
can be converted into IEs.  Elliptic, parabolic, and hyperbolic PDEs can all be converted into integral equations.
Given this fact, one can see that just about everything in the universe can be represented by an integral equation.
The heat equation and the diffusion (parabolic PDEs) can be solved as integral equations.  The wave equation (a
hyperbolic PDE) can be solved as an integral equation.  Poisson’s equation (an elliptic PDE) can be solved as an
integral equation.  To make a list of them all is pointless.  All I would like to do is reiterate that we already know
how to solve these problems when they are formulated as differential equations.  We should do alright by that.

If you want to see the heat equation reframed as an integral equation, check out Linz, Chapter 2.  It’s
nasty.  All of the physical intuition an engineer has about the individual terms in the heat and diffusion PDEs are
not apparent in the integral equation formulation.
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Example #1:  The Ornstein-Zernike closure

Our goal is to determine the density distribution of a fluid in the influence of an arbitrary external
potential.  The Ornstein-Zernike closure for open, isothermal systems formulates the equations as

( ) ( ) ( ) ( ) ( )[ ]∫ ′′−′′′′′′′+′=−′ rd 1r,rg rn r,rCr,rC1r,rg 3)2((1))2()2()2( (13.1)

where

( ) ( )
( ) ( )rn rn

r,rn
r,rg )1()1(

)2(
)2(

′
′

=′  is the pair correlation function

( )r,rC )2( ′  is the direct correlation function

( )rn )1(  is the singlet density distribution

Unfortunately in equation (13.1), we have 1 equation and 3 unknowns ( )r,rg )2( ′ , ( )rn )1( , and ( )r,rC )2( ′ .  Some

external constitutive information must be provided.  One such approximation is called the Percus-Yevick
approximation, namely that the direct correlation function is given by

( )
( )

( )r,rge1r,rC )2(kT
ru

)2( ′







−=′  (13.2)

and that the fluid is homogeneous (which is equivalent to saying that the singlet density is constant)

constantMWn )1( =⋅ρ= (13.3)

With these substitutions, equation (13.1) becomes

( )
( )

( )
( )

( ) ( )[ ]∫ ′′−′′′′′







−+′








−=−′ rd 1r,rg n r,rge1r,rge11r,rg 3)2((1))2(kT

ru
)2(kT

ru
)2(

(13.4)
If we make the change of variable,

rrR ′−=  and rrR ′′−=′  then we can rewrite equation (13.4) as

( )
( ) ( ) ( )

( ) ( )[ ]∫ ′−′−′







−+=

−−
Rd 1RRg Rge1eneRg 3)2()2(kT

Ru

kT

Ru
(1)kT

Ru
)2( (13.5)

Equation (13.5) is a nonlinear third-order ordinary integral equation.  It is third-order because we have three

integrals.  It is ordinary because our unknown, ( )Rg )2( , is a function of only one variable, R .  We should know

how to solve this.  First we identify what type of equation we have.  A Fredholm integral equation, in which the
limits of integration are fixed, of the second kind, has the form:
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∫ φλ+=φ
b

a

dy)y()y,x(N)x(f)x( (7)

If we make the identifications

Rx = Ry ′=
( )
kT

Ru

e)x(f
−

=
( )
kT

Ru
(1)en)x(

−
=λ

( )
( )[ ]1RRg e1)y,x(N )2(kT

Ru

−′−







−= ( )Rg)x( )2(=φ

then we can rewrite equation (13.5) as

( )
( ) ( ) ( )

( ) ( )[ ]∫ ′−′−′







−+=

−−
Rd 1RRg Rge1eneRg 3)2()2(kT

Ru

kT

Ru
(1)kT

Ru
)2( (13.5)

∫ φφλ+=φ
b

a

3yd)y(),y,x(N)x()x(f)x( (13.6)

which is a Fredholm equation of the second kind with two differences.  First )x(λ  is not a constant but a function

of x.  [Does this invalidate the analytical solution?]  This doesn’t really affect the numerical solution except that it
makes the elements of the matrix A in equations (44) and (45) functions of x.  The other difference is that the
kernel is now a function of the unknown, ),y,x(N φ  instead of )y,x(N .  This presents a problem for an

analytical solution but again doesn’t affect the problem for the numerical solution.
If we consider that we neglect the angular components of the problem and reduce our dimensionality to a

one-dimension system described by the radius vector, then we can rewrite equation (13.6) as a nonlinear first-order
ordinary integral equation:

∫ φφπλ+=φ
b

a

2dyy)y(),y,x(N)x(4)x(f)x( (13.7)

or

∫ φφ′λ′+=φ
b

a

dy)y(),y,x(N)x()x(f)x( (13.8)

where

)x(4)x( πλ=λ′ and  2y),y,x(N),y,x(N φ=φ′

Equation (13.8) we should be able to solve numerically, in a straightforward manner.
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Example #2:  The Yvon-Born-Green (YBG) Hierarchy for open, isothermal systems

Our goal is to determine the density distribution of a fluid in the influence of an arbitrary external
potential.  The Yvon-Born-Green (YBG) Hierarchy for open, isothermal systems formulates the equations as

( ) ( ) ( ) 1s
3)1s(

1s,ir
)s(

s

ij
ijri

e
r

)s(
r rdn runrurunkT

iiii +
+

+
≠

∫∑ ∇+







∇+∇=∇− (13.9)

where
k  is Boltzmann’s constant
T  is the temperature
s  is the number of atoms for which we want the density distribution

)s(n  is the density distribution of s atoms

ir  is the position of the ith atom in 3-D real space

jiij rrr −=  is the magnitude of the separation between the ith and jth atom

( )i
e ru  is the external potential experienced by the ith atom

( )ijru  is the pairwise interaction potential between atoms

Equation (13.1) can be written for s = 1,2,3…N so that it forms a system of N integrodifferential
equations, where N is the number of atoms and is usually on the order of Avogadro’s number.  The system of

equations is called a hierarchy because it gives )s(n  as a function of )1s(n + , so that the singlet density distribution
is a function of the doublet density distribution, which is a function of the triplet density distribution, etc.  We are
forced to use some approximation to end the system of equations somewhere.    Various approximations have been
developed and are still being developed.  One of the earliest approximations is called the superposition principle,

which says that the triplet density distribution, )3s(n = , can be expressed as a product of the 3 doublet density

distributions, )2s(n = , normalized by the singlet density distributions:

( ) ( ) ( ) ( )
( ) ( ) ( )rn rn rn

r,rn r,rn r,rn
r,r,rn )1()1()1(

)2()2()2(
)3(

′′′
′′′′′′

=′′′ (13.10)

If we explicity write equation (13.1) for s=1 and s=2, we have

( ) ( ) ( ) ( ) ( ) rd r,rn rrurn rurnkT 3)2(
r

)1(e
r

)1(
r ′′′−∇+∇=∇− ∫ (13.11)

( ) ( ) ( )[ ] ( ) ( ) ( ) rd r,r,rn rru r,rn  rruru r,rnkT 3)3(
r

)2(
r

e
r

)2(
r ′′′′′′′−∇+′′−∇+∇=′∇− ∫ (13.12)

Equations (13.2)-(13.4) form a closed set of three integrodifferential equations which can be solved for the three
unknowns, the singlet, doublet, and triplet density distributions.  Frequently, people just substitute 13.2 into 13.4 so
that there is a system of 2 integrodifferential equations which can be solved for the two unknowns, the singlet and
doublet density distributions.

( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) rd 

rn rn rn
r,rn r,rn r,rn

 rru                       

 r,rn  rruru r,rnkT

3
)1()1()1(

)2()2()2(

r

)2(
r

e
r

)2(
r

′′
′′′

′′′′′′
′′−∇+

′′−∇+∇=′∇−

∫
(13.13)
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So that the system of integrodifferential equations formed by (13.3) and (13.5) is closed.

This system of equations was solved the case where ( ) 0ru i
e = , ( ) 















 σ
−







 σ
ε= 6

6

12

12

ij rr
4ru , and

constantMWn )1( =⋅ρ= for gaseous argon by Kirkwood et al. (1952) and later by many others including

Kerins et al. (1986) who used a finite element method.
In this class, we have not developed specific tools to solve this problem.  We have developed the tools

which would be modified to solve the problem.  As the problems get this complex, people are forced to develop
their own tools to solve the problem.  Part of earning a Ph.D. in a field like this is the development of a numerical
method which can solve the problem.
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15.  Sources for more information on integral equations

Where can I find out more about integral equations?

The University Library has shelves and shelves of books on integral equations.  Unfortunately, many of
those books have two faults.  First, the books are not textbooks but reference books.  Therefore, they are not written
to teach someone about integral equations, who has no previous knowledge of them.  These books lack
introductions and begin somewhere in the middle of integral equation analysis, pursuing details which are
interesting to the various authors.  The second shortcoming of these books is that most of them are written by
mathematicians in what I perceive as mathematical jargon.  We have all taken courses in calculus and differential
equations.  We have all the tools we need to handle integral equations.  However, when you start reading these
books, a lot of the texts are difficult or impossible to understand because they abandon the “jargon” we learned for
calculus and ODEs and invent new jargon.

Much of the purpose in my retyping this material is simply to translate the key ideas of integral equations
into language that the graduate level engineer is already familiar with and can easily digest.  The discussion
presented here is a summary of discussions in several texts.

For the best, most easily understandable to the non-mathematician introduction, consult:

Pogorzelski, W., “Integral Equations and their Applications”, Volume I, Polish Scientific
Publishers/Pergamon Press, Warsaw/Oxford,  1966.

Also relatively clear texts are

Moiseiwitsch, B.L., “Integral Equations”, Longman Mathematical Texts, London, 1977.

Lovitt, William V., “Linear Integral Equations”, McGraw-Hill, New York, 1924.

For numerical solution techniques to integral equations, consult

Linz, Peter, “Analytical and Numerical Methods for Volterra Equations”, SIAM, Philadelphia, 1985.

Atkinson, Kendall E., “The Numerical Solution of Integral Equations of the Second Kind”, Cambridge
University Press, Cambridge, 1997.

These books have numerous references to other texts.


