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Introduction

This hand-out is a primer on integral equations. On the analytical side, it assumes that the reader knows
calculus, differential equations, and the basic operations of linear algebra. On the numerical side, it assumes that
the reader knows the trapezoidal rule for numerical integration and the Newton-Raphson method of root-finding in
nonlinear algebraic equations.

1. Definition of Integral equations

What is an integral equation?

Anintegral equation (1E) is an equation in which an unknown function appears within an integral, just as
adifferential equation is an egquation in which an unknown function appears within a derivative. Just asthe
solution to a differential equation is afunction, so too is the solution to an integral equation a function.

2. Ordinary versus partial integral equations

When dealing with differential equations, we encounter ordinary differential equations (ODEs) and partial
differential equations (PDEs). Are there analogous ordinary integral equations (OlEs) and partial integral
equations (PIESs)?

Yes. There are integral equations in which the integration is carried out with respect to asingle variable
(OlEs) and there are integral equations in which the integration is carried out with respect to multiple variables
(PIEs). However, in the mathematics of integral equations, they are not referred to as OlEs and PIES. The jargon
isdifferent. However, for our purposes, we might as well call them OIEs and PIEs, since we understand that
terminology.

An example of an ordinary integral equation:
FO) =1(x) +1 N, y)f (y)dy (1)

An example of apartial integral equation:

X2 X1

f (Xl’ XZ) = f (Xl’ XZ) +I m N(Xl’ XZ’yl’yZ)f (yl’ yZ)dyldyZ (2)

aa
Hopefully you see the analogy between ODEs and PDEs with OIEs and PIEs.
3. Linearity versus nonlinearity of integral equations

Do integral equations comein linear and nonlinear flavors?

Yes. Anintegral equationiscalled linear if linear operations are performed in it upon the unknown
function, that is, if it has the form

AMF(x) +B(x) +1 gN(x, y)f (y)dy =0 ©)
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Hereis an example of anonlinear integral equation
FO)=f(x)+1 GFI[x,y.f(y)ldy (4)

where F[X,Y,f (y)] isanonlinear function of f (), for example

FIx,y,f(y)]=sn[f (y)] (5)
4. Sngleintegral equations vs. systems of integral equations

Do integral equations appear in systems as well as individually.

You bet they do. All thetime.
5. Categorization of integral equations

We have seen that when dealing with algebraic equations, we used only the linear/nonlinear
categorization. When dealing with ODES, we could expand the categorization to include first order/second order,
homogeneous/nonhomogeneous, separable/nonseparable, etc. When dealing with PDES, we categorized them as
eliptic, hyperbolic, and parabolic. How do mathematicians categorize integral equations?

Mathematicians categorize ordinary integral equations in much the same way that ODEs are classified by
small sub-groups, for which a particular solution method exists. Thus, the categorization does not apply to all
ODEs (the way that the linear/nonlinear categorization does).

Linear OIEs are divided into two basic types:

Volterraintegral equations, in which the upper limit of integration is variable,
f(x) =f(x) +1 N, y)f (y)dy (6)
a
and Fredholm integral equations, in which the limits of integration are fixed,
b
F(x)=f(x)+1 QN(x, y)f (y)dy (7)
a

Both Volterra and Fredholm integral equations can be subdivided into two groups: equations of the first and
second kind. In equations (6) and (7), we have written Volterra and Fredholm integral equations of the second
kind. Volterra and Fredholm integral equations of the first kind have the form, respectively,

F(x) =1 N(x, y)f (y)dy (8)

and Fredholm integral equations, in which the limits of integration are fixed,
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FG) =1 QN ) (y)dy (9)

These categorizations apply to both linear and nonlinear OIEs.
6. Kernelsof integral equations

What is akernel?

In equations (6) to (9), the function N(X,Y) iscalled the kernel of theintegral equation. Every integral
equation has akernel. Kernels are important because they are at the heart of the solution to integral equations.

7. Analytical solutionsto integral equations

Example 1. We cannot possibly present analytical solutionsto a of the types of integral equations. However
we can present afew examples. Let us consider the Volterra equation of the second kind.

FO)=1(x) +1 QN Y (y)dy (6)

Certain assumptions have to be made about N(X,Yy) being defined and bounded over the domain, as well as

f (X) being a Riemann-integrable function in the domain. Also, f (X) isan arbitrary Riemann-integrable function

in the domain.
The first step in the solution of thisintegral equation is a transformation called the Dirichlet
transformation. In the Dirichlet transformation, we state that the order of integration doesn’t matter.

A o & u
OV (X, y)dxdy = eV (. y)dy udx (10)
p Ea u aBp 0]

Let us define a function

M, (X,y) = N(X,y)N(y,s)f () (11)

Substituting equation (11) into (10), we have

&\ u & u

OegM. (s y)dsdy = gagM. (s, y)dy (ds (12
a €a u a €a u

X\éy\ l:l X\éx\ l:l

OEON (. Y)N(y, 9)f (s)dsgdy = GaON (X, YIN(y, s)dyf (s)ds (13)
a €a u a s u

We can now proceed to the solution of the Volterra equation. If there exists an integrable function f (X) which

satisfies the Volterra equation (6), then this function also satisfies the so-called iterated equation, obtained by
substituting the right hand side of equation (6) under the integral sign of equation (6) obtaining.
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F00 =100 +1 NG Y)E (0 +1 N, 9 (S)dsiely (14
a e a u

For the moment, let us proceed under the assumption that this substitution isvalid. When we have completed the
transformation, we will verify the assumption.
We now apply the Dirichlet Transformation to equation (14) obtaining the iterated equation

FOx) =f(x) +] Ej\l(X,Y)f (y)dy +1 2Xc‘j\ll(x,)/)f (y)dy (15)
where N, (X, Y) iscalled theiterated kernel and is written as
N, (x,y) = Xc‘j\l(X,S)N(S, y)ds (16)
y
Repeating the above transformation, we obtain a two-fold iterated equation
FOx)=f(x)+] XdN(X, y) + 1IN0y (y)dy +1 SX\d\Iz(Xa y)f (y)dy (17)
where N, (X,Y) iscaled the two-fold iterated kernel and is written as
N, (x,y) = Xc‘j\l(X,S)Nl(S, y)ds (18)
y
After the nth repetition of the transformation we have:
F(x)=f(x)+l E)szN(X,Y) +in§;lll| 'N, (X,Y)g,f (y)dy +1 ”ﬂz‘j\ln (x,y)f (y)dy (19)
where N (X, ) iscaled the n-fold iterated kernel and is written as
N, (X,y) =Xc‘j\|(X,S)Nn.1(S,Y)dS (20)
y

Intricate proofs have been performed which show that if N(X,Y) was defined and bounded over the domain all

of thei-fold iterated kernels are also defined and bounded over the domain of integration [Pogorzel skil.
The standard procedure is to rewrite equation (19) as

FO) =F(x)+1 Ay, D) (y)dy (21)
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where A(X, Y, 1) iscalled the resolvent kernel and is written as
N _ 3 i
Ay, ) =NXy)+a I'Ni(x,y) (20)
i=1
Now this looks like we cheated in the substitution because, with this resolvent kernel, equation (21) ought to be
X X
FO)=F ) +1 A Y, DF )y +1™ N, (6 W[f (9) - F(y)]dy (22
a a
but we have omitted the last term entirely. Therefore, we must show that it isimportant, which, fortunately,
mathematicians have already done [Pogorzelski, p. 11].
To check that our solution in equation (21) satisfies the Volterra equation (6), substitute (21) into (6). We

need to do this because we made an assumption moving from equation (13) to equation (14) that has not yet been
proved.

FO) =F(x) +1 GN(x, y)gf )+ Ay, f (S)dslfﬂy (23)
a e a u
X X éy R X
f(x) =10 +1 N YT (y)dy +12 GON (X, YIA(Y,s 1 )f (S)dsgdy (24)
a aCa u
We change the order of integration for y and s
X X éX R y
f(x) = (x)+1 N, YT (y)dy +1° aON(X, V)A(y,s|| )dy& (s)ds (25)
a a Bs u
We transpose the dummy variablesy and s
X X éx R l:l
f(x) = (x)+1 N Y (y)dy +1° QBN (X, 9)A(s,y, 1 )dsif (y)dy (26)
a a By g
00 =£()+1 NG Y) +1 (K 9A(S Y. s () @
a@ y g

The term in brackets in equation (27) can be rewritten, using the definition of the resolvent kernel in equation (20)

N(x,y) +I Xc‘j\l(x,s)A(s,y,I Yds=A(x,y,l) (28)

y

So that we can rewrite equation (27) as
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FO)=F0)+1 A,y (y)dy (29)

which is what we have in equation (21), which we substituted into the integral equation for checking. So, our
check is complete. A Volterra equation of the second kind has one and only one bounded solution, given by the
formulain equation (29). This solution is convergent for al valuesof | .

This solution technique is also valid for partial Volterra equations of the second kind,

X2 X1

f (Xl’ XZ) = f (Xl’ XZ) +I m N(Xl’ XZ’yl’yZ)f (yl’ yZ)dyldyZ (2)

Hay

Example 2. Let us consider the Volterra equation of the first kind

FO) =1 N(x, y)f (y)dy (8)
Using Leibnitz' s rule for the differentiation of integrals:
d ’ 0™ ta 2% da v da

fi(a) fi(a)

we can differentiate both sides of equation (8), effectively transforming the V olterra equation of the first kind into a
Volterra equation of the second kind:

_ f&x) I
f(x)= N(X,X)+ N(X,X)g\qu’y)f (y)dy (31)

which isaVolterra equation of the second kind. If N(x, x) =0, we can differentiate again to obtain a
transformation with N((x, X) in the denominator.

Example 3. Fredholm’sintegral equation of the second kind.

Fredholm’ s integral equation of the second kind has the form
b
FO) =F(x) +1 N, y)f (y)dy (7)
a
The solution to this equation is

FO) =F(x)+1 Ay, (y)dy (32
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where A(X, Y, 1) iscalled the resolvent kernel and is written as

AGGy.1) =8 17N (x,y) @

i=1
where N, (X,y) = N(X,y).

Example 4. Let’ swork a Volterra equation of the second kind with numbers.

f(x) =€~ CFf (y)dy (3)

sof(x)=€",1 =-1, N(x,y)=€"Y,and a=0.

Ny (X,y) = ON(X,9N(s,y)ds = (e Yds = (g Yds =& (x - y)
y y y

N, (x,y) = N(X, 9N, (s y)ds = “”(s y)is= 09”(8 y)os

-5 y? 2(.j -6 yZ 0
N,(X,Y) =€V —- yx- - +y’z=€V¢ - yx+2-=
2( y) gz yX 5 Yy p > yX 5 :
o’ y2o, L., y? 0
Ns(x,y) = d\l(x SN, (s, y)ds = oex eV - ys+ 2305 = (PG - ys+ a5
2 2 1] y 2 Zﬂ

N (x,y) = exv%fe; = T
a

u
2l o=tV - EARANSNE B
2 25 &6 2 2 64

Let’struncate the resolvent kernel at the third iterated kernel because things are getting ugly fast.

¥ .
Ay, )=NX,y)+a I'N;(x,y) (20)
i=1
R ) ) a2 yz(-j éx3 sz y2X ysu
AX, ,I :exy_exyx_ +exy o +2 = exy" R LA AL A
oyl b-) gz ¥ 25; &€ 2 2 68
R 8 X2 yz X3 sz y2X ysu
AXy,1)=eYd- x+y+—-yx+2—- —+2 - 2+~
oyl = Xy X e T 2 e

Now, let’s create the solution using both the first, second, and third approximations to the resolvent kernel

7



D. Keffer, ChE 505 ,University of Tennessee, August, 1999

X

s

2

" . é U
fl(X):eX_ c\ﬁx—)’[l_ X+y]eydy:ex_ exdl_ X+y]dy:ex_ eXéY' Xy_+_y_((I
0 0 e 2Uo
j. e IV h 243
fl(X)=eX!’1-éx-xx+X—L'(I +é0-xO+O—Qy:eX,'1- +2y
i é 20, & 20 1 %
" 2 U i %Xé 2 20, U
f(x)=¢"- ”el x+y+x—- yx+y .xleydy:exil- A - x+y+x__ yx+y_, .
0 2 20 T o€ 2 2 E
Poeé 2 2 2 3§ j 2 3
L ze 1 oy + L sy VYR oy 0 X0 X
X a X2 yz X3 sz y2X ysu
f.(x)=€"- ;gY8l- X+y+—-yx+2—- —+2— L 47 ~
09 ?e XY Y s T T 6u'x'eydy
2 3
f.(x)=¢€" |1 x+X_-X_
i 2423
We can pretty much guess what the infinite solution looks like:
g (- x)
o I
1.4
n=2
1.2 | .
1 n>3
0.8 | _n=3
N 0.6 |- .
0.4 |- .
0.2 |- .
00 0.1 0.2 0.3 0.4 0.I5 0.6 0.7 0.8 0.9 1n=1

We can plot the analytical solution, varying the number of iterated kernels that we include in the resolvent kernel.
The analytical solution is phi(x) = 1.0. On the following page isthe MATLAB code used to generate this plot.



function volterra2_anal ytic

%

% Solution to a Volterra Equation of the Second Kind
%

% The Volterra Equations have four
%

% the lower linmt of integration, a
% the constant prefactor outside the integral, |am

% the function outside the integral, f, given in a function at
the bottomof this file

% the kernel, kernelorig, given in a function at the bottom of
this file

%

% This code gives teh analytic solution to a=0
and N=e”(x-y)

%

% Aut hor:
of Chemi ca
%

clf
time_01 =
a=20
lam= -1
%

% set
%
xstart = 0.0;

xf = 1.0

dx = 0.01

nx =(xf-xstart)/dx + 1
X = zeros(nx,1);

par aneters

lam=-1, f=e="x

Davi d Keffer
Engi neeri ng

Uni versity of Tennessee, Departnent

cputi me;

up a grid of x values

for i = 1:1:nx

x(i) = xstart + (i-1)*dx
end
%

runs where we truncate the resol vent
points just to see the effect

% let's run different
% kernel at different
%

nruns = 10
ncutoff=[1;2;3;4;5;6;7;8;9;10]';

phi = zeros(nx, nruns);
%
for j = 1:1:nruns
%
% cal culate and plot purely analytic ph
%
for i = 1:1:nx
xi = x(i);
for k = 0:1:ncutoff(j)
phi(i,j) = phi(i,j) + (-xi)~k/factorial (k);
end
phi(i,j) = phi(i,j)*f(xi);

end

%

% pl ot

%

if (j==1)

plot (x,phi(:,j)," k-'
elseif (j==2)

plot (x,phi(:,j),"'r-"
el seif (j==3)

plot (x,phi(:,j),"b-"
elseif (j==4)

plot (x,phi(:,j)," g’
el seif (j==5)

plot (x,phi(:,j),' m"’
el seif (j==6)

plot (x,phi(:,j)," k:'
elseif (j==7)

plot (x,phi(:,j),"'r:"
el seif (j==8)

plot (x,phi(:,j)," b:'
elseif (j==9)

plot (x,phi(:,j),"g:
el seif (j==10)

plot (x,phi(:,j)," ' m
el se

plot (x,phi(:,j)," k-
end
hol d on
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x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
xl abel (
x| abel (

x| abel (

fprintf (1,'FI NI SHED CALCULATI NG

%l \n', j, ncutoff(j));
end
hol d of f
phi
function y = f(x)
y = exp(Xx);
function y = factorial (x)
fact =1
for i = 1:1:x
fact = fact*i
end
y = fact;

THE

%"

yl abel
yl abel
yl abel
yl abel

yl abel

( )

( )

( )

( )

( )
ylabel ( 'phi' )
yl abel ( )
yl abel ( )
yl abel ( )
yl abel ( )
( )

yl abel

RUN wher e ncut of f
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8. Numerical solutionsto linear integral equations

One can imagine different types of numerical solutionsto alinear integral equation like the Volterra
equation. Frequently we are going to encounter integral series, the which we have no intention of analytically
evaluating either because we don’t know how to evaluate the integrals analytically or it’s not worth our time.
Faced with this problem, we could code the analytical solution above, using numerical methods to numerically
evaluate al of the integrals required for the kernel, the iterated kernels, and finally for phi. For example, we could
use the trapezoidal ruleto evaluate all of the iterated kernels in equation (20) (up to however many terms we want
to use) and use the trapezoidal rule again to evaluate the solution for phi as given in equation (21). No two ways
about it, THIS IS COMPUTATIONALLY INTENSIVE. It resultsin the evaluation of each iterated integral n?
times where n is the number of points along our axis. So if we want to evaluate phi at 100 x-values, using 5
iterated kernels, we will be forced to evaluate 50,000 integrals! This sucks. If the equation is nonlinear, we may
be forced to do this.

A second, much more elegant method is to take advantage of the linearity of the equation. We can use a
numerical method for the evaluation of the integrals but plug this method directly into the integral equation.
Consider Volterra' s equation of the second kind

FO)=F0) +1 N, y)f (y)dy (6)
and consider the trapezoidal rule for n intervals:
u
a (35
a

If we substitute equation (35) in for the integral in equation (36) we have

00 =10 +1 g o 4 B gy () + NI @)
é j=2 a
D). IhéN(xi,y,—)f(y,—Hg-Ih'\'(x'z’x)gf( )=tx) @
for i = 1, equation (38) becomes, where X; = a
f(a=f(a) (39)

and for i = 2, we have

“1h I\'(Xg’xl)f( 1)+§l' Ih N(XZ’XZ)H(XZ) =1 (x,) 0

and for i = 3, we have

h—N(X;’Xl)f(xl)- | AN(X, X,)f (x2)+§t- ! hwg (x5) =f (x3) (41)

10
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Now we have n equations of type equation (37), where X, =a and X, ,, = b. If you look at these equations, you

will see that they form a set of linear algebraic equations! Whoa boy! We know how to solve that. The unknowns
n unknowns are the function evaluated at each of our n points.
Our problem is going to look like this:

Af =b 42
where
F=[f (%, = a)f (x,),F (X3)...F (X)) F (X)), F (Xp)]| (43)
Agrij = - 1 hN(X; ’yj) (44)
N(X;,X,) 0
A, . =lhel- — 2= 45
diag,i ? 2 o ( )
é 1 0 0 0 0 0O u
é a
e 05Au . Agp, O 0 0 0 3§
€ 05A A A 0 0 0 u
A —a off ,3,1 off ,3,2 diag,3 ph (46)
= gO'SAoff,i,l Atz Agtis A g, 0 0 3
§0'5Aoff,n,l Aoff n,2 Aoff,n,s Aoff,n,i Adiag,n O g
SO'SAoff,nﬂ,l Aoff,n+l,2 Aoff,n+l,3 Aoff,n+l,i Aoff,n+l,n Adiag,n+lf|
and where
& (x, = a)i
e u
S f(x,) |
é f(x,) U
o
é f(x,) u
& f (Xpa) B

Now, the accuracy of the solution depends on the step-size. As an illustration, we solve the same problem that we
solved analytically in the last section. Thistime we solve it with this method for various values of the step-size.

11
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1005 L) L) L) L) L) L) L) L) L)
1 n=16 & n=32
n=8
0.995 |
n=4
= 0.99 -
[=%
0.985 | -
0.98 P -
=2
0975 A A A A A A A A A
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Clearly as the number of intervals, n, increases, the accuracy of our solution to the integral equation also increases.

In aresult that should not surprise us, Linz has shown that should one use better methods for numerical
integration than the trapezoidal rule, one will obtain more accurate results.

12



function volterra2_anal ytic

%

% Solution to a Volterra Equation of the Second Kind
%

% The Volterra Equations have four
% the lower linmt of integration, a
% the constant prefactor outside the integral, |am

% the function outside the integral, f, given in a function at
the bottomof this file

% the kernel, kernelorig, given in a function at the bottom of
this file

%

% This code gives the nuneric solution to a=0
and N=e”(x-y)

% Author: David Keffer,
% Departnent of Chemica
clf

time_01 = cputinme;

a=20

lam= -1

%

% set
%
xstart = 0.0;

xf = 1.0

%

% let's run different runs where we change the step size
% just to see the effect

%

nruns =5

ni nterval s=[ 2; 4; 8; 16; 32; 64; 128; 256; 512; 1024] "'

npoints = ninterval s+1

par aneters

lam=-1, f=e="x

Uni versity of
Engi neeri ng

Tennessee

up a grid of x values

for jj = 1:1:nruns
%
% set up the x grid
%
ninterval = nintervals(jj);
npoints = ninterval +1
phi = zeros(npoints, 1)’
dx = (xf-xstart)/ninterval
X = zeros(npoints,1);
for i = 1:1:npoints
x(i) = xstart + (i-1)*dx
end
%
% calculate and plot purely analytic ph
%

amat = zeros(npoints, npoints);
bnum = zeros(npoints, 1);
fac = lanrdx;

for i = 1:1:npoints

xi = x(i);

if (i ==1)

13
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amat (i,i) = 1.0;

el se
amat (i,i) = 1.0
end
bnum(i) = f(xi);
for j = 1:1:npoints
yi = x(j);
if (j <i)
if (j ==1)
amat (i,j) =
el se
amat (i,j) =
end
end
end
end
amatinv = inv(amat);
phi = amati nv*bnum
% pl ot
if (jj==1)

plot (x,phi(:),"k-"),

elseif (jj==2)
plot (x,phi(:),"'r-"
elseif (jj==3)
plot (x,phi(:),"b-"'
elseif (jj==4)
plot (x,phi(:),'g
r

elseif (jj==5)
plot (x,phi(:),"

elseif (jj==6)
plot (x,phi(:),"k:'

m'),

elseif (jj==7) )
plot (x,phi(:),"'r:
elseif (jj==8)

plot (x,phi(:)," b:'
elseif (jj==9)

plot (x,phi(:)," g:'
elseif (jj==10)

)
)
)
)
)
)
)
)

plot (x,phi(:),"'m"),
el se

plot (x,phi(:),"'k-"),
end
hol d on

fprintf (1,'FI NI SHED CALCULATI NG THE %
ninterval);

nintervals = %0f \n', jj,
end
hol d of f

function y = f(x)
y = exp(x)

- fac*0.5%*kernel orig(xi,yj);

- fac*0.5*kernel orig(xi,xi)

-fac*kernel orig(xi,yj);

x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
x| abel (
xl abel (

x| abel (

function y = kernelorig(x,y)

y = exp(x-y)

yl abel
yl abel
yl abel
yl abel
yl abel
yl abel
yl abel
yl abel
yl abel
yl abel

yl abel

RUN

( " phi
( ' phi
( ' phi
( " phi
( ' phi
( ' phi
( " phi
( ' phi
( ' phi
( " phi
( ' phi
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9. Numerical solutionsto nonlinear integral equations

There are many waysto skin acat. There are at least as many ways to solve nonlinear integral eguations.
I will speak briefly on two methods: (1) an extension to the linear method of Section 8, and (2) the method of
successive approximations.

Consider ageneral nonlinear integral equation

FO) =10 +1 g Ix.y.f (y)ldy 4

where F[X,Y,f (y)] isanonlinear function of f (), for example

FIx,y,f(y)] =sn[f(y)] (5)

First, in Section 8, we showed how to reduce alinear integral equation to a system of linear algebraic
equations, which we then know how to solve. It should come as no surprise that we can reduce a nonlinear
integral equation into a system of nonlinear algebraic equations, which we also know how to solve, although it
frequently isapainto do so. Still, if we go through the trouble to code it up once, then we have it for time
immemorial, so long as there continue to be FORTRAN compilers. Since FORTRAN will surely outlast us, we are
aright.

We can discretize the x-axis into nintervals. Thus we obtain n+1 unknowns f (X, ) fori=1ton+1. If weare

smart, we choose to discretize the y-axis (the dummy axis of integration) in the exact same way that we discretized
the x-axis. Then, we can write something like, again using Trapezoidal rule,

f(x) =f(x, =2) “®
() =1 000) #1 2 [FIXa X0 F O]+ FI X, ()] “
() =1(x) 1 D[FIX X0 F O]+ 21X X f (X +FIX X0 T O] 60

f(x;)=f(x;)+I ggl:[xiixl’f(xl)] +2jglF[Xiaxjaf(Xj)]+ FIX;, X, f(%)]
e

j=2

(51)

e eniy enid

Thisis asystem of nonlinear algebraic equations. We could solve this using any technique in our arsenal for
solving systems of nonlinear algebraic equations. This caseis particularly amenable to the Newton-Raphson
method since all of the partial derivativesin the Jacobian are going to have the same functional form. Remember

the derivatives are taken with respect to f (X,) and not with respect to X .

The second method for solving a nonlinear integral equation is the method of successive approximations.
Again, referring to Pogorzelski [page 192], we see that equation (4) can be solved using the recursive relation

B 00 =f0) +1 g Ix.y. T .(y)ldy (52)

14
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Y ou repeat this procedure until |f a(X)- f, (x)| is acceptably small. The only additional information needed for
this method is the starting point

f,(x)=f(x) (53)

Now, certain qualifications have to be made about when this method works. The solution has to satisfy the
Lipschitz condition and various other criteria have to be met. Well, at this point, | wave my hands and leave this
to the mathematicians. We are engineers and we are here to use the equations. If wetry and useit and it doesn’t
converge, then we go to the other method of solutions! Mathematicians please forgive us ignorant and sacrilegious
engineers.

Now, if the truth be told, f ,(X) can be any arbitrary continuous function in our range of interest. We
set it to f(X) just for the heck of it. You could just as easily set it to unity.

Let’swork an example and solve it three ways, using (1) an extension to the linear method of Section 8,

and (2) the method of successive approximationswith f ,(X) =f (X) and (3) the method of successive

approximationswith f ,(x) =1.0.

f(x)=€" - ginlf (y)ldy (54)

Here we plot the solution to equation (54) using successive approximations.

=1
n=2and 3

phi

In this figure, n isthe number of iterations performed. Inthiscase, f ,(x) =f(x) = €.

15
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=1
n=2and 3

phi

In this figure, n is the number of iterations performed. In thiscase, f ,(x) =1.0. From this we can see that, for
this particular equation, the approximation converges pretty dang quickly.

It isleft up to the student to verify these results using the other method, namely that of using a method for

solving a system of nonlinear algebraic equations.

Below isthe MATLAB code used to implement the successive approximations solution method.

16



function vol terra2_nonlinear

%

% Solution to a Nonlinear Volterra Equation of the Second Kind
%

% The Volterra Equations have four

%

% the lower limt of integration, a
% the constant prefactor outside the integral, |am

% the function outside the integral, f, given in a function at
the bottomof this file

% the kernel, kernelorig, given in a function at the bottom of
this file

% This code gives the nuneric solution to a=0
and K=sin(phi)

%

% Aut hor:

of Chemi ca
%

clf

par anet ers

lam=-1, f=e="x

Davi d Keffer
Engi neeri ng

Uni versity of Tennessee, Departnent

lam= -1
%

% set
%
xstart = 0.0;

xf = 1.0

%

% USI NG SUCCESSI VE APPROXI MATI ONS
%

ninterval = 20

npoints = ninterval +1

dx = (xf-xstart)/ninterval

X = zeros(npoints,1);

up a grid of x values

for i = 1:1:npoints
x(i) = xstart + (i-1)*dx
end
nruns = 3
ncutoff=[1;2;3;4;5;6;7;8;9;10]';
phi = zeros(npoints, ncutoff(nruns))
%
% initialize phi(:,1)
%
for i = 1:1:npoints
% phi(i,1) = f(x(i))
phi(i,1) = 1.0
end
%
% start iteration |oop
%
jrun = 1;
for jj = 2:1:ncutoff(nruns)+1
jjmo=jj-1;
dxh = 0. 5*dx

17
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kernphi 1 = kern(phi (1,jjnl));
integral_md = 0.0
phi(1,jj) = f(x(1));
for i = 2:1:npoints
integral _md = integral_md + kern(phi(i,jjnl));

integral = dxh*( kernphil + 2.0*integral _md -
kern(phi (i ,jjnt)) );
phi(i,jj) = f(x(i)) + lanfintegral
end
%
% pl ot
%

if (jjml == ncutoff(jrun) )
jrun = jrun + 1
if (jj==1)
plot (x,phi(:,jj),"k-
elseif (jj==2)
plot (x,phi(:,jj),"r
elseif (jj==3)
plot (x,phi(:,jj),"b-'
elseif (jj==4)
plot (x,phi(:,jj)."'g
r

, xlabel ( '"x'" ), ylabe

, xlabel ( '"x'" ), ylabe

, xlabel ( '"x'" ), ylabe

"), xlabel ( 'x' ), ylabe

elseif (jj==5)
plot (x,phi(:,jj),’

elsei f (jj==6)

plot (x,phi(:,jj), k'
elseif (jj==7)

) ) ( )
-1) ) ( )
-1) ) ( )
-1) ) ( )

m'), xlabel ( '"x'" ), ylabel ( )

y, xlabel ( "x' ), ylabel ( 'phi' )

) ) ( )

) ) ( )

) ) ( )

) ( )
) ( )

plot (x,phi(:,jj),"'r:"), xlabel( '"x'" ), ylabel ' phi
elseif (jj==8)

plot (x,phi(:,jj),"b:"), xlabel( '"x'" ), ylabel ' phi
elseif (jj==9)

plot (x,phi(:,jj),"9:"), xlabel( '"x'" ), ylabel ' phi
elseif (jj==10)

plot (x,phi(:,jj),'m"), xlabel( '"x'" ), ylabel ' phi
el se

plot (x,phi(:,jj),"k-"), xlabel( '"x'" ), ylabel ' phi
end
hol d on

fprintf (1,' THE %2i RUN where nintervals = %li and iteration

= %, phi(%.2f) = 9.2f \n', jjml, ninterval, ncutoff(jrun-
1), x(npoints), phi(npoints,ncutoff(jrun)) );

end

end

hol d of f

f(x)

function y
y = exp(x);

function y = kern(x,y)
y = sin(x);
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10. Numerical solutions to systems of integral equations

We know that the formalism for solving systems of equations is often precisely the same as that for
solving a single equation. We have seen this again and again. With algebraic equations, we can use the Newton-
Raphson method to solve a single non-linear algebraic equation. Similary, we can use the multivariate Newton-
Raphson method to solve a system of non-linear algebraic equations. With ODEs, we use Runge-Kutta to solve 1
ODE and multivariate Runge-Kutta to solve a system of ODEs. With PDEs, the same trend holds. With IEs the
same trend still holds.

For linear integral equations, we reduced a single |E to a system of n linear algebraic equations, where n
was the number of intervals used in our discretization of the x-axis. For a system of linear integral equations, of
the form:

ey u
fi(x) =1 (x)+I i OAd N;; (X, y)f j(Y)l;Idy (59)
a@j=l u

wherei ranges from 1 to m we then have a system of mn equations, where n is again the number of intervals used
in our discretization of the x-axis, and m is the number of integral equations.
| stop here because the derivation of the method is totally analogous to what was given above.

For nonlinear equations, we can use successive approximation on a system of nonlinear |Esjust as easily
aswe used it on asingle nonlinear IE. We have to simultaneously successively approximate all m f , (X) based on

the previous m, but so what? That’s a piece of cake. The extension to systems requires no new intellectual effort
whatsoever.
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